The Future Of Aerospace 3D Printing

Innovations in the aerospace industry have been seeing huge strives when it comes to 3D printing. Aerospace companies and organizations from around the globe are using 3D printing for both prototyping and end-use parts. These applications have been ramping up for years — and now we’re looking ahead to the future of 3D printing in aerospace.

Aerospace
3D Printing Today

Aerospace is a unique fit for 3D printing, offering a prime application area for many of the benefits of additive manufacturing technologies. Among these benefits are:

  • Part consolidation
  • Lightweighting
  • Complex geometries (“freedom of design”)
  • Rapid prototyping
  • Low-volume production
  • Digital inventory

Leveraging these benefits is proving
transformative for aerospace manufacturing as today’s aircraft, rockets, and
other commercial, private, and military aerospace builds are increasingly able
to perform better than ever before. Fewer, lighter parts mean fewer assembly
points that could be a potential weakness as well as a lighter weight
structure, enhancing fuel efficiency and load capabilities.

Aerospace has long been a ‘city on a hill’ for
additive manufacturing, offering highly visible proof points of the
technology’s high-flying potential to very literally fly high.

Like in the automotive industry, many
aerospace entities have been using 3D printing internally for years, if not
decades. Also like the automotive industry, though, many companies have seen
the technology as a competitive advantage best kept somewhat under wraps. This
has perhaps benefited these companies’ bottom lines — but it has limited the
visibility of these applications.

The GE fuel nozzle — which famously reduced from approximately 20 welded pieces into one 3D printed (and 25% lighter weight) piece — was among one of the highest-profile individual applications to be publicly shared. Such use cases are only ramping up; between 2015 and 2018, for example, GE 3D printed 30,000 of those fuel nozzles. Still, though, these examples are often heard over and over again because many other specific use cases are still seen as proprietary ‘secret sauce’ and not public knowledge.

The cat’s out of the bag by now, though, and
it’s almost an assumption that any aerospace company is in some way utilizing
3D printing in its operations.

From SpaceX and NASA to Boeing and Airbus,
this is certainly the case. These companies are among the highest-profile in
aerospace to share at least some look into their 3D printing usage.
Applications range from visible cabin components in passenger airplanes to
made-in-space tools on the International Space Station, with both mission
critical and aesthetic uses well represented.

The secrecy of ‘secret sauce’ is slowly
changing, too, as in addition to broadening adoption of 3D printing, space
exploration is becoming privatized.

Organizations like SpaceX certainly have their fair share of trade secrets but are also open about their use of 3D printing in applications from spacecraft to personalized astronaut helmets. 3D printing is often coming into play as well to not only make components of rocket engines, but also in new uses such as at Rocket Crafters for their fuel grains.

Smaller, private companies working in the
space industry are celebrating the technologies they use to gain traction in
technological advance and out-of-this-world achievements. By highlighting
instead of hiding the tech helping them to accelerate toward their own
liftoffs, these new entities are contributing directly to a shift in the
conversation around aerospace technologies.

Aerospace
3D Printing Tomorrow

When we look ahead, we can see an even brighter
future for an aerospace industry making more and better use of additive
manufacturing opportunities.

While certainly the technologies will improve,
providing natural points of improvement even from those areas already
leveraging additive manufacturing, the largest single point of future impact
for aerospace overall will simply be wider spread adoption.

While the 3D printing industry has
historically been excellent at internally sharing the benefits of the
technology (like those bulleted above), a sticking point has been in
externalizing this message. Aerospace becoming a more open industry with these
new private entities on the rise, and with more participants discussing the
advanced technologies they put to use every day, will see industrial additive manufacturing
gaining more attention, and more traction, overall.

If the GE fuel nozzle made anyone do a
double-take, the next innovations to come — or even those already accomplished
and not yet publicized — are sure to be fully head-turning.

Further parts consolidation, lightweighting,
and other means of taking advantage of the freedoms that DfAM (design for
additive manufacturing) enables have the potential to see massive advances in
aircraft and spacecraft manufacture.

By optimizing every part of an aircraft,
completely rethinking and redesigning the whole, a manufacturer might see
unprecedented capabilities emerge. In an industry where every ounce of
structural weight matters and lessening any possible point of failure is a
must, industrial 3D printing is an obvious fit.

The technology will only continue to make headway into the aerospace industry going forward, and with that larger general footprint will come more significant discrete advances. The future of aerospace and 3D printing is a relationship that will be ever more tightly intertwined.

learn more

The post The Future Of Aerospace 3D Printing appeared first on Shapeways Blog.

Why Is The Aircraft Industry Using 3D Printing?

While as of the time of writing, the air
travel industry is facing significant difficulties in the face of
pandemic-driven reductions in flights, for many years aircraft have been
proving one of the fastest-growing applications for 3D printing around the world.
We expect that air travel will resume in the not-too-distant future — and that
will see demand for state-of-the-art aircraft on the rise. Some manufacturers
may even be using this unanticipated downtime to revamp their fleets, building
up digital inventories to supply aging aircraft and using advanced
manufacturing technologies to create the next generations of aircraft.

Let’s dive in to find out just why the
aircraft industry is using 3D printing.

A Fit
For 3D Printing

Aerospace is a unique fit for many of the
most-touted benefits of 3D printing:

  • Part consolidation
  • Lightweighting
  • Complex geometries (“freedom of design”)
  • Rapid prototyping
  • Low-volume production
  • Digital inventory

Let’s look at each of these areas to see how
the production of aircraft can make use of these benefits.

Part
Consolidation

The weakest point in an assembly is where it
has been, well, assembled. When it comes to aircraft, such a weakness could
become a point of critical failure, endangering human lives.

By consolidating multiple components of a part
into a single 3D printed build, the number of assembly points is necessarily
reduced. The unique geometries possible with 3D printing can reduce a part that
typically has dozens or hundreds of parts to few — or to one single part. With
no welding, riveting, or other fastening needed to keep the part together, not
only are SKUs reduced, but so too are potential points of failure.

Lightweighting

Every ounce of weight matters when it comes to
equipment meant to fly. Lighter-weight parts means less fuel, improving not
only the carbon footprint of a flight but also the cost to fly.

Materials innovations in 3D printing are
seeing constant improvements in different metals and polymers approved for use
in different equipment. Many of these engineering-grade materials are familiar
to those who have worked with them in traditional manufacturing — translating
these formulations into 3D printable materials is bringing their capabilities
together with part consolidation and other time- and material-reducing benefits
to create altogether lighter final parts.

Freedom
of Design

Many working with design for additive
manufacturing (DfAM) like to proclaim that the technology offers great “freedom
of design,” as complex geometries impossible to make with other manufacturing
processes are for the first time possible.

Design methods like topology optimization and
generative design are developing new shapes never before dreamed of that can be
created only by 3D printing. These complex, often lattice-like designs not only
reduce weight by including material only where necessary, but are often stronger
than legacy designs. While certain constraints of course still exist, and may
vary by 3D printing technology and material used, these are in many ways
significantly reduced from those seen in traditional, subtractive manufacturing
processes. New interior and exterior aircraft components can be designed to
replace stodgy original parts, adding both design finesse and extreme
functionality.

Rapid
Prototyping

The earliest use of 3D printing is also its original nomenclature: rapid prototyping.

Quickly going from a napkin sketch idea to a
CAD design to a first prototype — and then a second, third, and so on —
speeds up the time-to-market for new products. While traditional manufacturing
may require multiple iterations to be sent back and forth over weeks or months,
the fast-paced aircraft industry can see much faster turnaround when designs
can be created and finalized within days or weeks.

Low-Volume
Production

As large as the aerospace industry is, by
total volume the sheer number of aircraft produced is relatively small compared
to, say, automotive or appliance production.

High-value, low-volume production is a perfect
fit for 3D printing. Whereas many traditional manufacturing processes require
expensive tooling and molding to be made, creating economies of scale for mass
production, no molding is necessary for additive manufacturing. One or a few
pieces may be made at a time — including different designs on the same build
plate — with no additional molding or tooling costs. The point of inflection for
additive versus traditional manufacturing typically requires hundreds or
thousands of parts to be made before traditional techniques are more
cost-effective — and while that may ultimately reduce costs to pennies per
injection molded part, before that crossover point, 3D printing is more
cost-effective. This is especially the case when using high-value metal
powders, when material savings are imperative; 3D printing eliminates
significant waste of material as only the material needed for a given build need
be used, and much else can be recycled, rather than cutting away and wasting
material from solid blocks in subtractive manufacturing processes.

Digital
Inventory

When an aircraft is approaching the end of its
useful life, often it can be salvaged through replacing certain parts to keep
it flying. This is often done through use of physical warehouses, where these
spare parts were stored on shelves until needed. These spare parts, in most
cases, were made at the same time as the original mass-produced OEM parts, set
aside to await replacement demand for worn parts. If that demand never comes,
though, they were a waste of not only the time and cost of producing them, but
also of storing them on shelves for however many years. Worse, if that demand
comes but spares are out of stock — especially those forever out of production
— the lack of a small part may ground a plane.

Rather than physically keeping goods on
shelves, digital fabrication methods allow for storage of a design file that
can be 3D printed on demand. 3D printing a replacement part allows for only
those parts needed to ever be made — again without need for first producing
costly molding or tooling. These on-demand spare parts can also be made
anywhere with the appropriate technology, rather than awaiting OEM delays that
can all too easily run up into weeks or months.

Flying
High With 3D Printing

The production of aircraft, from prototype to spare parts, is increasingly benefitting from the use of 3D printing in the supply chain. Decentralized production, new design possibilities, and reductions in time, materials, and costs are offering new ways for aircraft to keep flying high.

The post Why Is The Aircraft Industry Using 3D Printing? appeared first on Shapeways Blog.

3D Printing News Briefs: February 16, 2019

We’ve got business, events, software, and materials news for you in today’s 3D Printing News Briefs. MELD has introduced a new operator training course, and Protolabs is launching a range of secondary services. AMUG announced the keynote speakers for its upcoming conference, while the call has gone out for submissions to the 2019 Altair Enlighten Award. This week at SOLIDWORKS WORLD 2019, Stratasys introduced AdvancedFDM software for GrabCAD Print. Finally, a gold partner at America Makes has created an Ultem 9085 materials database for FDM 3D printing, and 3D MicroPrint is using a powder rheometer to push the limits of additive manufacturing.

MELD Manufacturing Offers Training Program

MELD Manufacturing Corporation is launching a new operator training program to teach participants how to operate its award-winning technology, which uses an innovative no-melt process to additively manufacture, repair, coat, and join metals and metal matrix composites. The 4-day courses will provide both classroom instruction and hands-on machine training, and attendees will also review the history of MELD’s development.

“This program creates certified MELDers and delivers the capacity to integrate and innovate with MELD. Our customers have raved about the elegance of the MELD process and the ease of training. We’re excited to offer more of these opportunities,” said MELD’s CEO Nanci Hardwick.

The size of the classes, which will be held at MELD’s Virginia headquarters, will be limited so that each attendee can have the maximum amount of machine time in order to become certified, so you should register ASAP.

Protolabs Launches Secondary Services in Europe

Protolabs is a digital manufacturing source for custom prototypes and low-volume production parts and offers all sorts of traditional and additive manufacturing services. This week, the company announced that it was introducing detailed measurement and inspection reporting, which will be only the first part of its newly launched in-house Secondary Services across Europe. These services will provide support for the company’s On-Demand manufacturing requirements, and will also help in launching more value-add secondary operations, like assembly and surface treatment, in the future.

“Our customers really value our rapid manufacturing services for low-volume parts and prototypes, but they now want the benefit of On-Demand manufacturing for production parts, which have higher expectations for sampling, measurement and process documentation,” said Stephen Dyson, Protolabs’ Special Operations Manager. “The marked increase from customers across all industries wanting to take advantage of the speed and flexibility of On-Demand manufacturing brings with it a desire to simplify the supply chain. We are offering Secondary Services to reduce the number of process steps that the customer has to manage, saving time and resources.”

Protolabs will hold a webinar for designers and engineers on February 28th as part of its Secondary Services launch.

AMUG Announces Keynote Speakers

L-R: Brian McLean, Brad Keselowski, Todd Grimm

The Additive Manufacturing Users Group (AMUG) recently announced who the keynote speakers will be for its 2019 conference, which will be held in Chicago from March 31st to April 4th. The conference, which will have nearly 200 presentations, workshops and hands-on training sessions, is designed for both novice and experienced additive manufacturing users, and the three keynote speakers will address the use of additive manufacturing in a variety of different applications. Brian McLean, the director of rapid prototype for LAIKA, will take attendees on a visual journey of how 3D printing has helped to redefine stop-motion animation, while NASCAR driver Brad Keselowski, the owner and founder of Keselowski Advanced Manufacturing (KAM), will share how technology such as 3D printing can help companies win the race. Finally, Todd Grimm, the president of T. A. Grimm & Associates, is returning to the conference as a keynote speaker again.

“We are extremely excited about our 2019 AMUG Conference keynote speakers,” said Gary Rabinovitz, the AMUG chairman and chair of its program committee. “They will provide a snapshot of the most transformative ideas shaping the AM industry today.”

2019 Altair Enlighten Award Submissions

Michigan-based technology company Altair, together with the Center for Automotive Research (CAR), are now taking submissions from around the world for the 2019 Enlighten Award, which is the only award from the automotive industry for dedicated lightweighting. The award will be presented in the categories of Full Vehicle, Module, Enabling Technology and The Future of Lightweighting, and winners will be recognized during the CAR Management Briefing Seminars (MBS), along with getting the chance to ring the Nasdaq stock market opening bell in New York. Suppliers and manufacturers can learn more about the criteria and submit an entry for the awards here.

“We are pleased to continue our collaboration with Altair because of their global leadership in solutions that produce the optimal balance between weight, performance and cost. This award helps drive innovation in lightweighting, which is critical to the success of e-mobility solutions,” said Carla Bailo, the President and CEO of CAR. “We can’t wait to see the key contributions the 2019 nominations will bring in new approaches to automotive engineering and design, contributing to further reductions in weight, fuel consumption, and emissions.”

Stratasys Announces AdvancedFDM Software for GrabCAD

At this week’s SOLIDWORKS World 2019 in Dallas, Stratasys introduced a new feature for its GrabCAD Print software that will remove more complexity from the design-to-3D print process. Advanced FDM will use intuitive model interaction to deliver lightweight yet strong and purpose-built parts to ensure design intent, and is available now via download with GrabCAD Print from versions 1.24 on up. The software feature will help users avoid long, frustrating CAD to STL conversions, so they can work in high fidelity and ramp up parts production, and it also features CAD-native build controls, so no one needs to manually generate complex toolpaths. Advanced FDM can automatically control build attributes, as well as calculate 3D print toolpaths, in order to streamline the process.

“For design and manufacturing engineers, one of the most frustrating processes is ‘dumbing down’ a CAD file to STL format – only to require subsequent re-injection of design intent into the STL printing process. This software is engineered to do away with this complexity, letting designers reduce iterations and design cycles – getting to a high-quality, realistic prototype and final part faster than ever before,” said Mark Walker, Lead Software Product Manager at Stratasys.

America Makes Ultem 9085 FDM Properties in Database

America Makes has announced that its gold-level member, Rapid Prototype + Manufacturing LLC. (rp+m), has created and delivered a complete, qualified database of material properties for the FDM 3D printing of high-performance ULTEM 9085 thermoplastic resin. This comprehensive database, which features processing parameters and both mechanical physical properties, was released to America Makes, and the rest of its membership community, in order to ensure the widespread use of the Type I certified material for 3D printed interior aircraft components. The database is available to the community through the America Makes Digital Storefront.

“The qualification of the ULTEM 9085 material and the establishment of the material properties database by the rp+m-led team are huge steps forward for AM, particularly within the aerospace and defense industries. On behalf of all of us at America Makes, I want to commend rp+m and its team for enabling the broad dissemination of the collective knowledge of ULTEM 9085 for the innovation of future part design,” said Rob Gorham, the Executive Director of America Makes. “The ability to use AM to produce parts with repeatable characteristics and consistent quality for certifiable manufacturing is a key factor to the increased adoption of AM within the multi-billion dollar aircraft interior parts segment.”

3D MicroPrint Identifying Ultra-Fine 3D Printing Powders

Additive Manufacturing Powder Samples

Germany company 3D MicroPrint uses 3D printing to produce complex metal parts on the micro-scale with its Micro Laser Sintering (MLS) technology, and announced that it is using the FT4 Powder Rheometer from UK-based Freeman Technology, which has over 15 years of experience in powder characterization and flow, in order to push the technology to its limits by identifying ultra-fine metal powders that will process efficiently. The system can differentiate raw powder materials, less than five microns in size, with the kinds of superior flow characteristics that are needed to produce accurate components using 3D MicroPrint’s Micro Laser Sintering (MLS) technology.

“With MLS we are essentially pushing standard AM towards its performance limits. To achieve precise control at the micro scale we spread powders in layers just a few microns thick before selectively fusing areas of the powder bed with a highly focused laser beam. The ultra-fine powders required typically behave quite differently to powders of > 25µm particle size,” explained Joachim Goebner, the CEO at 3D MicroPrint. “We therefore rely on the FT4 Powder Rheometer to identify materials which will perform effectively with our machines, with specified process parameters. Before we had the instrument selecting a suitable powder was essentially a matter of trial and error, a far less efficient approach.”

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Investigating Lightweight 3D Printed Structures for Sand Casting

3D printing is often used to produce molds for casting. In the case of sand molds, binder jetting is typically used; however, its high costs, due to expensive materials, need to be lowered, according to the authors of a study entitled “Mechanical Analysis of Ceramic/Polymer Composite with Mesh-Type Lightweight Design Using Binder-Jet 3D Printing.” In the study, the researchers investigate the mechanical properties of sand molds with a lightweight structure for low material consumption and short process time.

Binder jetting is a faster method of making sand molds than conventional casting, but it’s still too expensive, according to the researchers. In the study, they work to find a methodology of the lightweight design in a smaller length scale for binder jetting 3D printing, such as a typical conformal lattice cell in metal.

“To investigate the mechanical properties of lightweight designs, we introduce a basic unit block sample of a ceramic/binder composite applied to a whole sand mold using a BJ 3D printer in this study,” they explain. “The selection of two different structures was just done in this research for the purpose of comparing a typical lightweight design for metal with our ideal structure. We also address geometrical effects, such as the size and shape of typical lightweight patterns provided by commercial DfAM software on the basis of mechanical property evolution.”

To study the basic design factors of a lightweight structure for a sand/polymer composite, the researchers introduced two types of lightweight structures: a box with square holes (Type-1) and a lattice with upper and bottom pads (Type-2). The specimens were 3D printed using a sand binder jetting 3D printer from voxeljet.  A compression test was performed by placing the samples between circular steel plates. Each test was conducted twice for accuracy. Each sample was broken by initiation of cracks, and no creep was observed.

The researchers also conducted computational analysis in order to predict stress distribution and fracture under uniaxial-loading, and FEM simulations were carried out. Several major conclusions were reached from the study:

The strength of both designs significantly decreased with increasing volume ratio. The size of the inner hold in the Type-1 sample should be at least 2mm for taking out the inner sand powder cleanly. Although the Type-1 sample had higher strength, it was more difficult to take out sand particles from the samples than it was with Type-2. Therefore, future studies will focus on enhancing the low strength of the Type-2 sample.

With mesh-type lightweight structures, increasing pad thickness and decreasing mesh area results in increasing local stress concentration at the interface of the mesh and pads. Easy cracking is initiated at a comparatively weak boundary between mesh and pads in the case of thick pad thickness.

“Since a commercial software for topology optimization provides lightweight designs for rigid single component materials such metals or plastics, it is not suitable to apply the lightweight designs to a ceramic/polymer composite with different mechanical behaviors,” the researchers continue. “As a result, new types of light weight structures for sand casting molds are required to spread BJ 3D printing technology to the foundry industry.”

Finally, further work will suggest and evaluate the new lightweight and rigid design for additive manufacturing of a ceramic/polymer composite. It should reveal the correlation between structural and mechanical factors of the lightweight designs in detail.

Authors of the paper include Dong-Hyun Kim, Jinwoo Lee, Jinju Bae, Sungbum Park, Jihwan Choi, Jeong Hun Lee and Eoksoo Kim.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.