Bridgeport Research Duo Create and Analyze 3D Printed Frame for Quadrotor Drone

Quadrotor frame assembly in exploded view.

Unmanned Aerial Vehicles (UAVs), also known as drones, are agile and resilient enough to be piloted, and monitored, from remote distances. With four flying dimensions and six degrees of freedom for pitch, roll, space, and yaw, drones can be used for a wide variety of applications, such as farming, documenting 3D information about historic archaeological sites, photographymilitary and defense, acting as first responders during natural disasters and rescue operations, and 3D printing.

Multirotor drones have multiple fixed wings and have a high level of maneuverability, and are classified further based on factors like position, orientation, and number of rotors. A pair of researchers from the University of Bridgeport recently published a paper, titled “Design and Analysis of 3D Printed Quadrotor Frame,” detailing their work using 3D printing to create the frame for a quadrotor drone.

3D printed drone assembly bottom view

The abstract reads, “This research emphasizes more on 3D printing a quadrotor with ‘X’ shaped frame. We built a CAD model of drone frame using SOLIDWORKS, following that; we performed three types of finite analysis 1. Static structural, 2. Impact analysis, and 3. Modal analysis. The drone frame is simulated and analysed under various boundary conditions such as lift, drag, and thrust till the optimized results of minimum displacement, a factor of safety is achieved. We printed the frame of drone on PRUSA I3 Mk3 3D printer by using ABS-PC and carbon fiberglass materials as the filament.”

The researchers designed a CAD model of their X-framed drone in SOLIDWORKS using multiple constraints, including:

  • length of the propeller, which determines the length of an arm
  • motor rotor diameter and electronic speed controller width, which contribute to determining a drone’s arm width

Highlighted surface area is the fuselage

They designed the arms of the drone to translate force away from the fuselage, which helps electronic components maintain minimal damage if the drone has an accident or fails. The fuselage of a drone is “the eye” of its electronic components, like the receiver, power distribution board, and flight controller, and the duo designed a housing to protect the fuselage’s components in the event of a crash.

The dimensions of their drone frame, which was 3D printed on a PRUSA I3 Mk3 3D printer out of carbon fiberglass and ABS-PC, are 175.14 x 171.42 x 48.75 x 226 mm.

The researchers explained, “To perform FE analysis, the forces acting on a frame are determined, which are 1.The Weight of the frame and all the electronic components on it normal to the ground, 2. Lift force direction is a resultant between thrust and vertical take-off, towards the direction of motion, 3. Thrust generated by the propeller and motor towards the direction of motion and 4. Drag force acting in opposite direction of motion.”

Strain deformation

The researchers manually calculated and applied the forces acting on the 3D printed frame during simulation, which resulted in three plots: Von Mises stress, displacement, and strain deformation. They were able to run a sequences of cycles in SOLIDWORKS where the drone crash-landed, and gained simulation results by compiling all of the collected data. Additionally, they also completed a static structural analysis – a phenomenon called plasticity – by considering a non-linear analysis based on the materials used to make the frame and the rate of deformation, and completed a modal analysis of the 3D printed frame in order to measure the dynamic excitation caused by vibrating motors.

“A 3D printed quadrotor frame with safety factor 2.5 is attained and various finite element analysis performed on the frame are distinctly mentioned and plotted in the figures. Further, we can 3D print a 3- axis gimbal and attach it to our quadcopter for aerial photography. Also, we can upgrade them by attaching few thermal imaging sensors and gas sensors to measure radiation and air pollution at certain heights,” the researchers concluded. “This shows the main advantage of the 3D printed quadcopters and makes them stand distinct to the market-ready drones. We can customize them to make them work in any environment just by changing the printing filaments.”

3D printed drone assembly isometric view.

Co-authors of the paper are Sai Mallikarjun Parandha and Zheng Li.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

Prusa releases upgrades for Original Prusa i3 MK3 and SL1

Prusa Research, an award-winning Czech 3D printer and filament maker, has announced the latest updates to its hardware and software. Writing for the official Prusa 3D printers community, Josef Prusa, the founder of Prusa Research, said, “Some time ago we did a big survey about our products and it was immensely helpful. I want to […]

3D Printing Industry Review of the Year January 2018

And it’s a Happy New Year! In January 2018 the 3D printing industry got off to a flying start. To learn more about what to expect from the next 12 months, we gathered the insights of over 30 additive manufacturing experts, including insights from CES 2018, and a look back to the patents granted in […]

3D Printing News Briefs: October 13, 2018

We’ve got business and education news galore in today’s 3D Printing News Briefs. First, Voodoo Manufacturing has launched its new Shopify app, and BeAM Machines is partnering with Empa, while Sculpteo is working with a property developer to provide 3D printed apartment models. VSHAPER has signed an agreement with educational publisher Grupa MAC, and the United Arab Emirates is introducing 3D printing into over 200 of its primary schools. The US Navy will be testing the first 3D printed ship component, and Lufthansa Technik has established a new Additive Manufacturing Center. Finally, maker Thomas Sanladerer shared on YouTube about his recent visit to the Prusa headquarters.

Voodoo Manufacturing Launches Shopify App

This spring, high-volume 3D printing factory Voodoo Manufacturing began its full-stack manufacturing and fulfillment service for 3D printing entrepreneurs, which allows users to outsource work like quality control and assembly for their products through its easy shopfront integrations with online marketplaces like Shopify. Now, the company has launched its own Shopify app, which will allow online sellers to create and customize 3D printed products and sell them on their own Shopify stores. Once the app is installed, users can make their first product in less than 5 minutes, which is then automatically added to their store, ready for purchase.

“We wanted to make it ridiculously easy for ecommerce stores to diversify their product offering with 3D printed products. By applying 3D printing to the print-on-demand business model, we are opening up an infinite range of product categories for Shopify merchants,” said Max Friefeld, the Founder and CEO of Voodoo Manufacturing. “The Voodoo app provides a new source of high quality, customizable, on-demand products, that don’t require any 3D design experience.”

Before the official launch this week, Voodoo piloted the service with a group of beta users, including It’s The Island Life by graphic designer and Guam native Lucy Hutcheson. She is already successfully selling six different products made with the help of the new Voodoo app.

BeAM Machines Partnering with Empa

BeAM, recently acquired by AddUp, has signed a research and development agreement with Empa, the Swiss Federal Laboratories for Materials Science and Technology. Together, the two will develop novel applications for BeAM’s powder-based Directed Energy Deposition (DED) technology, which uses focused thermal energy to fuse materials by melting them while they’re deposited. This makes parts manufacturing much faster. The partnership has come on the heels of Empa’s acquisition of a BeAM DED 3D printer, which is located at its Laboratory for Advanced Materials Processing in Thun and is used to integrate and test out innovative components.

Patrik Hoffmann, who leads the laboratory, said, “We are very excited to collaborate with BeAM’s engineers to push the boundaries of this innovative additive manufacturing technology and to develop a whole new range of applications for Swiss industries and beyond.”

Sculpteo 3D Printing Apartment Models

Together with Sculpteo, French property developer Valoptim is working to improve customer experience by providing clients with miniaturized 3D printed models of their future apartments when they sign their contracts, so they can better visualize and prepare for moving into their new home. These small, exact replicas give new owners an immersive experience, which is a definite value add. In addition, production of the 3D printed models is local, and can be done fast.

“Sculpteo uses the best machines and 3D printing processes on the market today. At first, we had the ambition to test the feasibility of 3D printing in the real estate sector. This innovative process has proven to be extremely interesting: the realistic rendering, with high-end finishes, allowed our clients to discover a miniaturized version of their future apartment enabling them to realistically imagine themselves living in it,” said Edouard Pellerin, CEO of Valoptim. “This innovation contributes to our business dynamic: constantly improving the customer experience.”

VSHAPER and Grupa Mac Sign Agreement

Polish 3D printer manufacturer Verashape has signed an agreement with Grupa MAC, the country’s top educational publisher, in front of Poland’s education curators at the recent Future of Education Congress. Per the agreement, Grupa MAC will use a network of educational consultants to distribute the VSHAPER GO 3D printers to kindergartens and other schools in the country. Grupa MAC recognizes that 3D printers are a good way to quickly present the effects of students’ learning, and the VSHAPER GO is the perfect choice, as it is easy to use and comes with an intuitive interface of SOFTSHAPER software.

“Classes with students are a perfect environment for the use of 3D Printing. Creating a pyramid model for history lessons, the structure of a flower or a human body for biology lessons are just a few examples, and their list is limited only by the imagination of students and teachers,” said Patryk Tomczyk, a member of the Grupa MAC Management Board. “We are happy that thanks to our cooperation with VERASHAPE, 3D Printers have a chance to reach schools through our network of educational consultants.”

3D Printing to be Introduced in UAE Primary Schools

Speaking of 3D printing in education, the Ministry of Education (MoE) for the UAE has announced that in early 2019, a country-wide introduction of 3D printing into over 200 primary schools will commence. As part of this new technology roll out, Dubai education consultancy company Ibtikar is partnering with Makers Empire, an Australian education technology company, to deliver a program that implements 3D printing and design. Makers Empire will supply 3D software, curriculum, teacher resources, training, and support to Ibtikar, which will in turn train MoE teachers to deliver the program.

“Through this rollout of 3D technology, our students will learn to reframe needs as actionable statements and to create solutions to real-world problems,” said HE Eng. Abdul Rahman of the United Arab Emirates Ministry of Education. “In doing so, our students will develop an important growth mindset, the skills they need to make their world better and the essential ability to persist when encountering setbacks.”

US Navy Approves Test of First 3D Printed Shipboard Part

USS Harry S. Truman

The US military has long explored the use of 3D printing to lower costs and increase the availability of spare parts. Huntington Ingalls Industries, the largest military shipbuilder in the US, has also been piloting new technologies, like 3D printing, as part of its digital transformation. In collaboration with the US Navy, the company’s Newport News Shipbuilding division has worked to speed the adoption of 3D printed metal components for nuclear-powered warships. This has led to an exciting announcement by the Naval Sea Systems Command (NAVSEA): a metal drain strainer orifice (DSO) prototype has officially been approved as the first 3D printed metal part to be installed on a US Navy ship. The assembly is a component for the steam system, which allows for drainage and removal of water from a steam line while in use. The 3D printed DSO prototype will be installed on the USS Harry S. Truman in 2019 for evaluation and tests. After one year, the assembly will be removed for inspection and analysis.

“This install marks a significant advancement in the Navy’s ability to make parts on demand and combine NAVSEA’s strategic goal of on-time delivery of ships and submarines while maintaining a culture of affordability. By targeting CVN 75 [USS Harry S. Truman], this allows us to get test results faster, so-if successful-we can identify additional uses of additive manufacturing for the fleet,” said Rear Adm. Lorin Selby, NAVSEA Chief Engineer and Deputy Commander for Ship Design, Integration, and Naval Engineering.

Lufthansa Technik Opens New Additive Manufacturing Center

Lufthansa Technik, a leading provider of maintenance, repair and overhaul (MRO) for civil aircraft, has established a new Additive Manufacturing Center. The goal of the new AM Center is to bundle and expand the company’s experience and competence with the technology, which can be used to make individual parts more quickly and with more design freedom. As the world of aircraft is always aware of weight, making more lightweight parts is an excellent benefit of 3D printing.

“The new AM Center will serve as a collaborative hub where the experience and skills that Lufthansa Technik has gained in additive manufacturing can be bundled and further expanded,” said Dr. Aenne Koester, the head of the new AM Center. “The aim is to increase the degree of maturity of the technologies and to develop products that are suitable for production.”

Tom’s 3D Visits Prusa Headquarters 

Maker Thomas Sanladerer, who runs his own YouTube channel, recently had the chance to tour the Prusa Research headquarters in Prague. Not only did he get the opportunity to see how the company makes its popular MK3 and and MK2.5, but Sanladerer was also able to see early models of the company’s recently announced SL1 resin 3D printer, as well as the Prusament filament production line.

“I always find factory tours like this super interesting because it’s the only chance you really get of seeing behind the scenes of what might really just be a website, or you know, a marketing video or whatever,” Sanladerer said in his video.

Sanladerer took the tour of the Prusa factory right after Maker Faire Prague, which the company itself organized and sponsored. To see behind the scenes of Prusa for yourself, check out the rest of the video below:

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

3D Print with Five Materials with New Prusa Upgrade, Plus More New Features

One of the reasons that Prusa has so many fans is that it is constantly working to improve and update its products. One especially popular upgrade in the past couple of years was the multi-material upgrade for the Prusa i3 MK2 3D printer. According to a customer survey, more than 73% of respondents would recommend the multi-material upgrade to friends or relatives, but as Prusa founder Josef Prusa says in a blog, the company wanted to improve the feature further and so redesigned the unit completely, making it simpler and more efficient. They also added an automated filament-cutting blade and physical buttons for manual controls.

The new hardware also features a direct drive, a single extruder motor, and print recovery – and it can print with five materials, instead of four.

“What we have here is a one-of-a-kind multi-material printing addon that is fully integrated with the printer, so everything is perfectly synchronized and the whole thing works seamlessly as a single unit,” Prusa says. “It’s just like printing on the standard MK3 – slice the model, export the G-Code, put it on an SD card and you can start printing right away without any hassle.”

The Multi-Material Upgrade 2.0 can be ordered for $299, with shipping anticipated in November.

New firmware 3.4.0 for the Original Prusa i3 MK3 and MK2.5 has also been released. One of the biggest new features for the MK3 is a filament sensor, allowing for auto-loading, stuck filament detection or pausing the print when material runs out.

“Now, the part of the software responsible for analyzing the filament flow has been completely rewritten to improve the precision and reliability of the sensor,” Prusa says. “It means that the sensor can recognize filament runout with greater accuracy and the number of false detections drops significantly. In the past, MK3 and MK2.5 printers shared the same values for the evaluation process, which sometimes led to incorrect results. Firmware 3.4.0 fixes this issue.”

Another improved feature for the MK3 is more reliable power panic/blackout protection. In addition, users can now choose from four beeper options: loud, for failure and user input notifications; once, which is the same as loud but beeps are played only once; silent, which is only error notifications, and mute, which is completely silent, no matter how serious the error is.

“To decrease the load on the printer’s CPU, we have introduced further optimizations for feedrate and acceleration values,” Prusa adds. “Up until now, the feedrate and acc values were compared to hardcoded limits with every movement throughout the entire print. In the new firmware, the checks for G-codes M201 and M203 are performed only at the beginning of the print. If the input values are smaller than hardcoded values, no action is triggered. In case the values from G-code are greater, the firmware replaces them with the default (hardcoded) ones.”

M-84 G-code is also available. The code can write or read a pin on the mainboard, which can be used to trigger a camera’s shutter so that users can create timelapses of their prints.

Several minor tweaks and bug fixes have been made to the new firmware as well, and you can read about it in more detail here.

Prusa will be in attendance at World Maker Faire, which is taking place in New York on September 22nd and 23rd.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Images: Prusa]