Sustainable Cabin Built on 3D-Printed Concrete Stilts from Infested Ash Wood

Our house had several ash trees in the front and back yard while I was growing up, and we lost three of them due to various acts of nature. Ash is a very soft wood, which is how we lost one to high winds, and another split at the top because it wasn’t well-supported at the bottom. The third was removed because it had been infected by the invasive Emerald Ash Borer beetle, a nasty little bugger that’s not even native to the US but is here wreaking havoc anyway.

Obviously, ash trees that have been infected and destroyed by the EAB aren’t often used for construction purposes, both because sawmills can’t process the wood, and due to their odd, irregular shapes. These trees are then usually burned or left to decompose, neither of which is a great option.

“Unfortunately, both scenarios release carbon dioxide into the atmosphere, and so the advantage to using compromised ash for construction is that is that it both binds the carbon to the earth and offsets the harvesting of more commonly used wood species,” said Sasa Zivkovic, the Co-Principal of New York-based architecture studio HANNAH.

The Ithaca studio—founded in 2014 by Zivkovic, along with fellow co-principal Leslie Lok, Alexander Chmarin, and Alexander Graf—worked with a group of Cornell University students to create the tiny but striking Ashen Cabin, located off the grid in upstate New York. The collaborative project was meant to be a small-scale study regarding sustainable construction, and combined EAB-infested ash wood with 3D printing to build the cabin.

“By implementing high precision 3D scanning and robotic based fabrication technology, HANNAH transforms Emerald-Ash-Borer-infested “waste wood” into an abundantly available, affordable, and sustainable building material. From the ground up, digital design and fabrication technologies are intrinsic to the making of this architectural prototype, facilitating fundamentally new material methods, tectonic articulations, and forms of construction,” the studio’s website states.

As architects are looking to construct houses more sustainably, these kinds of small, off-grid residences are becoming more popular housing options, and Ashen Cabin definitely fits the bill. The tiny residence, featuring walls made of infested ash wood, is elevated by 3D-printed concrete stilts, which form the angular base of the cabin and its heavy, hulking extrusions.

HANNAH stated, “The project aims to reveal 3D printing’s idiosyncratic tectonic language by exploring how the layering of concrete, the relentless 3D deposition of extruded lines of material, and the act of corbelling can suggest new strategies for building.”

All of the cabin’s 3D-printed concrete shapes, including the tall, curved chimney and fireplace, furniture, textured floor, and prismatic legs, have a distinct linear pattern that features jagged edges. By using 3D printing, HANNAH was able to lower its carbon footprint and reduce waste by using less material than would normally be required, as a concrete mold was unnecessary.

Lok explained, “By using 3D printing, we eliminate the use of wasteful formwork and can deposit concrete smartly and only where structurally necessary, reducing its use considerably while also maintaining a building’s integrity.”

Concrete was also used to 3D print a unique seating platform, which can be opened up to use for storage. A bench made of marine-grade plywood, painted black to offer a pleasing contrast to the light siding, extends out from the seat in order to form a single bed.

A robotic arm with a band saw attachment cut the irregular ash logs into curving boards of different thicknesses. Both the exterior and interior of Ashen Cabin are covered with the wavy timber panels, which also define the structure’s four, black plywood-framed windows and were used to create other architectural features, like surfaces and shelving, inside.

The studio explained, “The curvature of the wood is strategically deployed to highlight moments of architectural importance such as windows, entrances, roofs, canopies, or provide additional programmatic opportunities such as integrated shelving, desk space, or storage.”

Focusing on the aesthetics of the cabin, the wood boards will naturally turn grey over time, so that the siding will eventually match the color of the concrete. Its 3D-printed concrete floors feature interlocking designs, and the windows are all oriented so they face the surrounding wooded landscape. The scenery makes it look like any residents of Ashen Cabin will be in their own little world.

Speaking of off-grid living, Ashen Cabin does not have power or running water. The temperature is regulated through its wood-burning fireplace and foam insulation, while a small camping sink, also 3D-printed out of concrete, provides the water.

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

(All photos taken by Andy Chen, HANNAH)

The post Sustainable Cabin Built on 3D-Printed Concrete Stilts from Infested Ash Wood appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

New Imaging Technique Helps to Understand Bioprinted Glioblastoma Tumors

With cancer as the second leading cause of death globally, hundreds of researchers continue their efforts to fight the disease. Years of oncology investigations have suggested that each person’s cancer has a unique combination of genetic changes – such as mutations in DNA – yet some types are considered to be more combative, uncontrollable, and fatal than others. In the case of glioblastomas, a very aggressive brain tumor, the median survival time is between 15 to 16 months in people who get surgery, chemotherapy, and radiation treatment. However, a median means that only around half of all patients with this tumor survive to this length of time. Experts suggest that since glioblastoma is the deadliest form of brain tumor, less than 10 percent of people who are diagnosed with it will survive more than five years.

Glioblastomas grow very fast inside the brain. The National Cancer Institute indicates that its cells copy themselves quickly, and a lot of blood vessels feed these tumors. We have reported quite a few researchers in the last months that are developing bioprinting techniques to work on different ways to tackle the disease. Now a team of scientists has created a new imaging technique that enables the study of 3D printed brain tumors.

In a recently published paper in Science Advances, Xavier Intes, a professor of biomedical engineering at Rensselaer Polytechnic Institute, New York, joined a multidisciplinary team from Northeastern University, in Boston, and the Icahn School of Medicine at Mount Sinai, New York, to demonstrate a methodology that combines the bioprinting and imaging of glioblastoma cells cost-effectively that more closely models what happens inside the human body.

“There is a need to understand the biology and the complexity of the glioblastoma,” said Intes, who is also the co-director of the Center for Modeling, Simulation and Imaging for Medicine (CeMSIM) at Rensselaer. “What’s known is that glioblastomas are very complex in terms of their makeup, and this can differ from patient to patient.”

To create their 3D tumor cell model, a team, led by Guohao Dai, an associate professor of bioengineering at Northeastern University and corresponding author on the study, made bioinks out of patient-derived tumor cells and printed them along with blood vessels. That vasculature allowed the printed tissue to live and mature, enabling researchers to study it over a matter of months.

As detailed in the paper, an integrated platform enabled generating an in vitro 3D bioprinted glioblastoma multiforme (GBM) tumor model with perfused vascular channels that allow long-term culture and drug delivery, as well as a 3D imaging modality – a second-generation mesoscopic fluorescence molecular tomography (2GMFMT) imaging system – that enables researchers to noninvasively assess longitudinal fluorescent signals over the whole in vitro model. And according to Northeastern University, this work could help medical professionals better understand how the tumor grows and to speed up the potential discovery of new drugs to fight it.

The study indicated that each imaging session exposes laser light on samples, and cells undergo stressful conditions during these long imaging processes, which reduces the cell viability. Thereby they selected an imaging modality not only for the shortest possible image acquisition time but also without potential photodamage. The 2GMFMT offers the least stress on cell culture allowing frequent imaging sessions without compromising tissue integrity.

“This is a very difficult brain tumor to treat,” said Dai. “And it’s also difficult to do research on the brain tumor, because you cannot really see what’s happening.”

Associate professor Guohao Dai (Image: Matthew Modoono/Northeastern University)

Dai also described that animal studies (typically done in mice or rats) to understand a tumor’s development, are expensive, time-consuming, and don’t allow for day-to-day observations of the same tumor in living tissue. Dai’s lab, specializing in 3D printing live tissue, grew a three-dimensional model to act as brain tissue for tumor cells to infiltrate so that they would be able to study glioblastomas more directly.

“We use human brain blood vessel cells, and connect them with all the neurons, pericytes, astrocytes, the major cell types in the human brain,” Dai said. “A water-based substance known as a hydrogel serves as a matrix to hold these cells in place. Then we use 3D printing to stack them in three-dimensional fashion.”

In the middle of the structure, which is only a few millimeters thick, the researchers place glioblastoma tumor stem cells. The cells are derived from brain tumor patients thanks to Hongyan Zou, a neurosurgeon and professor of neuroscience at Mount Sinai’s medical school and head of the Zou Lab at the Icahn School of Medicine.

“We can observe how the brain tumor cells aggressively invade, just like what we see in patients,” Dai went on. “They invade everywhere. We treated the tumor with the same kind of drug you give to a patient when they undergo chemotherapy. We monitored this chemotherapy over two months, and what we found was that the chemotherapy was not able to kill the tumor.”

To get an accurate picture of what’s happening inside the 3D model without disrupting it, Intes used a laser to scan the sample and quickly create a 3D snapshot of the cellular structure, an imaging technique developed in his lab. This combination of techniques allowed them to evaluate the effectiveness of a commonly used chemotherapy drug, temozolomide (TMZ). Initially, the tumor shrank in response to the drugs, but then it grew back swiftly and aggressively. This indicates that the drug did not work in the long term, which seems to line up with the experience of patients with glioblastoma.

The TMZ chemotherapy treatment traveled through the channels provided by the bioprinted blood vessels. The team claims that in the body, drug delivery to glioblastoma cells is especially complicated because of the blood-brain barrier, a wall of cells that blocks most substances from reaching the brain. It appears that the team’s method provides a more accurate evaluation of a drug’s effectiveness than directly injecting the therapy into the cells.

Moreover, Dai suggested that they need to develop and screen other chemotherapy drugs, and this model may be able to speed up that process, since this method could be used to weed out unsuccessful drugs early, ensuring that only the most promising ones move to animal, and eventually human, trials.

Dai considered that “you have a tremendous amount of time and cost associated with animal research,” but “with our 3D glioblastoma model and imaging platform, you can see how the cells respond to radiation or chemotherapy very quickly.”

They conclude that beyond the necessity to guide the development of new drugs, efficient model systems that enable fast and predictive evaluations of candidate drugs are a critical need. To provide biological relevant experimental settings in which drug efficacy can be assessed, a suitable tumor growth environment and long-term culture capabilities are required.

The publication offers a detailed recount of the new technique that according to Intes, could allow researchers to evaluate the effectiveness of multiple drugs at the same time. According to Rensselaer’s School of Engineering, Intes pointed out that it is not yet realistic though for studying the effectiveness of certain therapeutics on a person’s tumor because of the short time that clinicians often have to provide treatment.

“We developed a new technology that allows us to see, first, if the cells are growing, and then, if they respond to the drug,” conveyed Intes.

If glioblastomas are the most common malignant brain tumor and one of the hardest to treat, then this team is certainly moving in the right direction. Glioblastoma tumor growth is considered to almost always outpace chemotherapy and radiation treatments, so the remaining available treatments are primarily experimental. With so much uncertainty with regards to a successful treatment, new techniques, like this one, offer an encouraging message. Researchers are hurrying to mimic the conditions of tumors thanks to 3D bioprinting and the ability to generate bioinks out of patient-derived tumor cells. Moving from lab research to actual clinical trials might take a long time, but at least the technology is providing the strong foundations needed to understand the true nature of these malignant tumors.

The post New Imaging Technique Helps to Understand Bioprinted Glioblastoma Tumors appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

NYU Abu Dhabi Team Wins Hack3D Challenge

 

 

 

 

Two students from New York University Abu Dhabi won the first prize of the Hack3D challenge at New York University Tandon’s School of Engineering. Only five teams advanced to the final round of the only student-led 3D printing cybersecurity hackathon. The Hack3D competition, which is part of a broader global cybersecurity competition called the Cybersecurity Awareness Week (CSAW), encourages teams from around the globe to circumvent security measures in the additive manufacturing supply chain so that they can spotlight the need for anti-counterfeiting methods in 3D printing. The competition’s first round had a total of 49 teams trying to solve a problem to qualify for the next round, which included a trip to New York to attend the NYU Tandon challenge and prize money for winners and runners up.

Led by Nikhil Gupta, a mechanical and aerospace engineering professor at Tandon, the competition is on its second-year run and during the first qualifying round, had teams struggling to figure out the solution to a problem posted online. Participants were challenged to reconstruct a corrupted .gcode file employing skills in forensics and reverse-engineering. So basically, they had to hack the security measures Gupta embedded in the print files that make it virtually impossible to print a component correctly, in this case, a chess piece.

Last Friday, the final round rallied up five teams to compete in printing 3D parts that were embedded with anti-counterfeiting features developed at NYU Tandon and designed to protect CAD models. After eight intense hours at the NYU Tandon lab, Pedro Velasquez and Cole Beasley outrivaled the other four teams as they managed to hack the 3D printing cybersecurity code and 3D print the correct version. Called the SNEKS AD, the team was awarded $1,000 in prize money during a ceremony held last Friday night.

Hack3D, which explores vulnerabilities in 3D printing, brings together students from around the world to compete for scholarships and funding. Sponsored by some of the biggest names in the industry, like IBM, JP Morgan & Chase, Capsule 8, Red Baloon Security, and the National Science Foundation (NSF), this year’s CSAW annual competition gathered the world’s top student hackers with a total of 180 teams advancing to final rounds, competing for scholarships and cash prizes, including NYU Tandon’s more than $1 million in scholarships to all high school finalists in the CSAW Red Team Competition in Downtown Brooklyn.

Hack3D teams at work during the eight-hour final round challenge

3DPrint.com caught up with the winning team during the live competition on Friday via phone interview and both Beasley and Velasquez said they were “thrilled to be participating in the challenge” and “would love to return next year.” The computer science majors are both freshmen and eager to explore cybersecurity as part of their future in the chosen career. Only three hours into the challenge, Velasquez suggested: “we have a good plan in place and are keeping up with the schedule; we already have our first prototype and are printing out our second so that we can start testing it.”

Coles explained that during the final round “they have given us one part (a male piece) and we basically have to create another part (female) that connects to it”. There was a code embedded in the CAD file, which he referred to as a “hint hidden inside the code,” and once they got the right piece 3D printed, they won the challenge.

During Hack3D, competitors also had the opportunity to learn and use skills in graphics programming, file manipulation, and reverse engineering while gaining an understanding of the additive manufacturing supply chain.

Gupta explained during an interview with 3DPrint.com that “hackathons are an important component in finding the strength of the security method, so this year we expanded the competition and had 49 entries from across the world. We gave them one problem, yet none of the teams could completely solve it, so the five finalists that came closest to the answer were able to compete. They had two months for the first challenge, but only eight hours for the final round, and they needed to 3D print the part in our lab to check whether they could succesfully solve the challenge.” 

Last year’s Hack3D pieces

“People have been doing traditional cybersecurity measures like password protecting files, encrypting files but there is nothing that relates to 3D printing itself, so we came up with some design schemes, so using the design features that we put in the files while designing the products. The security features prevent the files from getting printed in high quality unless you use a security key.” 

The runners up were Alex Manning and Erin Ozcan, also known as the pwndevils from Arizona State University, and in third place, the AGGIES from Texas A&M University: Akash Tiwari, Maccoy Merrell, and Mutaz Melhem.

Gupta went on to say that “we found that the cyber threat landscape in the 3D printing world, mainly for aerospace and medical devices, will get worse. For example, if a counterfeit part makes its way to an airplane and something goes wrong, it will become hard to figure out that it was the reason for an accident. On the other hand, 3D printing and general access to new technologies have made it easier to replicate parts or reverse engineer them to recreate a system.”

According to NYU, flawed parts printed from stolen design files could produce dire results: experts predict that by 2021, 75 percent of new commercial and military aircraft will fly with 3D-printed engine, airframe, and other components, and the use of AM in the production of medical implants will grow by 20 percent per year over the next decade.

“Since mechanical engineers are the ones designing many parts, they need to get into a security mindset, to handle this issue,” continued the expert.

Nikhil Gupta

So Gupta, along with other researchers at NYU Tandon and NYU Abu Dhabi, were the first to convert flat QR codes into complex features hidden within 3D printed parts to foil counterfeiters and IP pirates and to provide an innovative way for unique device identification.

Gupta and his colleagues developed a scheme that “explodes” a QR code within a computer-assisted design (CAD) file so that it presents several false faces — dummy QR tags — to a scanning device. Only a trusted printer or end user would know the correct head-on orientation for the scanner to capture the legitimate QR code image. 

“In 3D printing, you are creating a part layer by layer, so we break the QR code into a number of parts–like 300 different pieces–and we embed them into each layer, so that only one particular direction will show you the QR code, every other direction will show a cloud of points. Using any identifiable signature embedded, microstructures or metal sized particles can be used as a security method.”

Embedded codes layer by layer

Continued growth in the 3D printing sector means that the CAD design files and the machines become vulnerable to hacks. Cybersecurity issues in the virtual world wreak havoc, in the last year a series of ransomware and supply chain attacks led to seriously compromised companies and malicious hacking. All this can quickly translate into 3D printing, with objects manufactured being at serious risk of failure, and as cyberattacks become more advanced, the risks are greater. NYU Tandon, one of the first university departments to teach cybersecurity in 3D printing, is raising the bar to spark student interest in the field, by engaging the global community in their annual hackathon. For Gupta, a lot of what we are beginning to see and as hacks become more advanced, this represents a significant danger for AM cybersecurity. The vulnerability of the internet around the world is increasing, accompanied by an expanding community of hackers that didn’t use to have the tools required for hacking. He claims that “there are now more motivations for hacks as digital manufacturing is rapidly increasing, bringing 3D printing to the forefront of the industry.” 

[Images: NYU Tandon]

The post NYU Abu Dhabi Team Wins Hack3D Challenge appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Zac Posen, GE Additive, and Protolabs Partnered to Make 3D Printed High-Fashion Collection for 2019 Met Gala

The Metropolitan Museum of Art’s Costume Institute fundraiser event, better known as the Met Gala, has been referred to as the Oscars of the East Coast. This highly exclusive event heralds the arrival of the Costume Institute’s annual exhibition, and is a chance for fashion’s elite to strut their stuff. This year, famous designer Zac Posen, who launched his House of Z label at the age of 21, used 3D printing to go above and beyond on fashion’s biggest night. I was lucky enough to be invited to a luncheon in New York recently where Posen, and his collaborators GE Additive and Protolabs, discussed their teamwork over the last year to design and 3D print pieces for the 2019 Met Gala.

The Met Gala has a different theme each year, which the event itself, as well as the institute’s featured exhibition, are centered around, and guests dress to fit that theme. In 2016, the theme was Manus x Machina: Fashion in the Age of Technology, while last year was titled Heavenly Bodies: Fashion and the Catholic Imagination. This year, the chosen theme was Camp: Notes on Fashion, from writer Susan Sontag’s famous 1964 essay “Notes on Camp.”

CNN’s Aileen Kwun asked, “What does it mean to be “camp” in our age of political absurdity, and of social media-driven of excess and spectacle? The Metropolitan Museum of Art’s Costume Institute will attempt to address the historical context and significance of camp in fashion for its next blockbuster exhibition.”

In this case, we’re not talking about camping in tents and sitting around a fire pit, but more artifice and theatricality. Sontag herself defined camp as being a “love of the exaggerated,” in addition to a “sensibility of failed seriousness.”

Exaggerated is right when it comes to Posen’s 3D printed Met Gala collection, but in the best possible way. The designer and his 3D printing partners combined AM technology with CAD, stalwart fashion design techniques, and conceptual thinking to come up with several beautiful and unique pieces for the star-studded gala.

The event kicked off with a short video presentation before four people took the stage for a panel discussion: Linda Boff, GE’s chief marketing officer; Protolabs applications engineer Eric Utley; Sarah Watson, a design engineer with GE Additive’s design consulting team AddWorks; and Posen himself.

Zac Posen

The eye-catching collection was inspired by nature, and more specifically the idea of freezing natural objects in motion. Posen has always been interested in the fluidity of fabrics, and has long wanted to experiment with the use of 3D printing in his designs.

“I wanted to work in 3D printing for, I don’t know, 20 years, and I tried to get my hand into it a few times, and – you know, this was the beginning, I didn’t know what the capabilities were,” Posen said during the panel. “So it was the beginning of this quest and collaboration.”

In a serendipitous moment, he actually had dinner with Boff the day after the 2018 Met Gala, and the collaboration was born when they realized that the 2019 event would be the perfect opportunity to mix 3D printing with high fashion.

“Then I did a trip to Pittsburgh and had a million and ten questions about plastic molecules, what’s possible, you name it,” Posen explained. “And then they kind of started to say, ‘Well, what do you want to start dreaming?’ And I talked about natural form, because I like to garden.

“Our greatest innovator and scientist is Mother Nature…that was really the start.”

Over the last year, the partners have been hard at work creating some absolutely stunning pieces. Posen and his creative team worked with the 3D printing experts and design engineers at GE Additive and Protolabs to explore multiple digital technologies – GE Additive brought its experience in additive design for multiple modalities, mechanical and industrial design, and creative and complex CAD modeling to the table, while Protolabs supplied its industry expertise from a wide range of manufacturing industries, materials, and processes.

Posen stated, “I dreamt the collection, GE Additive helped engineer it and Protolabs printed it.”

It took many, many hours of 3D printing to complete the collection for this year’s Met Gala – Posen and Boff said that the collaborators spoke with each other daily – and several of the garments were actually fitted to exact 3D recreations of the bodies of the people who would be wearing them; according to the Hollywood Reporter, Posen invited nine guests to the event, but only some of them rocked 3D printed pieces on the museum’s pink carpet.

The great thing about 3D printing is the freedom it offers, which allows users to fabricate designs that would have been extremely difficult, or even impossible, to make using traditional forms of manufacturing. Additionally, there are many available custom finishing options for 3D printed pieces, in which Posen was extremely interested.

At one point early in the discussion I was looking down while writing notes, but my head quickly snapped back up when I heard multiple intakes of breath around me as a model walked into the auditorium wearing one of the stunning Met Gala pieces: the Rose Dress, worn at the previous night’s event by British supermodel Jourdan Dunn. The model walked slowly back and forth in front of the room so that everyone could get a good look at the amazing dress, which is based on the structure of a real rose.

The custom gown has 21 unique 3D printed petals, each one weighing 1 lb. and averaging 20″ in size, made out of Accura Xtreme White 200 durable plastic and printed on an SLA system. Primer and color-shifting automotive paint from DuPont were used to finish the petals, which are actually held in place on a modular 3D printed titanium cage that’s completely invisible from the outside of the dress. The cage was 3D printed on an Arcam EBM system at the GE Additive Technology Center (ATC) in Cincinnati, Ohio, while the gown itself was fabricated at Protolabs’ North Carolina facility; the 3D printing and finishing of the Rose Dress took over 1,100 hours.

[Image: Protolabs]

According to Posen, the first petal prototype was a little too heavy, and the team had to determine how to reduce the weight by 20%, in addition to balancing stiffness with organic movement and adding a buttress underneath for extra support of the titanium frame. Watson explained that the dress design was very modular, and the cage itself is adjustable.

“Our role as design consultants is to come in and have this immersive relationship with the customer,” Watson explained onstage. “So this was kind of an example of any other project we’d do with other industries, but slightly more, I think extreme, in just having us understand and start to work with each other. So Zac would give us feedback, like ‘It needs more energy and motion,’ and I was like, do you have a dimension for that?”

Everyone in the room laughed at this, particularly, I’d say, those of us from the manufacturing industry, and Posen continued her thought: “What do you mean by energy?”

Watson continued, “But then we started to ask questions and we started to work together and kind of understand what that meant. And by the end, it really started to click.”

She said that the 3D printed clear bustier the team made for actress Nina Dobrev to wear was a good example of the company’s partnership with Posen really picking up steam.

“We worked really hard on the front of it, took a long time iterating back and forth to get a front that you really loved, and then on our last visit to New York, you said, ‘Let’s just add some twists at the back that look like they’re floating away in the wind,’ and I was like, ‘All right, I think I know exactly what you want.’ So we started to learn how to work together.”

The bustier – a clear dress 3D printed on an SLA printer – is the only piece of the Met Gala collection to be created at Protolabs’ German facility. Posen told us that it actually got held up on the way over to the US because the customs officials thought it was an art piece, to which Boff responded, “It is an art piece!”

The interior of the 3D printed dress perfectly matches Dobrev’s 3D recreation, and comes in a 4-piece assembly for a truly custom fit. The first version was not as translucent as Posen hoped, so to get the glassy, liquid appearance of the final piece, Protolabs used Somos Watershed XC 11122 plastic, then finished it by wet hand sanding and spraying it with a clear coat.

All told, the 3D printing and finishing of the bustier dress for Dobrev took over 200 hours.

“I think it’s really funny how this is fashion, but we were using a lot of the same plays in the playbook that Fortune 500 companies use to develop their products,” Utley said at one point during the discussion.

He said that the team made scale models and combined them with 3D CAD files to give Posen a better idea of what a piece would look like before printing even began. Watson noted that the same kind of problem-solving and engineering can be applied whether GE Additive and AddWorks are completing design projects for the aerospace industry or for the fashion world.

“When you’re trying to solve these problems of how do we print this, how do we design it for additive, how do we assemble it so that it assembles in a way that you really can’t tell how it was put together, those types of problems really apply across many different industries,” Watson said.

While the 3D printed Rose Dress and bustier are both beautiful and unlike anything I’ve ever seen before, the third of the Met Gala dresses we talked about is my favorite – a custom, purple Zac Posen gown, with a 3D printed palm leaf collar accessory, worn by actress (and Ohio native!) Katie Holmes.

While Posen did not have the neckpiece itself, which was 3D printed at the North Carolina Protolabs facility on an SLA system, he did bring the mold for it to the panel. He explained that he waited for the 3D printed neckpiece to fully evolve before he got to work on the draping of the beautiful dress, which he described as “1950s-quality” and like a “purple sunset.”

The pearlescent palm leaves were 3D printed out of Accura 60 plastic and finished with pearlescent purple paint (Pantone 8104C). The piece drapes over the actress’s shoulders and attaches to the neckline of the tulle gown at her clavicle. It took over 56 hours to 3D print and finish the palm leaves for the striking neckpiece.

Watson explained how Posen found a palm leaf he liked from his favorite craft store and sent it to GE Additive, who laser scanned it to make a 3D model. After the model was cleaned up and modified, the designers added a twist so that it would perfectly match and “float away over” her shoulder.

“That just demonstrates the power of this technology – you can start with this inspiration and modify it, add all the complexity you want, bring the vision to life in the 3D model, and then create it,” Watson said.

Moving on, Boff picked up an intricate 3D printed vine headpiece, flush with leaf and berry embellishments and finished with brass plating, and remarked that she was scared to even hold it. Posen told her not to worry, as the headpiece, worn by actress Julia Garner at the 2019 Met Gala, was made of nylon.

Garner wore a custom Zac Posen ombré silver to gold lamé draped gown with the headpiece, which was printed as a single piece with binder jet technology on an HP Multi Jet Fusion system.

The headpiece, which features a butterfly in the center, was the fastest piece of the collection to make: 3D printed with no supports, plated, and finished in just over 22 hours at Protolabs. It was a comparatively quick job, and the team commented that there is no way they could have made the headpiece through more conventional forms of manufacturing.

The final piece in the Met Gala collection was a custom Zac Posen metallic pink lurex jacquard gown, worn by Bollywood icon Deepika Padukone, that included delicate 3D printed embroidery which Posen described as “a little sci-fi” and was inspired by underwater creatures like sea urchins and anemones.

The 408 pink and silver embroidery pieces, 3D printed on an SLA system at Protolabs out of Accura 5530 plastic, were all different sizes, and were actually sewn on to the outside of the gown. But before that happened, the pieces were vacuum metalized and center painted with Pantone 8081 C; the 3D printing and finishing work on the embroideries took over 160 hours.

At the Met Gala, Posen and two of his other guests also wore 3D printed accessories – the designer added 3D printed lapel brooches to his ensemble that were essentially a scaled down version of the large palm leaves that made up the 3D printed neckpiece. 3D printed out of high resolution Accura 5530 material on both SLA and MJF machines, these brooches were finished in pearlescent purple and gold paint.

Additionally, Vito Schnabel and actor Andrew Garfield both wore 3D printed cuff links that integrated Posen’s logo and represented a scaled down version of the Rose Dress. The cuff links were 3D printed out of MicroFine Green material on an SLA 3D printer and dramatically finished with color-changing red and gold paint.

The four panelists then took some questions from the group, and one of the first people to get the mic wanted to know what had surprised each person about the collaboration. Posen said that all the partners began to learn one another’s vernacular during the process, while Utley stated that the evolution of the project was surprising and Watson continued, noting that “Zac wanted to go bigger and bolder than other 3D printed fashion.”

“It can be hard to conceptualize something like this,” Watson continued. “But this is a great demonstration of what the technology can really do.”

Utley stated that the fashion collaboration took advantage of two important things 3D printing can offer – lightweight designs and mass customization.

“Let’s give credit where credit is due – aerospace and medical get a lot of noise for adapting 3D printing, but like Zac said, he was using 3D printing ten-plus years ago, and it [fashion] is well-suited for those aspects,” Utley said.

Posen said that he was “very proud” of the partnership with GE Additive and Protolabs, and that he was able to work with the two companies to “bring motion and life to technology.”

“Had we not had a partner in Zac Posen, who literally thinks in 3D, this never would have happened,” Boff said about the Met Gala collection. “It was a project of tremendous joy and passion, and to see it come to life on the steps of the Met is a once in a lifetime experience. It was just incredible.”

When asked what she had learned from working with Posen, Watson stated that AddWorks and GE Additive will typically use CAD software for more industrial applications, but that they had needed to shift and become more familiar with using other software, such as Rhino and Blender, in addition to photogrammetry, for this particular project. Speaking of software, Posen was asked if the collaboration would change how he designed clothes from now on.

“I would love a software that will let you model fabric and draping,” he answered. “And we’re getting there!”

[Image: Protolabs]

Another person asked the question that is always on my mind when it comes to 3D printed clothing – what does the path look like to consumer 3D printed fashion? Many designers are working to use the technology to make wearable clothing that’s less of a novelty and more for everyday use, but that can sometimes be easier said than done. But Posen had a great answer, and stated that the next big challenge was dealing with closures for clothing.

“What’s the new zipper?” he asked.

As most of us aren’t lucky enough to have an army of people helping to dress us, or own clothing made to perfectly fit our bodies, this is a smart question to be asking. Posen also said that we have a long way to go in replicating fabric, and that further advancements in both scale and material are still to come in the future. Watson also chimed in and said that 3D printing could easily be used to make molds in the fashion industry.

Boff thanked the teams from GE Additive and Protolabs for their “remarkable” patience, flexibility, and commitment, and said that the project shows how 3D printing in any industry, fashion or otherwise, is really about “working your way back from a problem.”

“And in this case, that problem was dressing five gorgeous women,” Boff said as everyone in the room laughed. “But it is something that applies to so many different industries, and I just think for all of us, this can sound a bit fantastical, but 3D printing is real.”

3D printing is still growing faster than any other type of manufacturing technology at the moment, and the fashion industry, as well as other applications in consumer goods, can really use the technology to its advantage to help the market evolve. Posen has said that the 3D printed Met Gala collection is an example of fashion as an art form, and not the standard in terms of mass adoption. But, while we still can’t walk into Macy’s and purchase our own 3D printed Rose Dress just yet, I think that day is coming.

Check out some more pictures from my trip to New York below:




Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Images: Sarah Saunders, unless otherwise noted]

 

3D Printing News Briefs: April 3, 2019

To kick off this week’s first edition of 3D Printing News Briefs, we’ve got a fun project to share with you, before moving on to events, business, education, and software. Materials Australia is hosting a 3D printing conference in Melbourne this summer, while formnext + PM South China will debut in September of 2020 and the original formnext is continuing to grow at record speed. Evolve Additive Solutions will expand its Rochester facility, and Mauritius is unveiling its second 3D printing center. The founders of rigid.ink launched a new online AM course, and Magnitude Innovations has released a new metal 3D printing software application.

Cool 2D-3D Project on imgur

TheSparklyGhost, a user on the popular online image sharing community of imgur, recently posted a brief video of a really neat project titled “2D project on a 3D printed object.” I’m going to do my best to explain this, but it’s better if you watch the short video posted on Imgur, which has been viewed over 81,800 times in the last seven days. TheSparklyGhost 3D printed a long white object, which at first glance looks kind of like a curved wall but is actually an extended cutout shape of a person with legs akimbo. Then, the print is moved back and forth over a thin projection line, which makes it look like a 2D person walking.

The video has received a wide variety of comments in the last week. Some users just expressed their awe, while one asked if the STL for the print was available and some offered suggestions like “make a 3D projection on a 4D printed object” and “Now make it moon walk.” However, not everyone was impressed, with one user asking if the cost was worth it and another saying, “k this is sorta cool and all but what will this do for you?” Anyone have a response to that?

Materials Australia Hosting 3D Printing Conference 

This summer, Materials Australia, the peak representative body of the country’s materials science and engineering profession, will be curating an additive manufacturing conference in Melbourne. The Asia-Pacific International Conference on Additive Manufacturing (APICAM) 2019 will be held from June 30th to July 3rd at RMIT University. The conference, in its second iteration, will include keynote presentations by AM experts, a poster presentation, a networking hub, workshops, exhibitors, and multiple receptions.

According to the website, “The purpose of APICAM2019 is to provide a focused forum for the presentation of advanced research and improved understanding of various aspects of additive manufacturing. This conference will include invited lectures from internationally distinguished researchers, contributed presentations and posters.”

Early bird registration is available until May 1st.

2020 Debut of formnext + PM South China

Additive manufacturing continues to grow more popular in China, with domestic industry sales estimated to reach $2.96 billion in 2020, and the government is paying attention. Now, from September 9-11, 2020, the first edition of Formnext + PM South China will debut at the new Shenzhen World Exhibition and Convention Center, which is said to be the largest exhibition venue in the world. The event will be jointly organized by Guangzhou Guangya Messe Frankfurt Co Ltd and Uniris Exhibition Shanghai Co Ltd, and will aim to help AM industry players open up new business opportunities in innovative equipment, processes, and advanced materials. Over 10,000 visitors are expected to attend, with more than 200 exhibitors from around the world.

“With the expertise from its brand name shows, Formnext in Frankfurt, Germany, and also PM China in Shanghai, the newly formed fair will be one of a kind in South China,” Mr Hubert Duh, Chairman of Guangzhou Guangya Messe Frankfurt Co Ltd, said in a press conference to celebrate the launch of the event. “The synergy from the two fair brands will facilitate the exchange of ideas between industry professionals and bring a positive impact to the manufacturing sector.”

formnext in Frankfurt Continuing Record Growth

In the meantime, the world’s leading international AM trade fair, formnext, is still going strong, and is in fact expanding and developing at record speed this year along the whole process chain. As of March 2019, over 500 exhibitors, many of which are international and 147 of which are new, had already registered for the event, which will be held in Frankfurt from November 19-22. This means that the amount of space the event will cover this year is already more than the final size of formnext 2018, which is why formnext 2019 will take place for the first time in the more modern Halls 11 and 12.

Other changes include an expansion of the Discover3Dprinting seminar series, which is organized with the ACAM Aachen Center for Additive Manufacturing and meant for medium-sized companies looking to adopt AM. The Startup Challenge, AM4U platform of career opportunities, the ideas competition “purmundus challenge,” and the BE-AM Symposium, which focuses on 3D printing in the construction industry, are all continuing and being expanded, and formnext’s content partner TCT will again discuss current developments and trends in the conference program. Additionally, this year the US will be the first partner country represented at the event, and special highlights for American guests, like the “AM Standards Forum,” will be included.

Evolve Additive Solutions to Grow New York Operations

3D printing OEM Evolve Additive Solutions, a Stratasys spin-out company, is headquartered in Minneapolis but operates its materials technology center in Brighton, New York. The company will be expanding its Brighton operations, according to an announcement by Empire State Development (ESD), which will allow the creation of 60 new jobs over the next five years in the Finger Lakes region. The company recently raised $19 million in equity funding with lead investors LEGO Brand Group and Stanley Black & Decker, which complements its efforts to commercialize its Selective Thermoplastic Electrophotographic Process (STEP) 3D printing process and expand its Brighton office by 7,000 square feet, with another 13,000 added later. Supporting the development and growth of high-tech industries, such as 3D printing and advanced manufacturing, is an important part of the Finger Lakes Forward economic development plan.

“Our Brighton facility is key to our success and having a first-class facility to attract the best talent possible for materials and process development is essential,” said Evolve’s CEO Steve Chillscyzn. “We are extremely pleased that Empire State Development recognizes the opportunity our technology can offer to our future customers but also to are current and future employee base in the area.”

In exchange for job creation commitments, ESD has offered Evolve tax credits of up to $1 million through the Excelsior Tax Credit Program to facilitate its growth in the region.

Mauritius Opens Second 3D Printing Center

[Image: Kickstarter]

The Republic of Mauritius, located about 855 km east of Madagascar in the Indian Ocean off the southeast coast of the African continent, set up its first 3D Printing Centre last winter on the National Computer Board (NCB) premises. About 50 students have prepared projects using the services provided by the center, and now, through a joint initiative of the NCB and SME Mauritius, the country’s second 3D Printing Centre has been unveiled at SME Mauritius in Coromandel. With its available filaments, 3D printers, and scanners, the center will be a one-stop 3D printing shop to support university students, startups, designers, and other industry professionals. It will also offer 3D print support services for SMEs.

Minister of Technology, Communication and Innovation, Yogida Sawmynaden said, “The scope of 3D printing technology, he highlighted is limitless and is bound to play a bigger part in the years to come.”

Rigid.Ink Launches Institute of 3D Printing Course

UK 3D printing filament company rigid.ink is moving away from materials and on to educating the members of its community. The company just launched a new online coursed called The Institute of 3D Printing, described on the site as “A complete 3D Printing video course & private expert community designed to accelerate your printing skills and success.”

“It’s the first of its kind and since it’s pretty unusual for a filament company to branch out like this,” Ed Tyson, the owner of rigid.ink and founder of the Institute, told 3DPrint.com.

The goal is to make learning the technology less confusing for new users, so the industry is in the hands of everyday people, and not professionals working in big firms. The course includes entire modules on everything from adhesion and leveling the print bed to troubleshooting and much more.  In addition, members who take the course can receive technical support – within 24 hours, no less – from 3D printing professionals for tough questions. You can join the Institute of 3D Printing now for a monthly fee of just $20 – a savings of 25% off the usual price, with a 30-day money back guarantee included.

Magnitude Innovations Releases New Metal 3D Printing Software

Illinois startup Magnitude Innovations Inc., which offers product development and technical consulting services, has released its Uptimo software application, which is meant to help companies increase the profitability of their metal 3D printing processes. Magnitude itself specializes in metal laser powder bed fusion technology, and its software’s proprietary algorithms analyze production data to offer instant 3D printing system feedback. While originally an internal tool for client projects, Uptimo is now available to any Magnitude customer as a standalone application.

Uptimo is an Operational Excellence software application, and utilizes scheduling and production data to assess how a 3D printer is performing over one, or multiple, projects. The analysis is split into four Key Performance Indicators (KPIs), and the customized solution will help companies improve build layout, machine planning, parameter optimization, and other aspects of the metal AM process that impact cost and quality. Magnitude’s CEO Maciej Tusz is at the AMUG Conference in Chicago this week to represent the company and display the various features of its new Uptimo application.

Discuss these stories, and other 3D printing topics at 3DPrintBoard.com, or share your thoughts below.

New D&D Programs at Library Makerspace Teach Game Rules and How to 3D Print Your Own Character

Patrons gather in the Central Library MakerSpace on Dec. 7, 2018 to learn the fundamentals of the game Dungeons & Dragons. [Image: Rene Battelle]

As a lifelong bookworm raised in a family of bookworms, I love libraries. I can’t remember a single vacation growing up where we didn’t make what was deemed a necessary visit to the library to take out books for the trip before leaving. But more than just housing the latest books, movies, and magazines, libraries are true havens of learning and technology, and that’s extremely apparent in the advent of library makerspaces. Anything can happen in a makerspace, from 3D printing a prosthetic arm for someone to creating a giant keyboard and learning about a game that might be new to you.

Last December, Trudi Antoine, Rene Battelle, and Dragana Drobnjak – all librarians with the Central branch of the Onondaga County Public Library (OCPL) system in New York – decided to offer an interesting new program that both their adult and teenage patrons would be able to enjoy together, and teamed up with TCGplayer, a local trading card company, to launch two new programs about the classic fantasy tabletop role-playing game of Dungeons & Dragons (D&D).

The first successfully 3D printed model of a D&D character, designed and produced in the Central Library MakerSpace.

Drobnjak recently said about their new program, “A full year later we are seeing fruits of our labor.”

D&D was first published in the 1970s by Gary Gygax and Dave Arneson, and even in today’s world of highly immersive video games, it is still managing to capture the attention and imaginations of players of all ages.

“Pick a fantastical world, pick a character, gather some friends, and go crazy,” Miguel Zavala told 3DPrint.com about the popular game. “To get started you just need the dice and three core books, which are the Players Handbook, the Monster Manual, and the Dungeon Masters Guide. One of your friends plays the roll of the Dungeon Master, who acts as the story narrator and referee as he throws challenges at the players. But in the end its everyone’s story, as their actions, decisions, and wild roleplaying all make it a shared group story for them to remember for years to come.”

Players create their own characters, and while there are guides to help with the direction of the various D&D campaigns, the game truly requires teamwork and each player’s creativity. That’s why it makes so much sense to play the game in a library, which is already filled with stories.

Just a couple of short months ago, thanks to the hard work of Antoine, Battelle, and Drobnjak, OCPL’s Central Library in Syracuse, in partnership with TCGplayer, began to offer a D&D for Beginners program, along with a D&D Advanced Campaign for the more seasoned players.

While the two programs teach the fundamentals of the game and offer activities for players of different experience levels, they also offer so much more…because as we know, D&D and 3D printing go hand in hand.

D&D Demon Lords, “Out of the Abyss” collection by Miguel Zavala

Antoine said, “This collaboration with TCGplayer has promoted critical thinking, basic literacy, digital literacy, arts literacy, exposure to game design, character development, character design, 3D modeling, 3D printing and community building.”

The D&D programs are extremely popular, and the word is spreading – Battelle was even contacted by a librarian all the way in Savannah, Georgia to learn about how to set up her own program.

“She found out about our D&D program from a friend who lives in this area, and I have been emailing back and forth to help her set up a program at her library,” Battelle explained.

The three Syracuse librarians also had a vision of offering a class all about designing and 3D printing custom D&D characters, which will soon be a reality: the 3D modeling and printing class has been scheduled in the Central Library’s MakerSpace for 2 pm on Wednesday, February 20th.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Source: Syracuse.com]