nScrypt tool changer enables seamless switching between tool heads for DDM system

Florida-based manufacturer of micro-dispensing and 3D printing equipment nScrypt has developed a tool changer for its multi-head Direct Digital Manufacturing (DDM) machines. Demonstrated on the company’s 5-axis 3Dx-700 system, a gantry-based, high-precision platform built for an unnamed military client, the tool changer allows the machine to seamlessly switch between different tool heads. “The nScrypt tool […]

nScrypt to Deliver Factory in a Tool to Australian Defense Department

The Defence Science and Technology (DST) Group of Australia’s Department of Defence has selected nScrypt’s Factory in a Tool (FiT) platform to augment its research operations.  DST is a leader in safeguarding Australia by delivering expert and impartial scientific advice, supporting current operations, and providing innovative solutions for defense, national security, and future defense capabilities.

DST selected an nScrypt 3Dn-500 Penta-Head multi-material FiT platform, which will be outfitted with a SmartPumpTM microdispensing tool head, nFD™ material extrusion tool head, Pick and Place (for electronic components and subassemblies) and nMillTM tool heads (for micromilling), and UV tool head with integrated laser and Pulse Forge photonic curing for spot curing of photopolymers.  The tool heads can operate in series or parallel on the FiT’s fast (up to 1 mps), high-precision (up to 10nm resolution, 500nm repeatability, 1 micron accuracy) linear motion gantry.  The tool heads are monitored by multiple cameras for automated in-process inspection and computer vision routines.  The system also includes a point laser height sensor for Z-tracking and mapping for conformal printing onto objects of any surface shape.

According to nScrypt’s CEO, Dr. Ken Church, 

This is one of our most advanced and versatile machines.With this tool, DST can go from CAD to a final, multi-material product with embedded electronics in a single machine, without retooling.Although the U.S. military has been a regular customer for nScrypt’s direct digital manufacturing solutions, this is nScrypt’s first sale to a foreign government agency.We are honored that Australia DST selected our tool to help support its mission.

The FiT’s SmartPumpTM  microdispensing tool head eliminates drooling with pico-liter volumetric control and boasts the widest range of materials available for any microdispensing system: more than 10,000 commercially available materials, ranging from a few centipoise (like water) to millions of centipoise (much thicker than peanut butter).  The SmartPump’s™ pen tip has what is believed to be the smallest commercially available diameter, 10 microns. 

The nFD™ extruder tool head can 3D print what nScrypt believes is the widest range of thermoplastics, composites, and continuous carbon fiber. 

About nScrypt

Founded in 2002 and headquartered in Orlando, Florida, nScrypt designs and manufactures award-winning, next-generation, high-precision microdispensing and Direct Digital Manufacturing equipment and solutions for industrial applications, with unmatched accuracy and flexibility.  Serving the printed electronics, electronics packaging, solar cell metallization, communications, printed antenna, life science, chemical/pharmaceutical, defense, space, and 3D printing industries, our equipment and solutions are widely used by the military, academic and research institutes, government agencies and national labs, and private companies. nScrypt is a 2002 spin out from Sciperio Inc., a research and development think tank specializing in cross-disciplinary solutions. The nScrypt BAT Series Bioprinter, which won the R&D 100 award in 2003, will travel to the International Space Station in 2019, in a joint program with Techshot. nScrypt Cyberfacturing Center is our direct digital contract design and manufacturing service.   www.nscrypt.com

The post nScrypt to Deliver Factory in a Tool to Australian Defense Department appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

nScrypt SmartPump enables micro-dispensing in electronics manufacturing factory floor

nScrypt, a Florida-based manufacturer of micro-dispensing and 3D printing equipment, has delivered its SmartPump tool head to an undisclosed electronics manufacturer for use on its factory floor. This micro-dispensing tool enables multi-material 3D printing, allowing fabrication of smart and microfluidic devices.  Micro-dispensing technology Since its founding in 2002, nScrypt has focused on additive manufacturing and […]

3D Printing News Sliced: PyroGenesis, Under Armour, Onshape, Apollo 11

This week’s edition of Sliced, the 3D Printing Industry news digest, features a 3D printed celebration of the first moon landing, virtual clothes shopping, and the launch of an AM Network Map.  This roundup also includes stories from Knust-Godwin, Torus Group, SPIE, Open Bionics, Geomiq, Onshape, Wikifactory, ETH Zurich, 3DEO, AlphaSTAR, PyroGenesis, Hermeus and more. […]

Czech Republic: Researchers to Support Ongoing Electronic Structures Work with nScrypt 3D Printer

The University of Pardubice is one of the top universities in the Czech Republic, and particularly excels in the chemical sciences. It originally opened in 1950, in answer to a local petition, as an Institute for Chemical Technology, and after years of expansion, was officially rechristened in 1994. The university’s overall vision is to always be contributing to developments in advanced technologies, creative human potential, and scientific knowledge. So it makes sense that is has chosen the 3Dn Tabletop Factory in a Tool (FiT) system from Orlando company nScrypt to help support its ongoing research in 3D printing electronic structures and materials.

nScrypt, a spin-out from research and development think tank Sciperio Inc., designs and manufactures accurate, flexible, high-precision microdispensing and Direct Digital Manufacturing solutions and equipment for industrial applications, and has also branched out into bioprinting as well. Its next-generation systems are used for multiple applications in the aerospace and defense fields, in addition to others.

Precision microdispensing, material extrusion, micro-milling, and pick-and-place toolheads can run on the nScrypt Factory in a Tool

The university will be using nScrypt’s 3Dn Tabletop Dual-Head, multi-material, precision ball screw motion platform for its research. In order to ensure automated in-process inspection and computer vision routines, the system, which includes a point laser height sensor for Z-tracking and mapping for conformal 3D printing onto objects of any surface shape, will come with nVision cameras for monitoring the multiple toolheads. Additionally, the 3Dn Tabletop will also feature a SmartPump microdispensing toolhead.

“This machine’s SmartPump can microdispense more than 10,000 commercially available materials, ranging from a few centipoise (like water) to millions of centipoise (much thicker than peanut butter),” explained nScrypt CEO Ken Church. “We have sold machines to many universities and labs around the world, but this is our first machine going to the Czech Republic. This machine is perfect for printing electronic materials, so we are proud to be able to support the University’s research and education efforts.”

The SmartPump toolhead has a pen tip with the smallest commercially available diameter at just ten microns, and can also get rid of “drooling” with pico-liter volumetric control.

Professor Tomáš Syrový, a member of the university’s Chemical Technology faculty, explained that nScrypt’s 3Dn-Tabletop machine is the perfect choice, as it can successfully print inks that have a wide variety of viscosity.

“The machine’s functionality is allowing us to prototype various functional structures using hundreds of commercial inks or our experimental ink formulations, which we are using in our labs for industrial oriented R&D and for education,” Professor Syrový continued. “This is a big advantage, because we can use identical inks which we in previous times optimized for conventional printing techniques, such as screen printing, gravure printing, or flexography, and which we are using for various large area material printing applications. This is the perfect tool to enable my group to do faster development of various applications like various sensory structures, battery electrode layers, or conductive paths on 3D shaped objects, which our industrial partners frequently request for their commercial applications. A big advantage of the nScrypt system is how it helps our educational mission, where the students are in contact with latest hi-tech printing technologies, which allow them precise material printing, 3D bioprinting of biologically compatible materials, or conformal printing on 3D objects.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post Czech Republic: Researchers to Support Ongoing Electronic Structures Work with nScrypt 3D Printer appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Techshot and nScrypt to launch 3D BioFabrication Facility in space

The 3D BioFabrication Facility (BFF) bioprinter from nScrypt, a Florida-based 3D printing system manufacturer, and spaceflight equipment developer Techshot is set to launch on the International Space Station (ISS) next month. Said to be the first 3D printer capable of manufacturing human tissue in microgravity conditions, the BFF will be launched aboard the SpaceX CRS-18 cargo mission from Florida’s Cape Canaveral Air Force […]

What happened in 3D printing at RAPID & TCT 2019?

As one of the biggest 3D printing events of the year, last week’s RAPID + TCT conference created the busiest news week of 2019 so far. Reporting live from the show, backed by a team covering all of the latest press releases from the event, 3D Printing Industry provided leading coverage of North America’s must-see […]

nScrypt showcases 3D printed electronics with Radio Frequency Printed Circuit Structures

This week at RAPID + TCT, nScrypt, a Florida-based manufacturer of micro-dispensing and 3D printing equipment, is showcasing examples of Radio Frequency (RF) Printed Circuit Structures (PCS) made from its Direct Digital Manufacturing (DDM) system, also known as Factory in a Tool (FiT). Included in this display is what is said to be the first 3D printed […]

nScrypt Develops In Situ 3D Printing Inspection System

nScrypt, headquartered in Orlando, Florida, wants to see 3D printing operations running at their full potential. In high-performance industrial atmospheres, that means heavy monitoring to ensure any errors or ongoing system problems are dealt with quickly. To promote precise additive manufacturing processes—mainly with their 3Dn systems—nScrypt has created a new inspection system that occurs while the print is in progress.

This in situ process includes the following features:

  • High resolution laser profile scanning to inspect up to 640,000 data points per second.
  • Sorting for each set of data points collected for each layer during the 3D printing process.
  • Automatic geometric data transmission which informs users of print volume, any missing volume (and its location), and data regarding each layer.
  • Scanning resolution of 10µm in the XY axis and 5µm in the Z axis.

nScrypt inspection process

“The generated data is in perfect alignment with the part by synchronizing nScrypt’s high-precision linear motion gantry system with the laser readings,” reports the company in their recent press release sent to 3DPrint.com. “This in-situ process only adds 3% – 12% to the total print time, depending on the part’s geometry.”

Missing material inside part detected by nScrypt’s inspection system (Actual data)

Industrial users should find performance and efficiency transformed with inspection reports available for every part fabricated.

“The inspection system was developed with our machine’s position feedback and real time kernel to accurately align the data. Once the aligned data is received, we can process it to warn the user of any defects that occurred before moving on to the next part of the print,” says nScrypt Software Engineer, Connor Roggero.

Many businesses should find savings on the bottom line as defects are found before the entire product is manufactured, meaning that wear and tear on machines is reduced and even more importantly—so much material is saved with the elimination of defective prints that go through the entire process only for the user to find problems, and parts that cannot be used. The nScrypt team realizes this will give 3D printing users more confidence in their work.

Layer by layer breakdown of scanned data. Green = material, Red = missing material (Actual data)

This monitoring system also eliminates the need for other types of evaluation such as X-rays or ultrasonic testing.

“Inspection reports are commonplace in industries that require meeting strict quality standards, such as aerospace and automotive,” said Paul I. Deffenbaugh, nScrypt R&D Manager. “Traceability is frequently necessary and ensures that root causes of failures can be determined. This in-process inspection system fulfills all of these goals and produces results more detailed than any other system available.”

The program is still being refined further to offer actual in situ repairs, taking even more responsibility off the user. As the inspection process evolves further, the repair should be noted, fixed, and then printing would resume.

3D printing users are a very ambitious lot by nature—discontented with being given limits at any turn regarding materials, software, and hardware—and they are also continually building new layers of improvement into the technological process creating different methods for quality assurance for medical models, in situ inspections, and researching causes of 3D printing flaws. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Print report example

3D Printing News Briefs: April 6, 2019

We’re starting off today’s 3D Printing News Briefs with a product launch announcement – 3YOURMIND launched the full version of its Agile MES software software this week at AMUG 2019. Moving on, Sintratec will present its latest SLS 3D printer at RAPID + TCT next month in Detroit, Tiamet3D has joined Ultimaker’s material alliance program, and Sciaky entered into an agreement with KTM Consultants. Xometry just announced some important certifications, and nScrypt is 3D printing titanium parts. Moving on to the world of art and theatre, the Zurich Opera House is 3D printing props, and artist Andrea Salvatori worked with WASP to create a 3D printed art collection.

3YOURMIND Launched Agile Manufacturing Execution System (MES) Software

After spending five years providing order management systems to scale for some of the industry’s AM leaders, 3YOURMIND has finally moved its software solutions to a production environment with the launch of its Agile Manufacturing Execution System (MES) earlier this week at AMUG 2019. The software uses smart part prioritization, rapid scheduling, order tracking, and custom AM workflow creation to improve machine utilization and make production more efficient, and an Early Access Program (EAP) allowed the company to receive direct feedback on its Agile MES software from representatives at companies like EOS and Voestalpine. The next step will be working to finalize machine connectivity.

“For Agile Manufacturing, the Agile MES will need to both GET and PUSH data from all major AM machines and post-processing systems. We are already integrating the data from several vendors into our software and expect to support all major machines,” explained 3YOURMIND’s CEO Stephan Kühr. “Receiving and processing machine data allows us to provide the documentation that is needed for quality assurance and to increase the repeatability of additive manufacturing. Pushing data directly to machines will be the key to automating production.”

Sintratec Showcasing New SLS 3D Printer at RAPID + TCT

A few months ago, Swiss SLS 3D printer manufacturer Sintratec introduced its scalable, modular Sintratec S2. Now, the company will be presenting the printer in the US for the first time next month at RAPID + TCT in Detroit, which will also be Sintratec’s first time attending the massive event. What makes the Sintratec S2 stand out is its closed-loop workflow, as the complete system covers every process with its three modules: the Laser Sintering Station (LSS), the Material Core Unit (MCU), and the Material Handling Station (MHS). The 3D printer offers quick material changes, a 4K camera for print monitoring, improved ergonomics, and effective heat distribution through its cylindrical printing area and ring lamps.

“The Sintratec S2 will boost the design of applications and gives the user the opportunity to set foot in small series production as well. And that for an unusually attractive price-performance ratio,” said Sintratec CEO Dominik Solenicki.

“With the Sintratec S2 solution we will be opening new opportunities for companies of any size.”

The price for the Sintratec S2 starts at $39,900, and you can see it for yourself at Sintratec’s booth 1753 at RAPID + TCT from May 20-23.

Tiamet 3D Joins Ultimaker’s Material Alliance Program

Last year, Dutch 3D printing specialist Tiamet 3D, founded in late 2014, worked with Finland-based Carbodeon to develop the first nanodiamond-enhanced 3D printing filaments, which went on the market in September. Now the company has joined Ultimaker as a partner in its Material Alliance Program. Together, the two will offer end-users simple one click downloads of Tiamet’s ULTRA Diamond material profile, which is now available on Ultimaker’s Cura software. This collaboration is formally backed by Tiamet’s manufacturing partner Mitsubishi Chemical Performance Polymers (MCPP Netherlands).

Reid Larson, the Director and Co-Founder of Tiamet 3D, told us about some of the highlighted specs of its ULTRA Diamond material, including no additional nozzle wear, 6300 mpa stiffness, low moisture absorption and friction, improved thermal conductivity, and twice “the temperature resistance of normal PLA, Annealed goes to 125C HDT.” You can purchase one kg of ULTRA Diamond filament for €59.

Sciaky Increasing Sales Efforts Through New Agreement

In an effort to increase the sales efforts of its Electron Beam Additive Manufacturing (EBAM) solutions in Australia, the Middle East, and New Zealand, Sciaky, Inc. has entered into an agreement with KTM Consultants, founded by metallurgist Trent Mackenzie in 2015. In terms of sheer work envelope, Sciaky’s massive EBAM systems are the industry’s most widely scalable metal 3D printing solution, able to produce parts ranging from 8 inches to 19 feet at gross deposition rates of up to 25 lbs of metal an hour. Additionally, its Interlayer Real-time Imaging and Sensing System (IRISS) is the metal 3D printing market’s only real-time adaptive control system capable of sensing and digitally self-adjusting its deposition.

“I was immediately drawn to Sciaky’s EBAM technology because of its unique and robust capabilities. Industrial manufacturers of large metal parts need to explore the significant advantages that technologies like EBAM offer. It is truly a game-changer,” said Mackenzie.

Xometry Announces New Industry Certifications

Digital manufacturing marketplace Xometry announced that it has just received ISO 9001:2015 and AS9100D certifications – some of the most rigorous, widely-recognized quality management designations in the industry. ISO 9001 helps organizations meet the needs and expectations of their customers in terms of quality management, while AS9100 meets customer demands in the exacting aerospace and defense industries. The company went through a major audit as part of the process, and its achievement definitely reflects how committed Xometry is to providing quality.

“We are thrilled to receive this designation. Our team members have a passion for providing great customer service while following the disciplines that give our customers peace of mind regarding on-time delivery, quality, and continuous improvement. It is yet another step towards achieving industry “best in class” status and being able to meet the expanded needs of our customers,” stated Xometry COO Peter Goguen.

nScrypt Develops Proprietary Method for 3D Printing Titanium

nScrypt 3D printed titanium gear, dogbone, and block

Florida manufacturer nScrypt, which develops high-precision Micro-Dispensing and Direct Digital Manufacturing equipment and solutions, is now focusing on repeatable 3D printing of metals for the medical, defense, and aerospace industries. The company has created a proprietary method for 3D printing titanium parts, which tests have shown display densities comparable to wrought parts. This method could easily work with other metals as well, such as copper, Inconel, and stainless steel, and nScrypt’s Factory in a Tool (FiT) systems can finish or polish areas with high tolerance features using its integrated precision nMill milling head. nScrypt’s Brandon Dickerson told us that the company expects to release more details on this later in 2019.

“The parts were printed with our SmartPump™ Micro-Dispensing tool head, which runs on any of our systems,” Dickerson told 3DPrint.com. “The parts shown in the photos were printed on our DDM (Direct Digital Manufacturing) system, also known as our Factory in a Tool (FiT) system, which can run 5 tool heads at the same time, including our Micro-Dispensing, Material Extrusion, micro-milling, and pick-and-place tool heads.  The parts were sintered after the build and the current densities are in the high 90% range.  We expect our system to appeal to customers who want to do Direct Digital Manufacturing and need strong metal parts, but cannot build them with a powder bed system (for example, if the geometry would trap powder inside) or prefer not to use a powder bed system (for example, if they want a cleaner system).”

Zurich Opera House 3D Printing Props with German RepRap

Finished tutu for “The Nutcracker”, which was produced with the help of the x400 3D printer

Switzerland’s largest cultural institution, the Zurich Opera House, puts on over 300 performances a year, but the behind-the-scenes magic happens in the studios and workshops, where the props and costumes are made. The opera house uses the x400 3D printer from German RepRap, with assistance from Swiss reseller KVT- Fastening, to support its creative work by fabricating props and molds. This affords the institution more creativity and flexibility, as they can design objects to their exacting needs in 3D modeling programs, which also helps save on time and money. The opera house currently uses PLA, which is easy to handle, offers a variety of colors, and is flame retardant – very important in a theatrical setting.

“Often, the wishes and ideas of costume and stage designers are very diverse and sometimes extraordinary. It often happens that props are not available in the way designers have it in their minds. This is where the 3D printer is perfect for,” said Andreas Gatzka, director of theater sculpture at the Zurich Opera House.

“There are a lot of great benefits. Special wishes of stage and costume designers can be realized quickly as well as a short-term change of the objects, for example larger, smaller, longer, shorter, or whatever is needed.”

3D Printed Art Collection

Artist Andrea Salvatori 3D printed the eye-catching pieces for his new collection, titled Ikebana Rock’n’Roll, using the Delta WASP 40100 Clay 3D printer – designed by WASP to be used by ceramic and clay artists. The collection just opened on stage at THE POOL NYC in Milan last week, and will be available to view until May 31st. With these 3D printed vases, Salvatori wanted to use “a miscellany of ceramic insertions” to mess with the high quality shapes 3D printing can achieve by adding asymmetry.

“The process of depositing the material and setting the spheres is a central theme in the Ikebana Rock’n’Roll collection, to the point of convincing Salvatori to name the works “Composition 40100”, as if they originated from a musical dialogue of the most varied tones. The artist upsets the algorithm reiterated slavishly by the machine with imperfect musical accents, the result from time to time of spontaneous actions and reasoned processes,” WASP wrote in a blog post.

“The ikebanes, proposed by Andrea Salvatori in the exhibition, transcend the experimental limits of an abstract investigation, representing a concrete territory in which 3D printing and ceramic art co-exist synergistically. The Master challenges the confrontation with the public, becoming also in this sector, precursor of a new genre in which WASP feels itself fully represented.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.