3D Printing News Briefs: June 25, 2019

Recently, HP released its sustainable impact report for 2018, which is the first item we’ll tell you about in our 3D Printing News Briefs. Then it’s on to more good news – the 3D Factory Incubator in Barcelona is reporting a very positive first 100 days in business, while AMUG has named the winners from its Technical Competition. We’ll close with some metal 3D printing – Nanoscribe published a fly-over video that illustrates the design freedom of nano- and microscale 3D printing, and Laser Lines is now a UK reseller for Xact Metal.

HP Releases 2018 Sustainable Impact Report

HP recycling bottle shred: Through its recycling programs, HP is transforming how we design, deliver, recover, repair, and reuse our products and solutions for a circular future.

HP has released its Sustainable Impact Report for 2018, which talks about the company’s latest advancements in achieving more sustainable impact across its business, as well as the communities it serves, in order to create a better green future. Its sustainability programs drove over $900 million in new revenue last year, and the report shows how HP is using 3D printing to drive a sustainable industrial revolution, such as reducing the amount of materials it uses and expanding its recycling program. The report also states new commitments the company set for itself in order to drive a low-carbon, circular economy.

“Companies have critically important roles to play in solving societal challenges, and we continue to reinvent HP to meet the needs of our changing world. This isn’t a nice to do, it’s a business imperative,” explained Dion Weisler, the President and CEO of HP Inc. “Brands that lead with purpose and stand for more than the products they sell will create the most value for customers, shareholders and society as a whole. Together with our partners, we will build on our progress and find innovative new ways to turn the challenges of today into the opportunities of tomorrow.”

To learn more about HP’s efforts to reduce the carbon footprint, such as investing in an initiative to keep post-consumer plastic from entering our waterways and the recycling program it started with new partner SmileDirectClub, visit the company’s dedicated Sustainable Impact website.

Successful First 100 Days at 3D Factory Incubator

On February 11th, 2019, 3D Factory Incubator – the first European incubator of 3D printing – was officially inaugurated in Barcelona. It’s now been over 100 days since the launch, and things are going very well. In that time period, the incubator is reporting a total of 15,000 3D printed pieces, and 20 incubated companies, and still has room for more interested projects, though all its private spaces are now occupied. The original goal is to incubate 100 companies in 5 years, and it seems as if 3D Factory Incubator is well on its way.

Located in the Zona Franca Industrial Estate, the unique initiative is led by El Consorci de Zona Franca de Barcelona (CZFB) and the Fundación LEITAT, and has received an investment of €3 million. The goal of the incubator is promote the growth of 3D printing initiatives, and there are a wide variety of companies hosted there, including consumer goods, a logistics company, healthcare companies, design initiatives, and mobility.

AMUG Technical Competition Winners Announced

(top) Erika Berg’s digitally printed helmet liner components and Riddell’s SpeedFlex Precision Diamond Helmet; (left) Maddie Frank’s cello, and (right) Bill Braune’s Master Chief reproduction.

At the Additive Manufacturing Users Group (AMUG) Conference in April, 17 entries were on display to compete for the gold in the annual Technical Competition of excellence in additive manufacturing. The winners have finally been announced, and it seems like the panel of judges had a hard time deciding – they were unable to break the tie in the Advanced Finishing category. Maddie Frank of the University of Wisconsin, with her 3D printed electric cello, and Bill Braune of Met-L-Flo, with his 30 inch-tall model of “The Master Chief” Halo video game character, are co-winners in this category for their attention to detail and “exceptional execution,” while Erika Berg of Carbon won the Advanced Applications category with her digitally printed helmet liner for Riddell’s SpeedFlex Precision Diamond Helmet.

“The 17 entries in the Technical Competition were amazing in their beauty, innovation, and practicality,” said Mark Barfoot, AMUG past president and coordinator of the Technical Competition. “Our panel of judges deliberated at length to make the final decision.”

The winners each received a commemorative award, as well as complimentary admission to next year’s AMUG Conference.

Nanoscribe Shows off Design Freedom in Fly-Over Video

The versatility sample impressively illustrates the capabilities of Photonic Professional systems in 3D Microfabrication.

German company Nanoscribe, which manufactures and supplies high-resolution 3D printers for the nanoscale and microscale, is showing the world how its systems can up many opportunities in 3D microfabrication, with a new fly-over video, which truly highlights the design freedom it can offer when making 3D microparts with submicron features. The video shows actual scanning electron microscope (SEM) images of extreme filigree structures that were 3D printed on its Photonic Professional GT2.

From a variety of angles, you can see diverse geometries, which show off just how versatile Nanoscribe’s high-resolution 3D printing can be – all 18 of the objects and structures were printed in just over an hour. The company’s microfabrication technology makes it possible to create designs, like undercuts and curved shapes, and customizable topographies that would have been extremely difficult to do otherwise. To streamline the microfabrication process for its customers, Nanoscribe offers ready-to-use Solution Sets for its Photonic Professional GT2 printers, which, according to the company, “are based on the most suitable combination of precision optics, a broad range of materials and sophisticated software recipes for specific applications and scales.”

Xact Metal Names Laser Lines New UK Reseller

Pennsylvaniastartup Xact Metal welcomes Laser Lines – a total solutions provider of 3D printers and laser equipment – as a UK reseller for its metal 3D printers. These machines, which offer extremely compact footprints, are meant for customers in high-performance industries that require high-throughput and print speed, such as medical and aerospace. Laser Lines will immediately begin distributing the Xact Metal XM200C and XM200S systems, as well as the XM300C model once it becomes available next year.

“We are delighted to be the chosen UK supplier for Xact Metal, whose metal printing systems are establishing new levels of price and performance. Making quality metal printing accessible requires innovation. Xact Metal’s printing technology is built on the patent-pending Xact Core – a high speed gantry system platform where light, simple mirrors move quickly and consistently above the powder-bed on an X-Y axis. It’s another step change for our industry and opens a whole range of exciting opportunities,” stated Mark Tyrtania, the Sales Director at Laser Lines.

Discuss these and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Nanofabrica Releases Micron Resolution 3D Printing Platform Aimed at Industrial Applications

Israeli 3D printing startup Nanofabrica, which was founded in 2016 and chosen by the the I-YBI collaborative in 2017 to get help entering the American market, is working to mass-produce 3D printed parts on the micro and nanoscale. Now, its hard work has paid off, as the company just commercially launched, in the words of CEO Jon Donner, a true “mass manufacturing” micron resolution that’s targeted directly at pan-industrial micro manufacturing applications expanding throughout sectors like aerospace, automotive, medical, optics, and semiconductor.

Most manufacturers looking to fabricate tiny components and product in volume, with features at the micron resolution, have had to use more traditional micro molding and machining technologies. But the startup’s micro 3D printing process is cost-effective and fast, with the ability to achieve highly accurate results.

“The discipline of Additive Manufacturing (AM) or 3D Printing (3DP) is regularly cited as being disruptive to traditional manufacturing processes,” Donner wrote.

“AM has made the shift from a prototyping technology to a true production technology, but many lack the insight about what can really be produced on AM platforms, and the inherent characteristics of the process that add significant advantages when it come to cost, complexity, and timeliness of manufacture.”

3D printer manufacturers are doing what they can to combat adoption barriers, and are refining their technologies by adding valuable features or looking for niches that are under-served, or not even served at all…such as micro manufacturing.

“When viewed from the perspective that across industry today there is an inexorable shift towards miniaturisation, with many applications demanding extremely exacting levels of micron and sub-micron precision on macro and micro parts, there is huge potential for an AM platform that can service this trend,” Donner stated. “A whole raft of traditional production platforms have developed to cater for this demand, but until recently, the ability for AM to produce such precision at all —let alone at volume production levels — has been impossible.”

Nanofabrica develops its own proprietary materials, focusing on common plastics like ABS and PP. Its AM platform is perfectly tailored for micro and nano manufacturing, and, according to TCT, is made up of two new 3D printers: the Industrial System, said to achieve a one-micron resolution with a 50 x 50 x 100 mm build volume, and the Workshop system. This provides manufacturers who need “micron and sub-micron levels of resolution and surface finish” with a bespoke end-to-end solution.

“Successful AM platform developers in today’s crowded market need to focus technological advances on areas that open up innovation and the manufacture of products and components hitherto impossible using AM,” Donner wrote. “It is here that Nanofabrica has been particularly successful, having identified a series of killer applications where there is burgeoning market demand, where the only route to market at the moment is through disproportionately expensive or restrictive traditional manufacturing technologies, and where the use of AM can open up significant advances on terms of design and functionality.

“These killer applications exist in the area of optics, semi-conductors, micro electronics, MEMS, micro fluidics, and life sciences. Products such as casing for microelectronics, micro springs, micro actuators and micro sensors, and numerous medical applications such as micro valves, micro syringes, and micro implantable or surgical devices.”

Nanofabrica’s new 3D printers are based on a Digital Light Processor (DLP) engine, which is combined with adaptive optics to ensure repeatable micron levels of resolution – a necessary feature when creating cost-effective, highly precise components for industrial manufacturing. Additionally, the AM platform uses multiple sensors to allow for a closed feedback loop, which also helps deliver high accuracy.

The startup’s AM platform is also unique in how it combines several technologies in order to “achieve micron resolution over centimeter-sized parts.”

Donner explained, “Specifically, the company has taken its innovative use of adaptive optics and enhanced this imaging unit with technology and know-how used in the semiconductor industry (where the attainment of micron and sub-micron resolutions over many centimetres is routine.) By working at the intersection of semiconductors and AM, Nanofabrica is able to build large “macro” parts with intricate micro details. It can also do this at speed by introducing a multi resolution strategy, meaning that the parts where fine details are required are printed relatively slowly, but in the areas where the details aren’t so exacting, the part is printed at a speeds 10 to 100 times faster. This makes the entire printing speed anything from 5 to 100 times faster than other micro AM platforms.”

Nanofabrica’s hardware enables multi resolution capability due to “a trade off between speed and resolution,” while its software algorithms define and section off both the part and its 3D printing path into low and high resolution areas to be fed into the machine parameters and path. A “spectrum of resolutions” make it possible to optimize speed and achieve “satisfactory results,” while the “final algorithm family” is focused on file preparation and optimizing parameters like supports and print angle.

“Perhaps of key interest is the fact that AM is relatively agnostic to part complexity, and it is possible to design and manufacture unique geometries. As such, the Nanofabrica technology becomes an enabling technology, and a true stimulator of innovation, making the manufacture of parts and features previously impossible, possible,” Donner said.

“Nanofabrica is aware — as the first mover in the micro AM space for production — that it establishes a partnership relationship with its customers that extends from product inception through to mass manufacturing. The technology is today the only micron-resolution platform aimed at true manufacturing applications not just R&D projects, the real game changer being the combination of commercially-oriented build volumes, optimised materials, significant lines of investment, and a platform that is competitively priced.”

The startup is also an advocate of customer collaboration for the purposes of optimizing outcomes, and provides advice on design for additive manufacturing (DfAM), which is often used for macro AM platforms but not micro.

“It is because of this that Nanofabrica promotes a collaborative relationship with its customers to locate the opportunities and avoid the bear traps that exist when adopting — or considering adopting — AM for production purposes in the micro manufacturing arena,” Donner said.

Nanofabrica’s micro 3D printing platform is still new, which is another reason it’s looking to ” partner with key players in relevant sectors.” This will allow the startup to better customize its technology for specific applications in a variety of markets.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images provided by Nanofabrica]

Researchers Create Scalable System for 3D Printing on Micro- and Nanoscale

Researchers from Germany and Australia give us insight into a new method they have created in ‘Multimaterial 3D laser microprinting using an integrated microfluidic system.’ As authors Frederik Mayer, Stefan Richter, Johann Westhauser, Eva Blasco, Christopher Barner-Kowollik, and Martin Wegener explored the ever-expanding field of 3D laser micro- and nano-printing further, they saw the need for structures that could be created beyond those with the typical ‘single constituent material.’

The research team created a scalable system allowing users to 3D print on both the microscale and nanoscale, for use in applications like photonic crystals, wire bonds, free-form surfaces, optical technology, mechanical metamaterials, microscaffolds, and much more. Previously such applications were catered to with 3D printed microstructures of only a single material, produced in a much more time-consuming manner. The ability to create structures with material materials at once means an obvious and substantial savings in time and money, as the researchers explain:

“… as resist systems and cycles increase, such a process performed by humans rapidly becomes not only very tedious and time consuming but also quite unreliable. Therefore, it is highly desirable to avoid having to go back and forth between the chemistry room and the 3D laser printer numerous times and instead integrate all steps and components into one compact tabletop machine tool.”

Seven different liquids are used within their system in this study:

  • Nonfluorescent photoresist for the structure’s backbone
  • Four photoresists containing fluorescent semiconductor quantum dots and organic dyes with different emission colors
  • Two developers (mr-Dev 600 and acetone)

“The scaling-up to a yet larger number of chemicals is straightforward,” state the scientists.

See an example of their microfluidic chamber scheme in Figure 1A, below, with the example photoresist in Fig 1B, and an expanded view of the stainless-steel microfluidic chamber in Figure 2A. Other features include:

  • Optical access through a round glass window (diameter, 25 mm; thickness, 170 μm)
  • Another round glass window (diameter, 10 mm; thickness, 170 μm) acting as the substrate for printing samples
  • A distance of 100 μm between the two windows

 

Fig. 1 Scheme of the microfluidic chamber. (A) A high-NA oil-immersion microscope objective lens focuses femtosecond laser pulses into a chamber, which is clad by two thin glass windows (light blue). One of them serves as the substrate for the samples. The selection valve shown in Fig. 3 allows for switching between different photoresists (here, one nonfluorescent and four fluorescent) and solvents (acetone and mr-Dev 600), which are injected into the microfluidic chamber. For clarity, the scheme is not to scale. A to-scale technical drawing is shown in Fig. 2B. (B) Structure formulae of the components of one of the fluorescent photoresists containing Atto dye molecules.

 

 

 

 

Fig. 2 Microfluidic sample holder for 3D laser lithography.(A) Left-hand side: Scheme of the complete sample holder, which can be placed into a commercial 3D laser lithography machine. Right-hand side: Explosion drawing of the microfluidic chamber, which hosts a small coverslip (diameter, 10 mm) inside the chamber, onto which structures can be 3D-printed. The chamber is sealed using a solvent-resistant O-ring, and the top part features a circular glass window for the high-NA oil-immersion objective to focus inside the chamber. (B) Cross-sectional scale drawing of the sample holder. The sample holder features connectors for liquid tubing and channels for the liquids to be guided in and out of the microfluidic chamber. The liquid flow path is indicated using red arrows.

 

 

Fig. 3 Scheme of the system connected to the microfluidic chamber.
(A) It consists of an electronic pressure controller connected to a nitrogen bottle, up to 10 containers for the photoresists and solvents for development, and the star-shaped selection valve. Pumping individual liquids is possible by applying a pneumatic pressure to all liquid containers and opening the flow path for a single liquid using the selection valve. Following the selection valve, the liquid flow is guided through an overpressure valve and our homebuilt sample holder. Last, it is directed into a waste container. (B) Cross section through our homebuilt selection valve assembly. The assembly consists of commercial solenoid valves and a homebuilt 10-to-1 manifold that connects the 10 liquid containers to 10 solenoid valves, and the valve outputs to one manifold output port. An example flow path for one liquid is indicated with red arrows.

The new design means that larger samples can be printed, resolution can be tuned, and overhanging structures are possible. The substrate can be removed, and the top part included a groove designed for a solvent-resistant O-ring. The researchers added this feature to seal the fluidic sample holder, making it leakproof, and they also added measures to prevent the internal setup from exploding due to pressure in the chamber. An electronic pressure controller was added, along with five different photoresists for 3D security features.

“It is conceivable that these microfluidic systems will become widely established for the manufacture of complex 3D micro- and nanostructures composed of multiple materials, with applications in diverse fields such as 3D scaffolds for cell culture, 3D metamaterials, 3D micro-optical systems, and 3D security features. As we have shown, the system can even be integrated into commercially available state-of-the-art 3D laser lithography machine tools,” conclude the scientists.

It doesn’t take long to realize the world of 3D printing includes doors continually opening from one realm of progression to the next, with each innovation building on the last, and new ones continually making impacts in a wide range of industries and applications. The study of materials and ongoing research has resulted in many other intricate customizations and open systems, along with great advances in miniaturization and microfluidics, and new methods on the microscale.

Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

(A) On the left-hand side, a computer rendering of the design for the microstructure is shown. It consists of a nonfluorescent 3D support structure (gray) with fluorescent markers with different emission colors printed into it. On the right-hand side, a stack of images taken by using fluorescence microscopy is shown. (B) The designs of the test patterns were printed into the five different marker layers of the microstructure. (C) Measurement data from fabricated microstructures taken using fluorescence microscopy. Insets show the level of detail at which different photoresist structure elements can be printed.

[Source / Images: ‘Multimaterial 3D laser microprinting using an integrated microfluidic system’]

3D Printing News Briefs: February 16, 2019

We’ve got business, events, software, and materials news for you in today’s 3D Printing News Briefs. MELD has introduced a new operator training course, and Protolabs is launching a range of secondary services. AMUG announced the keynote speakers for its upcoming conference, while the call has gone out for submissions to the 2019 Altair Enlighten Award. This week at SOLIDWORKS WORLD 2019, Stratasys introduced AdvancedFDM software for GrabCAD Print. Finally, a gold partner at America Makes has created an Ultem 9085 materials database for FDM 3D printing, and 3D MicroPrint is using a powder rheometer to push the limits of additive manufacturing.

MELD Manufacturing Offers Training Program

MELD Manufacturing Corporation is launching a new operator training program to teach participants how to operate its award-winning technology, which uses an innovative no-melt process to additively manufacture, repair, coat, and join metals and metal matrix composites. The 4-day courses will provide both classroom instruction and hands-on machine training, and attendees will also review the history of MELD’s development.

“This program creates certified MELDers and delivers the capacity to integrate and innovate with MELD. Our customers have raved about the elegance of the MELD process and the ease of training. We’re excited to offer more of these opportunities,” said MELD’s CEO Nanci Hardwick.

The size of the classes, which will be held at MELD’s Virginia headquarters, will be limited so that each attendee can have the maximum amount of machine time in order to become certified, so you should register ASAP.

Protolabs Launches Secondary Services in Europe

Protolabs is a digital manufacturing source for custom prototypes and low-volume production parts and offers all sorts of traditional and additive manufacturing services. This week, the company announced that it was introducing detailed measurement and inspection reporting, which will be only the first part of its newly launched in-house Secondary Services across Europe. These services will provide support for the company’s On-Demand manufacturing requirements, and will also help in launching more value-add secondary operations, like assembly and surface treatment, in the future.

“Our customers really value our rapid manufacturing services for low-volume parts and prototypes, but they now want the benefit of On-Demand manufacturing for production parts, which have higher expectations for sampling, measurement and process documentation,” said Stephen Dyson, Protolabs’ Special Operations Manager. “The marked increase from customers across all industries wanting to take advantage of the speed and flexibility of On-Demand manufacturing brings with it a desire to simplify the supply chain. We are offering Secondary Services to reduce the number of process steps that the customer has to manage, saving time and resources.”

Protolabs will hold a webinar for designers and engineers on February 28th as part of its Secondary Services launch.

AMUG Announces Keynote Speakers

L-R: Brian McLean, Brad Keselowski, Todd Grimm

The Additive Manufacturing Users Group (AMUG) recently announced who the keynote speakers will be for its 2019 conference, which will be held in Chicago from March 31st to April 4th. The conference, which will have nearly 200 presentations, workshops and hands-on training sessions, is designed for both novice and experienced additive manufacturing users, and the three keynote speakers will address the use of additive manufacturing in a variety of different applications. Brian McLean, the director of rapid prototype for LAIKA, will take attendees on a visual journey of how 3D printing has helped to redefine stop-motion animation, while NASCAR driver Brad Keselowski, the owner and founder of Keselowski Advanced Manufacturing (KAM), will share how technology such as 3D printing can help companies win the race. Finally, Todd Grimm, the president of T. A. Grimm & Associates, is returning to the conference as a keynote speaker again.

“We are extremely excited about our 2019 AMUG Conference keynote speakers,” said Gary Rabinovitz, the AMUG chairman and chair of its program committee. “They will provide a snapshot of the most transformative ideas shaping the AM industry today.”

2019 Altair Enlighten Award Submissions

Michigan-based technology company Altair, together with the Center for Automotive Research (CAR), are now taking submissions from around the world for the 2019 Enlighten Award, which is the only award from the automotive industry for dedicated lightweighting. The award will be presented in the categories of Full Vehicle, Module, Enabling Technology and The Future of Lightweighting, and winners will be recognized during the CAR Management Briefing Seminars (MBS), along with getting the chance to ring the Nasdaq stock market opening bell in New York. Suppliers and manufacturers can learn more about the criteria and submit an entry for the awards here.

“We are pleased to continue our collaboration with Altair because of their global leadership in solutions that produce the optimal balance between weight, performance and cost. This award helps drive innovation in lightweighting, which is critical to the success of e-mobility solutions,” said Carla Bailo, the President and CEO of CAR. “We can’t wait to see the key contributions the 2019 nominations will bring in new approaches to automotive engineering and design, contributing to further reductions in weight, fuel consumption, and emissions.”

Stratasys Announces AdvancedFDM Software for GrabCAD

At this week’s SOLIDWORKS World 2019 in Dallas, Stratasys introduced a new feature for its GrabCAD Print software that will remove more complexity from the design-to-3D print process. Advanced FDM will use intuitive model interaction to deliver lightweight yet strong and purpose-built parts to ensure design intent, and is available now via download with GrabCAD Print from versions 1.24 on up. The software feature will help users avoid long, frustrating CAD to STL conversions, so they can work in high fidelity and ramp up parts production, and it also features CAD-native build controls, so no one needs to manually generate complex toolpaths. Advanced FDM can automatically control build attributes, as well as calculate 3D print toolpaths, in order to streamline the process.

“For design and manufacturing engineers, one of the most frustrating processes is ‘dumbing down’ a CAD file to STL format – only to require subsequent re-injection of design intent into the STL printing process. This software is engineered to do away with this complexity, letting designers reduce iterations and design cycles – getting to a high-quality, realistic prototype and final part faster than ever before,” said Mark Walker, Lead Software Product Manager at Stratasys.

America Makes Ultem 9085 FDM Properties in Database

America Makes has announced that its gold-level member, Rapid Prototype + Manufacturing LLC. (rp+m), has created and delivered a complete, qualified database of material properties for the FDM 3D printing of high-performance ULTEM 9085 thermoplastic resin. This comprehensive database, which features processing parameters and both mechanical physical properties, was released to America Makes, and the rest of its membership community, in order to ensure the widespread use of the Type I certified material for 3D printed interior aircraft components. The database is available to the community through the America Makes Digital Storefront.

“The qualification of the ULTEM 9085 material and the establishment of the material properties database by the rp+m-led team are huge steps forward for AM, particularly within the aerospace and defense industries. On behalf of all of us at America Makes, I want to commend rp+m and its team for enabling the broad dissemination of the collective knowledge of ULTEM 9085 for the innovation of future part design,” said Rob Gorham, the Executive Director of America Makes. “The ability to use AM to produce parts with repeatable characteristics and consistent quality for certifiable manufacturing is a key factor to the increased adoption of AM within the multi-billion dollar aircraft interior parts segment.”

3D MicroPrint Identifying Ultra-Fine 3D Printing Powders

Additive Manufacturing Powder Samples

Germany company 3D MicroPrint uses 3D printing to produce complex metal parts on the micro-scale with its Micro Laser Sintering (MLS) technology, and announced that it is using the FT4 Powder Rheometer from UK-based Freeman Technology, which has over 15 years of experience in powder characterization and flow, in order to push the technology to its limits by identifying ultra-fine metal powders that will process efficiently. The system can differentiate raw powder materials, less than five microns in size, with the kinds of superior flow characteristics that are needed to produce accurate components using 3D MicroPrint’s Micro Laser Sintering (MLS) technology.

“With MLS we are essentially pushing standard AM towards its performance limits. To achieve precise control at the micro scale we spread powders in layers just a few microns thick before selectively fusing areas of the powder bed with a highly focused laser beam. The ultra-fine powders required typically behave quite differently to powders of > 25µm particle size,” explained Joachim Goebner, the CEO at 3D MicroPrint. “We therefore rely on the FT4 Powder Rheometer to identify materials which will perform effectively with our machines, with specified process parameters. Before we had the instrument selecting a suitable powder was essentially a matter of trial and error, a far less efficient approach.”

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Microlight3D Introduces New Altraspin 3D Printing System for High-Resolution, Microscale Parts

As you can probably guess by its name, French 3D printer manufacturer Microlight3D specializes in ultra high-resolution 3D microprinting systems. The company’s two-photon polymerization direct laser writing technology, which includes proprietary software specifically tuned for faster direct laser writing speeds with sub-micron resolution, allows a laser to move freely in three dimensions, performing uninterrupted 3D printing inside a polymer resist.

This week, Microlight3D launched the next generation of high resolution, microscale 3D printing with its new turnkey system – the compact Altraspin, a 3D printer that can produce extremely complex micro-parts with sub-micron resolution.

“Microlight3D designed Altraspin to respond to manufacturing demands for more customization and the rapid prototyping of submicron parts that are not constrained by their geometric or organic shape. We removed another constraint by extending user choice in the materials available for 3D microprinting. Altraspin is compatible with a wide range of polymers and biomaterials, including those of our customers,” said Microlight3D president Denis Barbier. “Without a doubt, the submicron resolution our technology obtains has been key to our growing success within the scientific community. We anticipate that industrial companies will also benefit from the advantages of our 3D-printer for micro-parts, geared to helping them overcome limitations and reduce time-to-market.”

The Altraspin can achieve a sub-micron resolution down to 0.2µm, which means it can 3D print micro-parts with a resolution that’s 100 times smaller than a single strand of hair, which is great news for applications that need a high-quality surface finish and exact precision, such as cell culture, micro-sensors, metamaterials, micro-optics, tissue engineering, and 3D printing shapes that can fit inside microfluidic devices.

The company’s technology uses a proprietary continuous print flow technique, which is how it manages to not be constrained by the typical layer-by-layer method that limits most 3D printing resolution to 25µm. It’s able to fabricate micro-parts that are so smooth they don’t need any post-processing, which can save manufacturers both time and money.

When designing the new Altraspin 3D printer, Microlight3D focused on its ease of use. As soon as the user designs a 3D model with CAD tools and picks a polymer material, the company’s algorithms will calculate the laser’s path. A laser pulse then writes directly inside the printer’s liquid-material bath in order to very precisely solidify the path it’s taking. The laser can build complex architectures, since it’s able to move around freely and continuously, and a solvent washes away the excess monomer at the end of the process, so users can handle the print immediately upon removal.

The Altraspin has high-writing resolution and precision, along with high-writing speeds, for complex 3D structures, and also features a new TPP slicing tool. Due to its compact design, it’s well-suited for use in clean-room and sterile environments, along with laminar flow cabinets.

Additional tech specs for the Altraspin include:

  • Print speed up to 5 mm per second
  • STL and STEP files
  • Maximum object size of 100 x 75 x 0.6 mm
  • Anti-vibration system
  • Advanced machine control, including replication and custom plugins for complex parts

Next week at the two-day SPIE BiOS expo, which is part of the week-long Photonics West event in San Francisco, Microlight3D will be exhibiting its new Altraspin 3D printer at its booth #8136.

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Source: Optics / Images: Microlight3D]

Microlight3D Offers a New Kind of Microscale 3D Printing

For 15 years, Patrice Baldeck and Michel Bouriau led intense research and development at the Université Grenoble Alpes. They were working on a two-photon polymerization 3D printing process that would become the basis of Microlight3D, founded in 2016. The process would be the first-ever non-additive two-photon polymerization direct laser writing technology. Microlight3D’s technology allows a laser to move freely in three dimensions, performing uninterrupted printing inside a polymer resist.

The benefits of the technology are many. It produces extremely high resolution and smooth surface finish comparable to injection molding. It also offers a great deal of design flexibility and eliminates the need for post-processing. It’s a fast technology that produces robust parts in any shape – 100 times smaller than a strand of hair. These microscopic parts have a wide variety of applications, including in micro-optics, microfluidics, micro-robotics, metamaterials and cell biology.

Microlight3D is the only company to commercialize 3D microprinters that use sub-nanosecond lasers. Compared to femtosecond lasers, sub-nanosecond lasers have long, energetic pulses, which enable a more efficient polymerization process.

The process begins with a 3D model, like any other 3D printing process. Microlight3D algorithms calculate the path that the laser will follow in order to 3D print the object, and then the focused laser solidifies the specified locations, with sub-micron resolution, within a liquid material bath. The free movement of the laser allows the fabrication of the part without the layer-by-layer limitations of typical additive manufacturing. Once the print is complete, a solvent bath washes off the excess monomer.

Microlight3D’s open 3D microfabrication platform, μFAB-3D, is geared toward research applications such as surface structuration, metamaterials, microfluidics and scaffolds for cell culture. It’s compatible with a wide range of materials, including biomaterials. It features a proprietary, intuitive software with customer-specific plug-ins, and can print objects up to 100 x 75 mm squared, on flat or non-flat substrates.

Once Baldeck and Bouriau decided to take their technology from the university to the commercial sector, things moved fast. Bouriau and Denis Barbier, formerly the CTO of Teem Photonics, led the transfer of the technology from the lab to the startup, which received support from SATT Linksium, a technology transfer acceleration network. The company then recruited Philippe Paliard, an applications engineer with end-user interface experience, and Gabriel Gonzalez, a software engineer. Within 18 months, Microlight3D’s technology had evolved from a prototype to a high-performance product.

Microlight3D can customize its 3D printers to customers’ needs, in terms of material, hardware and fabrication procedure plug-ins. The company’s printers are available worldwide, and have already been sold in Europe, the United States, China, Singapore and Taiwan. Microlight3D holds multiple patents and has already won several awards, and it has many goals for the future. The company plans to introduce a new product in November of this year, as well as to evolve its technology further. It intends to achieve a faster writing speed which would enable larger micro objects, as well as to improve accuracy, volume, and surface smoothness and to widen the already large array of compatible materials. Software improvements are also in the works, to enable more complex designs and manage bigger files.

Microlight3D also plans to open a commercial subsidiary and hire commercial personnel in the United States. The company is based in France.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Study Looks at Soft Materials in 3D Microprinting With 2 Photon Lithography

3D printing on the microscale is becoming more common as tools and materials become more sophisticated. Currently, however, most materials used in this type of 3D printing are rigid, glassy ones used in stereolithography. In a new paper entitled “Materials Overview for 2-Photon 3D Printing Applications,” a research team from Cornell University discusses the development of new materials for microscale 3D printing, particularly soft ones.

Several materials are explored and discussed in the study, including : S1) a chemically amplified photoresist, poly(tetrahydropyranyl
methacrylate-co-methyl methacrylate) with a 2-photon photoacid generator;  S2) Dow Corning Silgard 182 with (n5 -cyclopentadienyl-methyl)-trimethylplatinum as photoactive material; and S3) Norland NOA 63 photocurable resin with a non-ionic 2-photon photoacid generator.

“We have also explored the use of 2-photon absorbing molecules to enhance the activity of conventional photoactive compounds that alone do
not have sufficient 2-photon photosensitivity,” the researchers state. “These include: S4) hydrogels based on poly(ethylene glycol methacrylate) and hydroxyethyl methacrylate with 2,2-dimethoxy2-phenyl acetophenone and a 2-photon sensitizer, S5) a phenolic molecular glass crosslinked with acid catalyzed TMMGU with a photoacid generator and a 2-photon photosensitizer, and S6) SU8 epoxy and thiirane analogs with an ionic PAG with a coumarin-7 2-photon photosensitizer.”

The goal of the research is to build a strong 3D structure with specific properties and structures in the range of a few microns or less. Materials were selected with regards to mechanical properties, optical characteristics, resistance to solvents including water, and surface modification characteristics. Materials needed to be able to produce a thick “film” that could be extruded smoothly but without losing its shape once extruded. Soft materials, the researchers continue, need to be handled differently than rigid materials.

“The PDMS used in S2 is a very viscous oil which contains a photoactive hydrosilylation catalyst,” they continue. “Process challenges come from the mobility of the uncrosslinked polymer and the need to develop and remove the unreacted oligomer in the negative tone process. This aspect of processing can lead to significant swelling and place large mechanical stresses on the materials.”

Representative examples of 3D patterned materials produced using 2-photon lithography a) PDMS; b) dry poly(hydroxyethyl methacrylate); c) effect of hydration on hydrogel marked with fluorescent dye

Existing photopolymer systems can be used for printing these materials, but the researchers note that the photoactive compounds (PAC) are not sufficiently active in two-photon conditions. They recommend the addition of a sensitizer that has two-photon absorbing characteristics at near-IR wavelengths.

3D printing of hydrogels can be carried out, but the reactants must be water soluble. This creates, as the researchers describe it, a complicated situation in which typically water insoluble photoactive compounds and sensitizers must be used. In the S4 system, water soluble vinyl monomers were combined with benzophenone PAC and a two-photon sensitizer that was extremely hydrophobic. To introduce these aqueous materials, surface-active compounds such as non-ionic surfactants and cyclodextrins were used.

The researchers conclude that the prospects for high speed manufacturing of 3D microprinting and complex nanostructures are improving as new two-photon-based 3D printing systems are developed. However, the materials currently lag behind the tools.

“Liquid systems are simpler to create and work with but lack the resolution of dry systems,” the researchers state. “There are not yet standard 2-photon PACs and patterning materials the way chemically amplified photoresists have consistent standardized strategies and chemistries. As these new materials and concepts develop, 3D microprinting will become much more important than it is today and will become integrated into nanomanfacturing.”

Authors of the paper include Christopher K. Ober, Ziwei Liu, Roselynn Cordero and Alicia Cintora.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.