Why 3D Printing Is Key For Mass Customizable Products

luxmea face mask variations
LuxMea’s customized face masks. Photo source: LuxMea Studio

Consumers in today’s market expect more and more for their products and experiences to be tailored to them, and to have more control over what they pay for. The challenge in meeting that demand for mass customization is having to switch from producing hundreds to millions of the same item to efficiently producing small batches of personalized items within a similarly short time frame without costs going up astronomically. Additive manufacturing helps maximize efficiency in making large-scale personalization more accessible.

Customer-Led Designs

Companies that use 3D printing for customization set up design interfaces to allow customers to make their own design choices in regards to color, texture, material or fit. For example, some automotive companies have given their customers the ability to choose their vehicle’s colors or include personalized lettering on the interiors. Any product can potentially be customized according to what suits the buyer: cars, furniture, fixtures, jewelry and more.

3D Scanning for a Perfect Fit

With 3D scanning software becoming more prominent and user-friendly, it is easier than ever for customers to contribute to the design process themselves. The footwear industry is making use of 3D printing technology, allowing customers to make aesthetic choices for their shoes and also to personalize their insoles based on their specific foot shape, weight or running style. Customization is also becoming a standard in the tabletop gaming industry, with more and more companies offering customizable game pieces.

A smart-phone app can take a scan of a person’s face or other body part and generate a 3D file that can be used to create a product that fits them perfectly. LuxMea has used this technology to produce face masks that are not only aesthetically customizable but also provide a perfect fit for the individual wearer, making them safer and more comfortable.

3D scans can be used to personalize earphones, shoe insoles, eyewear and many more products thanks to 3D printing technology. This ability to creatively participate in the design process boosts customer satisfaction, as the ability to have more say in what they spend money on makes the process more fun and efficient for the users.

Customization
to Improve Lives

Advances in 3D scanning technology contribute heavily to the medical industry, an area where personalization can be crucial. With the ability to scan specific parts of the body, more accurate and patient-specific improvements can be made to someone’s health and wellbeing. 3D printing allows for more affordable and personalized prosthetics, implants and other aids ensuring a higher level of comfort and support. This is an area where perfect fit as well as timely delivery can be of the utmost importance to the success of medical devices and equipment. 3D printing is able to surpass the limits of traditional processes because of its ability to produce highly complex parts quicker. Customization also improves the instruments and supplies that physicians use, making them more efficient and comfortable and improving surgical outcomes.

Understanding Preferences and Trends

By allowing customers to make more of their own choices, the process provides key insights into trends and consumer preferences. Customers’ tastes can be used to help companies evolve their products and make product developments to fit the needs of their customers.

On-Demand
Manufacturing

Another benefit of using 3D printing for customized products is a shift towards more on-demand production. By placing more emphasis on smaller personalized products instead of mass-produced products before orders are received, inventories can be reduced and a substantial amount of waste can be avoided. This can save money in material costs and create a more sustainable manufacturing process.

The 3D printing industry is growing at a very fast rate, and is making it easier to transition to using 3D printing over traditional mass production methods as time goes on. However, the transition can still be expensive and time consuming. 3D printing services like Shapeways can ease that transition by giving you access to high quality manufacturing as well as tailored e-commerce support. Let us know how we can help with your mass-customization needs.

learn more

The post Why 3D Printing Is Key For Mass Customizable Products appeared first on Shapeways Blog.

3DEO wins Design Excellence Award for metal 3D printed anchor link

Metal 3D printing specialist 3DEO has been awarded a win at the 2020 Design Excellence Award Competition for its metal 3D printed production part. The steel part, an anchor link, marks the company’s efforts in pushing forward a new technology and design with commercial success. The competition, sponsored by the International Trade Association for Metal […]

Bilsing Automation adopts Fraunhofer ILT’s DED 3D printing technology

The Turkish division of gripper manufacturer Bilsing Automation has announced the implementation of DED 3D printing technology from the Fraunhofer Institute for Laser Technology (ILT) into its workflow. The advanced process, aptly named extreme high-speed Laser Material Deposition (LMD), is already being used by industrial partners in countries such as Germany, China, and the UK, […]

Roboze launches new additive manufacturing service for demanding applications

Italy and U.S based 3D printer manufacturer Roboze has launched a new distributed additive manufacturing service specifically for high-performance applications.  Known as Roboze 3D Parts, the service has been described by the company as a network for helping businesses in reducing their costs by shortening the steps in the supply chain, digitalizing inventory, and producing […]

3D file marketplace MyMiniFactory releases ‘3DPrinted & Delivered’ service

London-based 3D file marketplace, MyMiniFactory, has released a new 3D printing service for tabletop hobbyists still hesitant about committing to a 3D printer. The 2013 start-up is doubling down on its services catering to designers, makers, and general enthusiasts by setting up a separate marketplace for physical miniatures alongside its digital STL file marketplace which […]

BigRep opened 3D PARTLAB at its Boston headquarters

German-based large-format 3D printer manufacturer BigRep America has opened a 3D PARTLAB at its new Boston headquarters. The new facility will offer customized ordering services for 3D printed parts.  Via 3D PARTLAB BigRep aims to support partners and customers who are over capacity or in need of large-format printed parts. The 3D printer manufacturer provides […]

3D Systems: Augmenting Your Workflow with Traditional and Additive Manufacturing

Combining Old and New Technology

Remember the days when people thought that we would all end up with our own home desktop 3D printers to make anything our hearts desired and would never have to leave the house to buy consumer goods again? While I’m not saying this future isn’t still in the cards (imagine never having to get in another shopping cart lane battle at the store!), most people have realized this might be just wishful thinking and are focusing on other uses for additive manufacturing – such as combining the technology with traditional forms of manufacturing.

Just because you’re interested in 3D printing doesn’t mean you have to completely forget about all of the existing manufacturing technologies – you can complement your workflow, learn something new, and add that skill to your wheelhouse. And try as you might, it’s not always economically feasible or the right choice for your business to switch completely over to 3D printing. So one more time for the people in the back – by combining conventional manufacturing with 3D printing, companies can truly augment and speed up their workflows.

3D Systems knows a little something about this, as the company offers both additive and subtractive manufacturing capabilities through its On Demand manufacturing services.

“Our online 3D printing portal was designed by engineers for engineers,” the 3D Systems On Demand webpage states. “Our goal is to make the process of ordering 3D printed parts and prototypes the easiest in the industry.”

This is what sets 3D Systems apart from other service bureaus in the market. In fact, the company just released an eBook, titled “The Benefits of Traditional and Additive Manufacturing from a Single Source,” that’s all about combining 3D printing with other types of manufacturing it offers, such as CNC machining, investment casting, injection molding, urethane casting, sheet metal, die casting, etc. The campaign for 3D Systems’ new eBook recently went live, and the book itself discusses different ways to combine additive and traditional manufacturing for the optimal effect, in addition to using your project budget in the most efficient way, speeding up time to market, and the best ways to fulfill design goals.

3D Systems On Demand service bureau offers traditional injection molding for low-volume projects, and most commercially available thermoplastics from production-grade tooling are available. Nearly 20 different materials are available, with ten finish options, including Light Texture, Mirror, and Color-Matching. A urethane casting service is also available for rapid prototyping purposes, with a wide array of materials and three different finishes offered.

“One of the greatest benefits of the Cast Urethane process is the ability to over-mold existing parts or hardware with a second material,” the website states.

Learn more about the traditional Capabilities such as Cast Urethane in the new eBook. 

While you can visit many vendors to receive external prototyping and production services, there aren’t too many like 3D Systems that offer a full range of options in both traditional and additive methods. For example, less than a year ago, the company released its ProJet® MJP 2500 IC RealWax™ 3D printer, which lets existing investment casting operators switch to additive manufacturing for their patterns, using 3D Systems’ MJP 3D printing technology. In addition, its VisiJet® M2 ICast (MJP) material is wax, which means it will work within the existing foundry without requiring any updates or changes to furnaces or temperatures.

Four years ago, 3D Systems also highlighted its digital molding technology for the first time. This is a scalable 3D printing process – backed by the company’s configurable Figure 4® technology – that lets you do tool-less production, and is a good alternative for low-volume plastic part production.

3D Systems’ Figure 4®

Confederate Motors, which has been designing and manufacturing bespoke motorcycles in small batches for over two decades, has been collaborating with 3D Systems On Demand since 2014 in an effort to convert 140 different designs into prototypes and production parts for its P51 Combat Fighter. 3D Systems provides a one-stop shop for Confederate Motors’ motorcycle parts, including everything from the intake manifold and swing arm parts to the front and back fenders and the key to start up the motorcycle.

“With the exception of some engine components, wiring, wheels, tires and lighting, 3D Systems makes every part of the Fighter. We save a tremendous amount of time and hassle by being able to consolidate part production with one primary vendor. Parts go together better coming from the same vendor, and we can be assured that the part finish of everything will match,” said Jordan Cornille, a designer at Confederate Motors.

“We like to move quickly in our decision-making processes and design quickly in order to offer our customers as many solutions as possible within a certain time frame. We don’t produce thousands of copies of each model, and 3D Systems allows us to change designs frequently without committing to thousands of dollars worth of tooling.”

3D Systems used plenty of CNC machining to make the parts for the P51 Combat Fighter motorcycle; according to the 3D Systems On Demand site, this subtractive technology “is the best choice for rapid prototyping of high-quality metal and plastic parts” that need an extremely high degree of dimensional accuracy. The service bureau offers a variety of different materials and finishes for CNC machining and promises a standard delivery time of 1-2 weeks, based on the order.

As noted in its new eBook, the company also offers integrated additive and traditional manufacturing approaches, which is perfect for projects that need to combine the ability to manufacture complex shapes at a faster rate of speed with high precision. Room Temperature Vulcanization (RTV) is just one of these integrated processes – it uses 3D printed masters and silicone molds to produce high-quality parts in low to mid-volume batches, without having to rely on expensive hard tooling. The benefits of RTV include a large material selection, a shorter lead time, and the ability to over-mold existing hardware and parts with an additional material.

“When the 3D Systems On Demand service bureau was established several years ago, the company expanded its expertise and resources through strategic acquisitions, not only for 3D printing and additive manufacturing, but for traditional approaches as well,” the eBook states. “3D Systems On Demand now has a worldwide network of facilities to locally service companies that need a stable, reliable, well-resourced and uniquely experienced partner.”

To learn more about the wide variety of additive and traditional manufacturing processes that 3D Systems offers through its On Demand service bureau, check out the company’s new eBook, or contact us for more details.

[Images: 3D Systems]

The post 3D Systems: Augmenting Your Workflow with Traditional and Additive Manufacturing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: February 16, 2019

We’ve got business, events, software, and materials news for you in today’s 3D Printing News Briefs. MELD has introduced a new operator training course, and Protolabs is launching a range of secondary services. AMUG announced the keynote speakers for its upcoming conference, while the call has gone out for submissions to the 2019 Altair Enlighten Award. This week at SOLIDWORKS WORLD 2019, Stratasys introduced AdvancedFDM software for GrabCAD Print. Finally, a gold partner at America Makes has created an Ultem 9085 materials database for FDM 3D printing, and 3D MicroPrint is using a powder rheometer to push the limits of additive manufacturing.

MELD Manufacturing Offers Training Program

MELD Manufacturing Corporation is launching a new operator training program to teach participants how to operate its award-winning technology, which uses an innovative no-melt process to additively manufacture, repair, coat, and join metals and metal matrix composites. The 4-day courses will provide both classroom instruction and hands-on machine training, and attendees will also review the history of MELD’s development.

“This program creates certified MELDers and delivers the capacity to integrate and innovate with MELD. Our customers have raved about the elegance of the MELD process and the ease of training. We’re excited to offer more of these opportunities,” said MELD’s CEO Nanci Hardwick.

The size of the classes, which will be held at MELD’s Virginia headquarters, will be limited so that each attendee can have the maximum amount of machine time in order to become certified, so you should register ASAP.

Protolabs Launches Secondary Services in Europe

Protolabs is a digital manufacturing source for custom prototypes and low-volume production parts and offers all sorts of traditional and additive manufacturing services. This week, the company announced that it was introducing detailed measurement and inspection reporting, which will be only the first part of its newly launched in-house Secondary Services across Europe. These services will provide support for the company’s On-Demand manufacturing requirements, and will also help in launching more value-add secondary operations, like assembly and surface treatment, in the future.

“Our customers really value our rapid manufacturing services for low-volume parts and prototypes, but they now want the benefit of On-Demand manufacturing for production parts, which have higher expectations for sampling, measurement and process documentation,” said Stephen Dyson, Protolabs’ Special Operations Manager. “The marked increase from customers across all industries wanting to take advantage of the speed and flexibility of On-Demand manufacturing brings with it a desire to simplify the supply chain. We are offering Secondary Services to reduce the number of process steps that the customer has to manage, saving time and resources.”

Protolabs will hold a webinar for designers and engineers on February 28th as part of its Secondary Services launch.

AMUG Announces Keynote Speakers

L-R: Brian McLean, Brad Keselowski, Todd Grimm

The Additive Manufacturing Users Group (AMUG) recently announced who the keynote speakers will be for its 2019 conference, which will be held in Chicago from March 31st to April 4th. The conference, which will have nearly 200 presentations, workshops and hands-on training sessions, is designed for both novice and experienced additive manufacturing users, and the three keynote speakers will address the use of additive manufacturing in a variety of different applications. Brian McLean, the director of rapid prototype for LAIKA, will take attendees on a visual journey of how 3D printing has helped to redefine stop-motion animation, while NASCAR driver Brad Keselowski, the owner and founder of Keselowski Advanced Manufacturing (KAM), will share how technology such as 3D printing can help companies win the race. Finally, Todd Grimm, the president of T. A. Grimm & Associates, is returning to the conference as a keynote speaker again.

“We are extremely excited about our 2019 AMUG Conference keynote speakers,” said Gary Rabinovitz, the AMUG chairman and chair of its program committee. “They will provide a snapshot of the most transformative ideas shaping the AM industry today.”

2019 Altair Enlighten Award Submissions

Michigan-based technology company Altair, together with the Center for Automotive Research (CAR), are now taking submissions from around the world for the 2019 Enlighten Award, which is the only award from the automotive industry for dedicated lightweighting. The award will be presented in the categories of Full Vehicle, Module, Enabling Technology and The Future of Lightweighting, and winners will be recognized during the CAR Management Briefing Seminars (MBS), along with getting the chance to ring the Nasdaq stock market opening bell in New York. Suppliers and manufacturers can learn more about the criteria and submit an entry for the awards here.

“We are pleased to continue our collaboration with Altair because of their global leadership in solutions that produce the optimal balance between weight, performance and cost. This award helps drive innovation in lightweighting, which is critical to the success of e-mobility solutions,” said Carla Bailo, the President and CEO of CAR. “We can’t wait to see the key contributions the 2019 nominations will bring in new approaches to automotive engineering and design, contributing to further reductions in weight, fuel consumption, and emissions.”

Stratasys Announces AdvancedFDM Software for GrabCAD

At this week’s SOLIDWORKS World 2019 in Dallas, Stratasys introduced a new feature for its GrabCAD Print software that will remove more complexity from the design-to-3D print process. Advanced FDM will use intuitive model interaction to deliver lightweight yet strong and purpose-built parts to ensure design intent, and is available now via download with GrabCAD Print from versions 1.24 on up. The software feature will help users avoid long, frustrating CAD to STL conversions, so they can work in high fidelity and ramp up parts production, and it also features CAD-native build controls, so no one needs to manually generate complex toolpaths. Advanced FDM can automatically control build attributes, as well as calculate 3D print toolpaths, in order to streamline the process.

“For design and manufacturing engineers, one of the most frustrating processes is ‘dumbing down’ a CAD file to STL format – only to require subsequent re-injection of design intent into the STL printing process. This software is engineered to do away with this complexity, letting designers reduce iterations and design cycles – getting to a high-quality, realistic prototype and final part faster than ever before,” said Mark Walker, Lead Software Product Manager at Stratasys.

America Makes Ultem 9085 FDM Properties in Database

America Makes has announced that its gold-level member, Rapid Prototype + Manufacturing LLC. (rp+m), has created and delivered a complete, qualified database of material properties for the FDM 3D printing of high-performance ULTEM 9085 thermoplastic resin. This comprehensive database, which features processing parameters and both mechanical physical properties, was released to America Makes, and the rest of its membership community, in order to ensure the widespread use of the Type I certified material for 3D printed interior aircraft components. The database is available to the community through the America Makes Digital Storefront.

“The qualification of the ULTEM 9085 material and the establishment of the material properties database by the rp+m-led team are huge steps forward for AM, particularly within the aerospace and defense industries. On behalf of all of us at America Makes, I want to commend rp+m and its team for enabling the broad dissemination of the collective knowledge of ULTEM 9085 for the innovation of future part design,” said Rob Gorham, the Executive Director of America Makes. “The ability to use AM to produce parts with repeatable characteristics and consistent quality for certifiable manufacturing is a key factor to the increased adoption of AM within the multi-billion dollar aircraft interior parts segment.”

3D MicroPrint Identifying Ultra-Fine 3D Printing Powders

Additive Manufacturing Powder Samples

Germany company 3D MicroPrint uses 3D printing to produce complex metal parts on the micro-scale with its Micro Laser Sintering (MLS) technology, and announced that it is using the FT4 Powder Rheometer from UK-based Freeman Technology, which has over 15 years of experience in powder characterization and flow, in order to push the technology to its limits by identifying ultra-fine metal powders that will process efficiently. The system can differentiate raw powder materials, less than five microns in size, with the kinds of superior flow characteristics that are needed to produce accurate components using 3D MicroPrint’s Micro Laser Sintering (MLS) technology.

“With MLS we are essentially pushing standard AM towards its performance limits. To achieve precise control at the micro scale we spread powders in layers just a few microns thick before selectively fusing areas of the powder bed with a highly focused laser beam. The ultra-fine powders required typically behave quite differently to powders of > 25µm particle size,” explained Joachim Goebner, the CEO at 3D MicroPrint. “We therefore rely on the FT4 Powder Rheometer to identify materials which will perform effectively with our machines, with specified process parameters. Before we had the instrument selecting a suitable powder was essentially a matter of trial and error, a far less efficient approach.”

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Fuel Ventures invests £500,000 in Manufacturing Source on-demand production

Manufacturing Source, a London-based on-demand manufacturing company, has received a £500,000 investment to develop a software supporting its 3D printing, CNC maching, injection molding and sheet metal services. Funding was provided by early stage venture capital specialist Fuel Ventures, also based in London. Will Hoyer Millar, co-founder of Manufacturing Source, comments, “Our aim is to be […]