ORNL researchers develop eco-friendly 3D printed carbon dioxide capturing device 

Scientists from Oak Ridge National Laboratory (ORNL) have developed a novel 3D printed device that’s capable of increasing the amount of CO2 captured from burning fossil fuels.  Utilizing 3D printing, the researchers were able to combine a heat exchanger and a mass-exchanging contactor, into a multifunctional CO2 absorption device. The aluminum contraption’s in-situ cooling capabilities […]

ORNL Team 3D Prints Device for Improving Carbon Capture Technology

According to the United Nations Intergovernmental Panel on Climate Change (IPCC), we have less than ten years to cut greenhouse gas (GHG) emissions by 45 percent to prevent runaway climate change. Some environmentalists argue that even that projection is too optimistic. To prevent the collapse of our ecosystem, some researchers are betting on a technology called carbon capture and storage (CCS). This includes a team at the U.S. Department of Energy’s Oak Ridge National Laboratory (ORNL), which has 3D printed an aluminum device for improving carbon capture at fossil fuel plants and other industrial sites.

While carbon capture can be performed in several different ways, the most common method involves attempting to filter carbon dioxide (CO2) from a smokestack using a solvent, such as monoethanolamine, that separates the GHG from the flue gasses. As the CO2 meets the solvent, heat that is produced can reduce the ability of the solvent to react with the CO2, limiting its efficiency.

Image courtesy of RMCMI.

ORNL improved the efficiency of this process by creating a device that integrates with a heat exchanger with a mass-exchanging contactor to remove excess heat. The item was tested within a circular device measuring one meter high by eight inches wide and made up of seven stainless-steel packing pieces. Installed in the top half of the column between packing elements, the 3D-printed part allowed for the integration of a heat exchanger. In turn, the group was able to reduce temperatures and, therefore, improve CO2 capture.

In 2019, ORNL researchers Costas Tsouris and Eduardo Miramontes operated the intensified device inside of the absorption column, which contains commercial stainless-steel packing elements. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy

The project’s Principal Investigator, Xin Sun, explained how such a process was previously unattainable: “Prior to the design of our 3D printed device, it was difficult to implement a heat exchanger concept into the CO2 absorption column because of the complex geometry of the column’s packing elements. With 3D printing, the mass exchanger and heat exchanger can co-exist within a single multifunctional, intensified device.”

Embedded coolant channels within the intensified device reduce the column temperature due to the heat produced during the forward reaction. Credit: Michelle Lehman/ORNL, U.S. Dept. of Energy.

To enable heat exchange within the column, cooling channels were incorporated into the steel packing elements. The 3D-printed component, referred to as the “intensified device” was printed from aluminum due to its high thermal conductivity, overall structural strength and its printability.

Costas Tsouris, one of ORNL’s lead researchers on the project, said of the item’s name, “We call the device intensified because it enables enhances mass transfer through in-situ cooling. Controlling the temperature of adsorption is critical to capturing CO2.”

ORNL’s Costas Tsouris, Xin Sun and Eduardo Miramontes, pictured in early March, demonstrated that the 3D-printed intensified device substantially enhanced carbon dioxide capture efficiency. Credit: Carlos Jones/ORNL, U.S. Dept. of Energy.

Lonnie Love, Lead Manufacturing Researcher at ORNL, said that the intensified device was not limited to aluminum:

“The device can also be manufactured using other materials, such as emerging high thermal conductivity polymers and metals. Additive manufacturing methods like 3D printing are often cost-effective over time because it takes less effort and energy to print a part versus traditional manufacturing methods.”

According to some estimates, carbon capture used to reduce emissions from fossil fuel plants could cut CO2 by 55 to 90 percent. However, the bigger issue is not just removing GHGs from the source, but what is done with the material once it’s removed. In the short term, CO2 is already used to extract oil from wells, with the material injected into wells to drive out crude oil. In other words, carbon capture is actively contributing to climate change and the resulting ecological collapse because it is increasing the use of fossil fuels obtained through this enhanced oil recovery.

Long-term storage is another issue. Hypothetically, after CO2 is transported via pipeline as a liquid or gas, it could then be stored underground or underwater in geological formations. Though it may be technically feasible, it has not been tested extensively and we do not know what the side effects of storing excess CO2 underground or underwater.  Similar to the short-term problem, this solution disincentivizes fossil fuel dependent civilization from shifting to alternative energy sources because it suggests that fossil fuel use can continue indefinitely if we capture it at the source and store it under the earth with unforeseeable consequences using yet-to-be-developed technologies.

The post ORNL Team 3D Prints Device for Improving Carbon Capture Technology appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Oak Ridge researchers debut 3D printed ‘EMPOWER’ smart wall

Researchers from the Oak Ridge National Laboratory have 3D printed a “first-of-its-kind” smart wall called ‘EMPOWER’. The prototype wall was demonstrated at the Department of Energy’s Federal Energy Management Program’s (FEMP) virtual 2020 Energy Exchange event. Built to highlight the technology’s capabilities and designed for indoor use, EMPOWER combines concrete additive manufacturing and integrated electronics […]

ORNL develops Peregrine AI software for real-time monitoring of metal 3D printing

Oak Ridge National Laboratory (ORNL) researchers have developed Artificial Intelligence (AI) software capable of monitoring the metal 3D printing process in real-time.  Nicknamed Peregrine, the algorithm assesses the quality of parts during production in a cost-effective alternative to characterization equipment. The program is part of ORNL’s broader “digital thread,” which closely tracks and analyzes data […]

University of Dayton researchers create lower cost method of 3D printing nanoscale structures 

Researchers from the University of Dayton have published research describing an enhanced and more cost-effective method of 3D printing nanoscale structures.  The Opto-Thermo-Mechanical (OTM) nano-printing technique was found to be capable of printing on a nanoscale level of fewer than 100 nanometers (nm), or a thousand times smaller than a human hair. What’s more, because […]

US Air Force uses Senvol software to develop multi-laser 3D printing applications

The US Air Force is using Senvol’s data-driven machine learning software for additive manufacturing (AM), to enable the production of large-scale aerospace parts using multi-laser 3D printing technology. Utilizing an EOS powder bed fusion (LPBF) 3D printer, the program is focused on developing baseline mechanical properties and design allowables, to optimize the production of end-use […]

Interview: Ascend Manufacturing CEO Justin Nussbaum details Large Area Projection Sintering 

3D printer manufacturer Ascend Manufacturing has revealed the inner workings of its novel Large Area Projection Sintering (LAPS) 3D printing method. In an interview with Founder and CEO of the company Justin Nussbaum, 3D Printing Industry found out more about the closed-loop additive manufacturing technology behind the new method. The powder bed fusion (PBF) technique […]

ExOne’s extensive collaborations yield 20+ qualified 3D printable materials

ExOne, the global leader in industrial sand and metal binder jetting 3D printers, has announced the qualification of 21 new materials for use with its machines alongside its brand new qualification system. John Hartner, ExOne’s CEO, has attributed the growing set of qualified materials to the U.S.-based company’s extensive list of customer collaborations, which includes […]

nTopology is ORNL’s new partner to industrialize AM technology

New York-based software company, nTopology has entered into a Cooperative Research and Development Agreement (CRADA) with Oak Ridge National Laboratory (ORNL). The parties aim to develop advanced additive manufacturing capabilities, commercially available to the broader market. Integrating nTopology’s software into ORNL’s machine control capabilities, the collaboration aims to optimize the manufacturing process, including build speed […]

GE, ORNL, PARC receive $1.3 million to accelerate energy products with additive manufacturing

GE, Oak Ridge National Laboratory (ORNL), Tennessee, and the Palo Alto Research Center (PARC), a Xerox company, have been awarded an estimated $1.3 million to accelerate the development of 3D printed turbomachinery parts. “Totally Impactful” The funds were granted by the U.S. Advanced Research Projects Agency-Energy (ARPA-E) Design Intelligence Fostering Formidable Energy Reduction and Enabling Novel Totally Impactful Advanced Technology Enhancements (DIFFERENTIATE) program. Within the DIFFERENTIATE program, the partners […]