Additive Flow Goes Adds Additive Awareness to Generative Design

A new startup has emerged from stealth mode promising a software capable of aiding designers in enhancing their parts for additive manufacturing (AM) in ways that go beyond generative design and topology optimization. Additive Flow’s newly announced FormFlow software is meant to allow engineers to quickly modify their models for AM in ways that maximize their performance characteristics along a variety of criteria.

Founded in 2017 Alexander Pluke and Charles Fried, Additive Flow is made up of a team of artificial intelligence and architecture specialists. Its FormFlow software is meant to aid in the parametric design of parts for AM by allowing users to define multiple parameters to optimize a printed object in terms of geometry, process and material.

For instance, users can simultaneously simulate a model demonstrating physical properties equal in all directions (isotropic), as well as with physical properties maximized in the vertical and horizontal directions (orthotropic). This will then inform the direction in which a part is printed, sideways or standing upright.

The model can also be simulated as made from different materials. Other details the software can generate include productivity, cost, and performance outcomes based on design and process recommendations. As Additive Flow describes it, FormFlow “puts the right material, with the right properties, in the right place.”

A comparison of design optimizations depending on print orientation.

In the design of a bridge with Royal HaskoningDHV and DSM, Additive Flow generated designs that were isotropic and orthotropic, printed upright and sideways. The resulting design was seven times lighter than a solid object, with the orthotropic solvers improving performance by 20 percent compared to an isotropic model. Additive Flow also worked with Royal HaskoningDHV to establish a repeatable workflow for performing model optimization in a shorter period of time.

By including all of this information, FormFlow seems to go beyond typical generative design tools. Typical generative design software generates a number of design options based on such characteristics as weight and the ability to carry a certain load. However, these tools may not account for the anisotropic properties of 3D printing, in which the vertical axis is weaker than other axes. In turn, depending on the software, the printed geometries may not perform as simulated. Additive Flow describes the solvers within its software, however, as “additive aware.”

Multiple materials compared within a part.

Designing for additive is no easy task. Of course, this is coming from someone with absolutely no CAD experience, beyond some free and open source tools. However, even professional engineers don’t necessarily know what it takes to make a design right for 3D printing. In part, this is because manufacturing engineers have long been taught to ready their ideas for traditional production technologies.

This means keeping in mind certain constraints, such as limiting complexity in order to reduce the cost of molds and minimizing defects or integrating the gate location in injection molded products. In many ways, engineers have to unlearn a lot of design features they take for granted with traditionally made parts and replace them with a whole new set of design features.

While FormFlow doesn’t seem to address everything that someone would need to know in order to begin applying AM to their product design practice, it may make achieving high-performance, 3D printable designs easier. For instance, Evonik’s new software is able to determine if a host of parts would make good candidates for 3D printing in the first place. It would also be helpful to have a software that can automatically turn a multi-unit assembly into a single printable object. However, once those design decisions are made, FormFlow could further optimize their geometry for the best performance in the best material.

FormFlow certainly seems to have some benefits over existing generative design software, such as Netfabb from Autodesk and Siemens NX, which do not provide as much information as FormFlow seems to at the moment. However, those CAD developers are much, much, much larger, so there’s no telling when Netfabb or Siemens’ Frustum kernel will be able to offer the same capabilities. Who knows, maybe we’ll even see Additive Flow snatched up by some CAD giant in the coming years or even months.

At the moment, Additive Flow is taking FormFlow to market on a project consultancy basis, with the software customized depending on the customer’s needs. The company plans to deliver a license model for its software later this year.

The post Additive Flow Goes Adds Additive Awareness to Generative Design appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Coding for 3D Part 4: Rhino, Grasshopper and Weaverbird Setup

Rhino

After doing research on how we are going to attack this series with our toolbox of resources, we are setting up our environment for exploration. Setting up the build environment is simple enough, but it is vital. Even with our build environment, there are specific subtle things we need to do for our purposes of creation. We will go through some of these items in this article while highlighting some other integral parts.

Firstly we need to download Rhino for our modeling purposes. To do so check out this link for a free 90 day trial version of Rhino. After going through the download instructions, we can now use Rhino. When I first opened Rhino, frankly I was intimidated. I have used various 3D modeling environments and software, but Rhino’s interface is a lot to handle. No disrespect to Rhino as a package as it is great, but it seems to have a steep learning curve. It has various plugins and tools ready for your disposal. Something important to remember is that having various tools is often not the best route when building anything. This is a methodology I take in terms of technical project building as well as physical product manufacturing. My goal with Rhino is to build parametric designs through coding, so I have a precise route to learning. This allows me to get to the meat of what I want to do quickly. I would not benefit from a large overview of Rhino at this point. A lot of what Rhino has tool wise does look intriguing, but we will stay focused when using it. Otherwise our curiosity may let us stray from our path to getting things done.

Download Window for Rhinoceros

The biggest advantage of Rhino is the number of plugins available for it. These plugins are the essence of utility. We will focus on two plugins for Rhino in this series. The first plugin of interest to use is Grasshopper. Grasshopper is an algorithmic modeling plugin for Rhino. It uses a visual programming language vs. a typical text-based coding language. It also gives you the ability to reference geometrical objects from Rhino. The ability to create intriguing geometry quickly and with comparative ease is the main benefit of Grasshopper.

Grasshopper Build Environment

The second plugin of choice for us is Weaverbird. Weaverbird is a topology based modeler. It gives a designer the ability to make known subdivisions and transformation operators. This plugin allows us to automate subdivisions and reconstructing of shapes. It is a great plugin due to its ability to help in fabrication as well as rapid prototyping of ideas.

Weaverbird

Something I appreciate from Rhino is how extensive the program is from just looking at it briefly. Various software packages I have used are expansive, but Rhino seems to take things to a different level. The mind of an architect is very expansive, so their tool of choice needs to have various tools within its utility belt. I am excited to somewhat learn the mindset of an “architect” through operating in this program.

For the next installment of this series, we will try to make a simple 2D parametric design that can be extruded into 3D form. I realize the importance of 2D drawing and going to the 3D level as it makes product creation much easier. It flows better and it makes the ability to iterate more intuitive. So look out for that in our next article.

The post Coding for 3D Part 4: Rhino, Grasshopper and Weaverbird Setup appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

NOWLab Creates Smart Concrete Through 3D Printing

If you’ve ever been told you are as a dumb as a brick, you know (unless the accusation is true) that building materials aren’t renowned for their intelligence. However, while intelligence may be out of reach, it is true that they are increasingly becoming ‘smart‘, meaning they offer the capacity to interact with their users. That interaction goes beyond a simple on/off switching mechanism to include a connection to a network that allows for remote sharing and interaction. Today, there are a wide variety of things that we have come to rely upon for their smart enabled capabilities.

Beyond smartphones, the current gold standard in communications, there are smart home security systems and smart lighting systems that have introduced the idea of networked technology as an integral part of design and architecture. One company that has beenleading the way in this area is the German company BigRep, producers of the large-scale BigRep ONE 3D printer. Their innovation department, NOWLab, has been working on creating smart concrete with an adaptive surface enabled by embedded capacitive sensors. This translates to concrete with capabilities that are activated by the touch of a hand.

In the case of NOWLab’s efforts, this comes in the form of a wall panel with integrated lights that can be controlled by touching the surface of the concrete at any point. Concrete was one of the greatest innovations in the history of architecture; however, because of its ease of use, it has resulted in some of the least thoughtful building that has ever been undertaken. Its reputation has been tarnished by years of mindless application; a sort of dump and dash philosophy of building. The argument being made by the team at NOWLab is that through the utilization of advanced technologies such as 3D printing the forming of concrete can once again become a point of pride for the master builder, and the integration of sensorial capabilities can elevate the material beyond mere presence in a space to an active element in the formation of spatial experience.

The particular wall section they have created was designed using Arabic tiling logic put through a parametric design process, used to guide the tiles as they shift from closed on the bottom toward open on the top of the panel. Once the 3D model had been perfected, the concrete molds were then printed on the BigRep ONE, a machine capable of producing at an architectural scale. Within the openings, LED lights were placed, and a touch of the hand on the surface of the concrete is used to turn them on and off. The panel, reminiscent of Gaudi’s Sagrada Família, particularly the later portions, promise to show the way towards a reimagining of the possibilities for form once 3D printed molds are utilized.

What do you think of this news? Let us know your thoughts; join the discussion of this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source/Images: Designboom]