Logitech and Realize Medical Partner to Enhance Medical VR

Canadian medical virtual reality (VR) startup Realize Medical has announced a collaboration with Logitech, a renowned Swiss-based manufacturer of computer accessories and software. The partnership is designed to enhance Realize Medical’s Elucis, the world’s first platform for building patient-specific 3D medical models entirely in VR, by integrating Logitech’s enterprise-focused VR Stylus, enabling users to draw medical models precisely and directly in the program.

Through this new joint effort, Realize Medical will take the Elucis platform’s medical image viewing, modeling, and communication capabilities to the next level by combining novel 3D visualizations with the familiar and intuitive input of a hand-held stylus on a writing surface. Based entirely on VR, Elucis lets users turn medical images into 3D medical models with ease for 3D printing and other advanced visualization applications. While Logitech’s VR Ink Pilot Edition stylus, released last December, offers a more natural and precise input modality for a handful of art and design-focused VR tools. Together, the software and the pen will open new capabilities and improve usability.

“We are constantly on the lookout for innovative ways to improve our Elucis platform, and this partnership with Logitech does just that,” said Justin Sutherland, CEO and co-founder of Realize Medical. “Giving users the ability to draw seamlessly within our program will greatly improve the user experience, bringing us closer to meeting our mission of providing healthcare professionals with the 3D modeling tools they need to improve patient care and education.”

It takes a long time to make 3D anatomical models on 2D platforms, which is why Sutherland and Dan La Russa, Realize co-founders and medical physicists at the Ottawa Hospital, in Canada, began looking for a way to make the whole process easier. In 2017. they began working on creating a VR platform to help clinical physicians make 3D models faster, and in January of 2019, they took their work to the next level by creating a medical VR startup as a spin-out company out of the Ottawa Hospital.

Combining Logitech’s VR Ink Pilot Edition stylus with Realize Medical’s Elucis software to create 3D models (Image courtesy of Realize Medical)

Two-dimensional imaging, such as computerized tomography (CT) scans or magnetic resonance imaging (MRI), has been around since 1972. Although the resolution of the images has improved, it remains relatively the same technology with physicians still using the “slices” shown on 2D images for educational purposes and diagnosing patients. But even though medical imaging data represents 3D structures and can be turned into tangible physical 3D models, Realize Medical believes that many clinical settings and private companies are still relying on 2D tools to create 3D models, which is time-consuming and tedious. Instead, Elucis is expected to provide surgeons and healthcare professionals with a radically new way to create 3D medical content, much quicker and accurately.

The patent-pending input method lets users draw, measure, and annotate directly on any given view of an image, allowing for the creation to “materialize” in front of the user, offering the ability to work on it, hands-on. Thanks to intuitive hand motions and true 3D visual cues Realize Medical developed an image navigation tool that unlocks medical images and can even construct and edit 3D structures from 2D contours. 

Realize Medical’s Elucis software will help the healthcare field create 3D models (Image courtesy of Realize Medical)

This new collaboration is the latest in a breakthrough trend of VR and 3D medical modeling aiming to change the future of healthcare. According to the startup, virtual reality can play a variety of important roles in healthcare and medicine, and the Elucis platform, in particular, can act as a clinician’s education and training tool, help with patient-specific planning, have the potential to guide treatment decisions, and much more. The company founders consider that shortly conventional monitor displays will be replaced by modern mixed reality tools like VR, augmented reality (AR), and medical 3D printing. To that end, the partnership continues to upgrade the technological platform offering user-friendly tools to healthcare experts. 

Innovation in healthcare through 3D printing has led to the development of new applications. With hospitals and clinical settings looking to incorporate new ways to create medical models and devices in-house, the demand for technologies that can change the status quo continues to grow. In the last years, we have seen many healthcare institutions working together with researchers, startups, and companies to create bespoke clinical products, from surgical guides to patient-specific implants and 3D printed anatomical models, that can improve patient experience and surgical planning, as well as reduce operating time and costs. The role of mixed VR and 3D printing technologies is shaping up to be a staple for modern healthcare applications, as key development to advance the medical field.

The post Logitech and Realize Medical Partner to Enhance Medical VR appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Copper3D Antimicrobial Filament Device Attempts To Reduce HIV Transmission From Breastfeeding

3D printing startup Copper3D, based in Chile and the US, uses nano-copper additives, and adds antimicrobial properties to polymers like PLA and TPU to create antibacterial 3D printed objects. Last year, Copper3D partnered with NASA to study microbial risks in outer space, but now the startup is working on an important project that’s a little closer to home.

According to UNICEF, the number of children and adolescents living with HIV in 2017 reached 3 million, with 430,000 newly infected people and 130,000 deaths from AIDS-related causes. UNAIDS reports that in 2018, 26,000 new HIV infections among children up to the age of 14 resulted from withdrawal of treatment during pregnancy, and breastfeeding. But even with this knowledge, the World Health Organization reports that 37.9 million people around the world were living with HIV at the end of 2018, 8.1 million of which didn’t even know they had the disease to begin with.

Companies and scientists around the globe are working to use technology to help control dangerous bacteria and viruses with high replication rates, like HIV. Copper3D has created a 3D printed device, with its copper nanotechnology, that can effectively inactivate the HIV virus under the right conditions on certain objects- a project that the startup’s Director of Innovation Daniel Martínez tells us is “the result of more than one year of research in antimicrobial polymers and the role on inactivating high replication rate viruses like HIV.”

Dr. Claudia Soto, Copper3D’s Medical Director, said, “Understanding the global problem behind the HIV statistics and analyzing the role that our antimicrobial materials could have in containing the transmission of HIV virus led us think that we could develop some kind of device that acts like an interface between mother and child to prevent the spread of this virus through breastfeeding, which is one of the main routes of infection.

“The initial idea is based on some of the few available studies that establish that copper based additives and filters can inactivate HIV virus in a solution of breastmilk, acting specifically against the protease (essential for viral replication) where copper ions non-specifically degrade the virus phospholipidic plasmatic membrane and denaturalize its nucleic acids; nevertheless, several issues such as toxicity levels, milk nutritional degradation, time for virus inactivation, or the optimal size/form of these filters remain unsolved.”

3D concept of the Viral Inactivator (patent pending)

Copper3D, led by co-founders Martínez, Dr. Soto, and CEO Andrés Acuña, began work on a project with, as the startup stated in a release sent to 3DPrint.com, “two lines of research.” Last year, they submitted a patent application for the project, called Viral Inactivation System for a Breastmilk Shield to Prevent Mother-to-Child Transmission of HIV. First, the viral inactivation effectiveness of its PLACTIVE material was tested with samples of HIV-infected breast milk, and then the team designed an object that optimizes the “viral inactivation of HIV” in the milk, acting as a mother-to-child interface during breastfeeding.

“Our purpose as a company has always been related to make a global impact through innovation in materials and nanotechnology. This line of research of active/antimicrobial medical devices and applications that opens with these studies, fills us with pride as a company. We believe that we are marking a before and after in the industry and we take this honor with a great sense of responsibility,” stated Acuña. “We will continue on the path of applied innovation, always thinking of playing an important role in the most urgent global healthcare challenges, where our antimicrobial materials, intelligent 3D designs, rigorous processes of technical validations and laboratory certifications, can generate a new category of antimicrobial/active devices that can avoid infections at a global scale and save millions of lives.”

Virology Laboratory at Hospital Clínico Universidad de Chile

The startup commissioned a proof-of-concept laboratory study at the Hospital Clínico Universidad de Chile’s Virology Laboratory to validate PLACTIVE’s potential HIV viral inactivation capacity. The study used a split-sample protocol to test and treat 20 sub-samples of HIV-1 (subtype B, cultivated from infectious clone NL4-3, with CXCR4 co- receptor).

The sub-samples were randomized into different groups: A, B, and Control. Samples for A and B were placed in either a green or blue 3D printed box, with and without the nano-copper additive; for a proper blind study, the researchers did not know which was which. The samples were exposed to the medical device for 15, 60, 120, and 900 seconds, and then cultured with HIV-1 Jukat reporter cells LTR-luciferase Cells (1G5); Copper3D performed culture measures on the samples 24, 48, 72, and 96 hours post-treatment.

“The preliminary results showed a reduction of viral replication up to of 58.6% by simply exposition of the samples to the 3D printed boxes containing copper nanoparticles. Fifteen (15) seconds of exposition were enough to achieve such a reduction. These data allow us to infer that by increasing the contact surface by a factor of 10X, we could obtain much higher inactivation rates, very close to 100% (log3) and according to our calculations, most probably in less than 5 seconds,” explained Martínez. “These results are coherent with the hypothesized reduction times proposed by Borkow, et. al. To the best of our knowledge, this is the first essay aiming to study the inactivation of HIV virus by using this new kind of polymers with antimicrobial copper nanotechnology in 3D printed objects.”

3D model of the Viral Inactivator (patent pending)

These results are pretty promising, which bolstered the team as they moved on to the second part of the study – designing a device, with a surface of contact expanded 10X, for HIV-contaminated milk, that’s embedded in nano-copper for use during breastfeeding.

“Like any innovation project, this is a constantly evolving process. We have learned a lot along the way, and we will continue designing, iterating, testing, validating and learning about antimicrobial materials and devices in the future. The preliminary results obtained in the first phase of our investigation with viral inactivation on active/antimicrobial nanocomposites materials gives us a great drive to continue in that line of research,” said Martínez. “We hope in the coming months to conclude the second phase of this study. For these purposes we develop a new antimicrobial flexible TPU based material (MDflex), with the same nanocopper additive as PLACTIVE, to test with new iterations of the design of this viral inactivation device with expanded surfaces of contact that we believe will be much more effective. These new insights will allow the development of a whole new range of active medical devices and applications, with incredible capabilities to interact with the environment, eliminating dangerous bacteria and viruses and protecting patients and users around the globe. This second and final phase of the study will be concluded in Q2 of 2020.”

Copper3D’s concept for its Viral Inactivator is to study how the antimicrobial capacity of its nano-copper materials impacts HIV inactivation, and how different shapes and designs for the 3D printed device can increase the surface of contact with breast milk, while using the nano-copper to enhance effectiveness. The device was made with various layers and “rugosities” in order to imitate what has been observed in the human gastrointestinal tract.

Collaborators at the University of Nebraska at Omaha’s Department of Biomechanics will perform mechanical characterization testing of Copper3D’s prototype.

“Copper3D has once again disrupted the field of medical devices by creating this revolutionary device that can have a tremendous impact in reducing mother-to-child transmission of HIV,” said Jorge Zuniga PhD, Associate Professor of Biomechanics with the university. “Our laboratory is fortuned to partner with Copper3D, in such an impactful project.”

Concept of applications with the Viral Inactivator

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

The post Copper3D Antimicrobial Filament Device Attempts To Reduce HIV Transmission From Breastfeeding appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Some U.S. Patent Law Basics for 3D Printing

Efforts to patent 3D printing technology are frequently the subject of articles on this website.  Preparing and filing a U.S. utility patent application, while a significant endeavor, is only the beginning of the process of securing U.S. patent rights in an invention.  Filing a U.S. utility patent application with the U.S. Patent and Trademark Office (USPTO) does not guarantee a  U.S. patent.  For example, both the application for the 3D printing gun discussed here and the application for 3D printing mashed potatoes discussed here are waiting to be reviewed by the USPTO so they don’t provide any U.S. patent rights yet.  A U.S. utility patent is “a grant to the patentee…of the right to exclude others from making, using, offering for sale, or selling throughout the United States, or importing the invention into the United States.”  See 35 U.S.C. 154 (2012).  To obtain U.S. utility patent, each patent claim must be novel and not obvious.

Novelty

Generally, the novelty requirement means that a patent applicant can’t get exclusive rights to something already out there.  In a patent application, the claims define the scope of protection the patent applicant is trying to obtain.  According to 35 U.S.C. § 102, a patent application cannot issue as a patent if the claims recite subject matter that was “patented, described in a printed publication, or in public use, on sale or otherwise available to the public” before the filing date of the patent application. Similarly, a patent application cannot issue as a patent if the claims include subject matter described in a published patent application or issued patent filed by another inventor before the filing date of the patent application. 

The patent discussed here, U.S. Patent No. 10,162,339B2 entitled “Automated Manufacturing Using Modular Structures and Real Time Feedback for High Precision Control“ and directed to  high-precision automated manufacturing, included claims that the USPTO  initially rejected as lacking novelty during examination.  For example, the USPTO first asserted that some of the claims lacked novelty over this patent publication, referred to as O’Connell.  In response, the patent applicant argued that the claims were different than what was disclosed in O’Connell. The USPTO agreed with the patent applicant’s argument, but then asserted that some of the claims lacked novelty over another, different patent publication, referred to as Stark.  The patent applicant argued that the claims were different than what was disclosed in Stark, but the UPSTO did not agree.  The patent applicant then amended, that is changed (provided the amendments include subject matter disclosed in the application as filed), the claims to convince the USPTO to allow the claims.  The patent applicant and the USPTO had a telephone interview and tweaked the claims further. The USPTO then allowed the patent application to issue as a patent, giving the patent applicant  U.S. patent rights as defined by the claims that were finally agreed upon.

Non-obviousness

Generally, the non-obviousness requirement means that a patent applicant can’t get exclusive rights to something that is obvious based on what is already in the public domain.  According to 35 U.S.C. §103, a patent application cannot issue as a patent if “the differences between the claimed invention and the prior art are such that the claimed invention as a whole would have been obvious before the effective filing date of the claimed invention to a person having ordinary skill in the art to which the claimed invention pertains.” 

The patent application discussed here, U.S. Patent Application No. 15/847,142 entitled “Methods and Systems for Implementing Distributed Ledger Manufacturing History“ and directed to the use of a distributed ledger system (such as blockchain) to verify and validate 3D printed objects in a supply chain, included claims the USPTO initially rejected for failing to meet the non-obviousness requirement.  Some of the claims were rejected as being obvious over a combination of different patent publications.  For example, the USPTO asserted that most of what was claimed by the first claim of the patent application was disclosed in this patent publication by Milazzo. In addition, the USPTO alleged that the claim features missing from Milazzo could be found in the three other patent publications, and, therefore, it would have been obvious to a person with skill in this technical area to combine the four references to arrive at all of the features of the first claim.  In response to the obviousness rejections, the patent applicant amended the claims and had a telephone interview with the USPTO after which the claims were amended further.  A Notice of Allowance was sent this December, meaning that this patent application will likely issue as a patent soon with the claims as finally agreed upon.

A Process, Not a Promise

A U.S. patent application is an important step toward protecting an invention, and having a U.S. patent application filed provides some perks.  For example, a product covered by a filed U.S. patent application can be marked as  “patent pending.”  Additionally, if a competitor copies a product that they know is covered by a pending U.S. patent application, the competitor can be forced to pay monetary damages if the patent application issues as a patent even for the sales of the copied product made before the patent issued.

That said, as shown above, each U.S. utility patent application goes through a rigorous examination by the USPTO during which the patent application must meet various requirements, such as the novelty and non-obviousness requirements.  Some U.S. utility patent applications are never able to meet these requirements and therefore never issue as patents.  However, many other U.S. utility patent applications do meet the requirements, and the subject matter of some issued U.S. utility patents relating to 3D printing include support platens, printhead modules, brace structures, methods of producing orthopedic implants, and 3D printed shoes and splints, as discussed in articles found here and here.

When thinking about filing a U.S. utility patent application, or simply when reading about U.S. patent applications directed to 3D printing technology, remember that a U.S. patent application is not a U.S. patent. A U.S. patent application is not even the promise of an eventual patent. Instead, a U.S. patent application is the beginning of process, one with various requirements that must be met in order for any U.S. patent rights to be obtained.

DISCLAIMER: The information contained in this article is for informational purposes only and is not legal advice or a substitute for obtaining legal advice from an attorney. Views expressed are those of the author and are not to be attributed to Marshall, Gerstein & Borun LLP or any of its former, present or future clients.

About the author:

Kate Nuehring Su, Patent Attorney, Marshall, Gerstein & Borun LLP.

Kate Nuehring Su counsels clients in all phases of domestic and international patent preparation and prosecution. Ms. Nuehring Su has a background in engineering, including a degree in biomechanical engineering from Stanford University. Her extensive legal and technical knowledge enables her to devise successful strategies for clients across a range of industries.

The post Some U.S. Patent Law Basics for 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: March 23, 2019

We’ve got plenty of business news to share in this week’s 3D Printing News Briefs, but first we’ll start off with something fun – the winners have been announced for this year’s Additive World DfAM Challenge. Moving right along, BeAM is now a Tier 2 member of the ARTC, and PostProcess Technologies has announced improved processing times for SLA resin removal. Protolabs is offering new anodizing services, in addition to teaming up with Wohlers Associates, and Arkema will soon open a new PEKK plant in the US. Continuing with new things, a new AM digital career growth platform just launched, and there’s a new open project call for the European AMable project. Finally, GoPrint3D is the new UK distributor for Mayku and its desktop vacuum casting unit.

Winners Announces for Additive World DfAM Challenge 2019

This week during an awards dinner at the Additive World Conference in Eindhoven, Ultimaker’s Steven van de Staak, Chairman of the 5-member jury for this year’s Additive Industries’ Design for Additive Manufacturing Challenge, announced the two winners and their “inspiring use cases of industrial 3D metal printing.”

Obasogie Okpamen from The Landmark University in Nigeria won first place, and an Ultimaker 2+ 3D printer, in the student category for his Twin Spark Engine Connection Rod. While the connection rod that he redesigned for an Alfa Romeo 75 Twin Spark Turbo engine has not yet been fully tested, he won “because of the example it sets” for distributed localized manufacturing of spare parts with 3D printing. Dutch company K3D took home first place, and an Ultimaker 3, in the professional category for the Dough Cutting Knife it developed for Kaak Group, a leader in the bakery equipment world. The team integrated mechanical parts into the design, which can be 3D printed without any support structures and has improved functionality. The knife sits in a dough extrusion line and due to its light weight less knives and robot arms can do the same amount of cutting. This means that the extrusion line itself is cheaper. Furthermore the knife has been optimized for a cleaner cut with less knife sticking to the dough.

BeAM Joins Advanced Remanufacturing and Technology Centre

Membership agreement signing ceremony held in ARTC

France-based BeAM, which has subsidiaries in the US and Singapore and was acquired by AddUp this summer, is now partnering with the Advanced Remanufacturing and Technology Centre (ARTC) as a Tier 2 member in an effort to expand its research activities in southeast Asia. The center provides a collaborative platform, which will help BeAM as it continues developing its Directed Energy Deposition (DED) technology with companies from the aerospace, consumer goods, marine, and oil & goods sectors.

This summer, BeAM, which also became a member of the Aachen Centre for Additive Manufacturing earlier this month, will install its Modulo 400, featuring a controlled atmosphere system, at ARTC, so other members can safely develop non-reactive and reactive materials. The two will also work to develop process monitoring systems that can expand DED’s range of applications.

PostProcess Technologies Announces New Solution for SLA Resin Removal

A new and improved solution for SLA resin removal by PostProcess Technologies vastly improves process times by 5-10 minutes – quite possibly the fastest on the market. The system can clean up to five times as many parts before detergent saturation when compared to solvent resin removal, and is part of the company’s automated AM post-print offering. The patent-pending solution, which also reduces environmental hazards and preserves fine feature details, was validated with eight different resin materials in several production environments, and uses the company’s proprietary AUTOMAT3D software and SVC (Submersed Vortex Cavitation) technology in the DEMI and CENTI machines.

“PostProcess’ latest innovation of the most advanced SLA resin removal solution in the world reinforces our commitment to providing the AM industry with transformative post- printing solutions enabling the market to scale. SLA is one of the most popular 3D printing technologies in the world. No matter what volume of printing, any SLA user can benefit from the remarkable efficiencies of our solution’s decreased processing time, increased throughput, increased detergent longevity, and improved safety,” said PostProcess Technologies CEO Jeff Mize. “PostProcess has designed the world’s first complete SLA resin removal system, available only from the pioneers in forward-thinking 3D post-printing.”

The new SLA Resin Removal technology will be on display at PostProcess booth P21 at the upcoming AMUG Conference in Chicago. You can also read about it in the company’s new whitepaper.

Protolabs Offering Aluminum Anodizing; Partners with Wohlers Associates

As part of its on-demand production service, digital manufacturer Protolabs is now offering aluminium anodizing in response to demand from customers in need of a single-source solution. Anodizing forms a protective oxide layer by applying a thin, protective coat to the part, which increases abrasion resistance and creates a barrier against corrosion. The company will be offering two levels of this service for Aluminum 6082 and 7075: hard anodizing to ISI 10074 for parts requiring protection from harsh environments, and decorative anodizing to ISO 7599 for parts that need an aesthetic finish. All parts will be sealed, unless they need to be painted post-anodizing.

“Talking to our clients, we realised that if they needed to anodise an aluminium part it was often difficult for them to source and then manage a supplier. They not only have to do all the research and then raise a separate purchase order, but often find that the supplier only accepts large quantities of parts in an order, which isn’t great for low volume runs,” explained Stephen Dyson, Special Operations Manager at Protolabs.

“Keeping the entire production process with a single supplier makes perfect sense for manufacturers. It means they can get their finished parts shipped in a matter of days and our technical team can advise them through the entire process, right from the initial design of the part to the best approach for the final anodising finish.”

In other Protolabs news, the company is partnering up with AM consultants Wohlers Associates to jointly hold an immersive course on DfAM. The class, which is invitation-only, will take place over the course of three days near Raleigh, North Carolina, and will end at Protolabs’ 77,000 sq. ft. 3D printing facility. Olaf Diefel, Associate Consultant at Wohlers Associates, and Principle Consultant and President Terry Wohlers will lead the discussion, in addition to being joined by several Protolabs engineers who are skilled in polymer and metal 3D printing.

“Designing for AM offers unique challenges and opportunities not found in traditional design methods. Protolabs brings tremendous depth of expertise and leadership in 3D printing. We’re thrilled to work together to equip attendees with technical skills and manufacturing knowledge needed to unlock the full potential of additive manufacturing,” said Wohlers.

Arkema Opening New PEKK Plant

Arkema, one of the largest specialty chemical and advanced materials developers, has been busily producing polyetherketoneketone, or PEKK, in France. But this coming Monday, March 24th, it is celebrating its new Kepstan PEKK plant near Mobile, Alabama with a ribbon-cutting ceremony.

The durability and customizable abilities of PEKK make it a good material for a variety of 3D printing purposes. Monday’s event will take place from 10:30 am to 1:30, and will also include VIP comments and lunch. The increased volume of this PEAK material will shake up the high-performance polymer market making PEKK a viable alternative to PEEK and PEI.

New AM Digital Career Growth Platform Launched

A free interactive platform to help AM professionals enhance their skills and fulfill career opportunities is now launching. i-AMdigital, which counts HP as one of its backing partners, is a joint venture between AM industry recruiter Alexander Daniels Global, digital venture company TES Network, and web and UX design company De Wortel van Drie. The platform was created to develop a growing AM talent pool, and uses smart matching and AI to offer customized career advice, courses, training, and job opportunities.

“There just isn’t enough talent out there. At the same time the learning and development landscape for additive manufacturing is very fragmented. This makes it difficult for individuals and organisations alike to access courses that can help them upskill. i-AMdigital solves both problems through our digital career growth platform,” said CEO and Co-Founder Nick Pearce of Alexander Daniels Global.

“It is an essential tool for the AM industry that will allow talent to grow their career and make an impact in additive manufacturing. It will provide organisations access to a growing and educated talent force to address their hiring needs and a marketplace for learning and development that can help them upskill their existing workforce in the latest technologies.”

AMable Launches Second Open Project Call

The AMable project, which receives funding from the European Union Horizon 2020 research and innovation program, has just launched its second project call for proposals and ideas that can be applied to AM. The project is continuing to look for new ways to innovate on services for mid-caps and SMEs in the EU, and chosen teams will receive support from the AMable unit.

AMable is a Factories of the Future (FoF) project participating in I4MS (ICT for Manufacturing SMEs), and is working to increase adoption of AM technologies through the EU. The project will build a digital model that will provide unbiased access to the best AM knowledge in Europe in an effort to support this adoption. For more details on the call, visit the AMable site.

Express Group Appointed New UK Distributor for Mayku

GoPrint3D, a division of Express Group Ltd, has just been named the new UK distributor for London startup Mayku. The startup created a desktop vacuum casting unit called the FormBox, which is a handy partner for your 3D printer. Once you create a 3D printed mold, you can put it inside the compact FormBox, which is powered by any vacuum cleaner and works with many materials like wax and concrete, to cast a series from it – putting the power of making in your own hands.

An architect forming a dome template on the FormBox.

 

“We are thrilled to have partnered with Express Group on our UK and Ireland distribution, building on our existing servicing and repair relationship,” said Alex Smilansky, Mayku Co-Founder and CEO. “When we founded Mayku, our goal was to bring the power of making to as wide an audience as possible. The partnership with Express Group will allow us to deliver a first-class making experience to more people than ever before.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Dutch Designer Creates Limited Edition 3D Printed Fountain Pen with Titanium Nib

[Image: Kaecee Fitzgerald]

When you’re a kid, the writing utensil you use day in and day out is probably chosen more for its fun factor than for anything else. Case in point – when I was in junior high, I had oodles of those colorful gel pens that were so popular in the 90s, along with one or two fluffy pens with feathers on top. However, once I got to high school, teachers were a little less amused at grading homework that had been completed in all colors of the rainbow, so I switched to pens with only blue or black ink; however, someone did gift me a pen that wrote in blue ink but had a smiling pig on top and little extendable arms wearing boxing gloves on the side.

But the older you get, the more you leave the fuzzy, colorful, pig punching pens in the past and start to appreciate pens more for their functionality and quality of ink more than anything else. But, this doesn’t mean that nice pens can’t still be veritable works of art.

TypeONE (Black, Silver Grey, display; dots are carmine red)

3D printing makes it easy to customize daily use products like pens. Rein van der Mast, a Dutch technologist and designer, is capitalizing on the technology, and using it to disrupt the way that fountain pens – the most elegant of all writing utensils, in my opinion – are made.

van der Mast, who was one of the jury members for the Additive Manufacturing Challenge in 2016, just introduced the TypeONE, anfountain pen that happens to be 3D printed. But, the TypeONE pen also has a unique, patent-pending surprise – what the designer is calling the world’s first 3D printed titanium nib on the end.

“The pen is made in a rather traditional way, because even though most tools have become digital, they still have to be guided by human hands,” van der Mast explained. “In addition, the finishing and adjustment of the 3D-printed nib is done manually by craftsmen with great care.”

When it comes to 3D printed fountain pens, van der Mast knows what he’s talking about. He developed his first one back in 2013, and followed up this creation with a 3D printed fountain pen nib in 2016.

The 3D printed TypeONE fountain pen has been brought to the commercial market by 3Dimensions, which is a partnership between van der Mast, owner of renowned fountain pen shop La Couronne du Comte Dennis van de Graaf, and Bart Koster, a pen distributor who owns Promo2000 – the umbrella name for promotional printing gift webshops.

As previously mentioned, the nib of the TypeONE fountain pen is 3D printed in titanium, and has already been confirmed by several fountain pen collectors as being “very pleasant to write with,” according to the 3Dimensions website. van der Mast’s approach to 3D printed nib manufacturing is fairly innovative, as the nib’s raised edges and slit help to evenly distribute the ink every time the pen is used. The 3Dimensions logo on the side of the TypeONE is also 3D printed out of titanium, while the other visible parts of the pen are 3D printed out of strong, durable PA12 plastic material.



The 3D printed TypeONE fountain pen is currently available in two versions – silvery grey and black, both of which have a sparkling effect from the small aluminum particles that fill the PA12 material the pen is 3D printed in. For the more serious fountain pen collectors, you can also purchase a 3D printed display for the TypeONE, which is made up of a non-uniform 3D lattice structure.

In an effort to emphasize what van der Mast refers to as “the small-series-character” of the 3D printing process, 3Dimensions will only be fabricating a small number of each version of the pen – just 99, to be exact. Each limited edition pen will have a unique serial number 3D printed in its barrel, making it a lovely addition to any fountain pen collection.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Japanese Designer 3D Prints an Underwater Breathing Apparatus for a Future Flooded Earth

In 1995, American actor Kevin Costner starred in a movie called Waterworld, and whatever your thoughts on the film, which is widely considered to be something of a flop, the overall concept is an interesting one. In the future, the Earth has been almost completely submerged due to the polar ice caps melting, and people live on boats. The science is a little questionable – the ice caps melting likely wouldn’t cover the entire world in water, and Costner would likely not be afflicted with a mutation that gave him webbed toes and gills.

However, the idea that all of Earth may one day be underwater is not unheard of concept…nor are humans with gills, albeit 3D printed ones. Japanese designer and material scientist Jun Kamei, a graduate of the Royal College of Art (RCA), believes that complications will materialize due to increasing sea levels, and affect the lives of up to three billion people around the world.

Kamei wrote on his website, “By 2100, a temperature rise of 3.2° Celsius is predicted to happen, causing a sea-level rise affecting between 500 million and three billion people, and submerging the mega-cities situated in the coastal areas.”

That’s why Kamei invented Amphibio, a patent-pending, 3D printed underwater breathing device that functions as a gill. The artist hopes that people in the future who are affected by rising oceans can use Amphibio to work with, rather than against, nature in the submerged parts of the world.

The Amphibio device, which functions as a gill, is somewhere between scuba diving and free diving equipment. It could be used to help people remain underwater for longer periods of time than are currently possible with free diving, while also reducing the equipment required for scuba diving.

The idea behind the device, also referred to by Kamei as a garment, was inspired by the way that aquatic insects trap air. These water diving bugs have a thin layer of air on the surface of their super-hydrophobic skin, which is used as a gill that can exchange harmful gases for good ones; this allows the insects to breathe underwater.

In the same respect, Amphibio’s hydrophobic, microporous material will, in theory, allow the wearer to extract oxygen from the surrounding water, while removing carbon dioxide at the same time. Thanks to 3D printing, the unique material filament, which Kamei developed himself, can be shaped into the complex form that makes up the underwater breathing apparatus.

Together with a team from the RCA-IIS Tokyo Design Lab – an international collaborative initiative between the RCA and the University of Tokyo – Kamei returned to his alma mater to build the device, which is made up of the gill assembly and an attached respiratory mask.

Kamei thinks that his 3D printed Amphibio will be “essential” to future generations that will be inhabiting a “flooded world.” The attractive device will be a source of comfort for people who will be forced to spend as much time in the water as out of it.

While Kamei’s working Amphibio prototype doesn’t produce enough oxygen at this stage to sustain a person, his next steps include testing the device to support underwater breathing at human scale where a gill, with at least 32 m2, can support a person’s oxygen consumption while submerged.

While the idea of a flooded world is dystopian in nature, Kamei has a more optimistic idea of a submerged future. He sees people using his 3D printed underwater breathing apparatus to live an amphibious lifestyle, putting the gill on to swim to the town square (lake?) or to take a nighttime dive. Kamei also hopes that, as 3D printing continues to become more available in society, people will easily be able to 3D print garments, like his Amphibio, that are tailored precisely to their own body shapes…making the future a more comfortable place, if not a more wet one.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Source: inhabitat / Images: Jun Kamei]

Father Takes Up 3D Printing, and Founds New Company, to Create Son’s Custom Orthosis

Some of the most heartwarming aspects of the 3D printing industry involve the people who do everything they can to develop and provide affordable 3D printed prosthetics to people who need them the most. Just in time for Father’s Day, Formlabs has shared a beautiful story about a dad who worked tirelessly to help his young son walk on his own…and ended up helping others along the way.

Cerebral palsy (CP) causes more than 17 million people around the world to have limited control of their own bodies. Seven years ago, Nik, the son of Matej and Mateja Vlašič, was born one month early, and due to difficulties during childbirth, suffered brain damage that led to the diagnosis of CP, and an inability to stand or walk on his own.

To help CP patients walk, many doctors will prescribe standard orthoses meant to correct spine and limb disorders. Patients can purchase pre-made orthotics, and some can even be slightly modified to better fit the patient, but it’s not easy to use one device to help with several symptoms, and they can even lead to skin irritation and pain.

Custom orthoses, CNC machined based off of a plaster or foam box impression, generally fit better, but the cost can be astronomical, even with insurance, and delivery can take weeks. On top of that, children outgrow them quickly.

Matej, who has an engineering background, said, Based on my knowledge, I knew that a piece of plastic could not cost so much money.”

Matej has worked hard all of Nik’s life to help him move on his own, even using ski boots to stabilize his ankles when he got older.


When you’re looking at your child, you instinctively know what to do in order to help him. When Nik was unable to turn on his side, I decided to build a ramp so that he could easily flip on his belly. When he found out that this was fun, he was trying to do it all by himself,” Matej said.

He instantly felt confident, and you could see it in his eyes that he loved it and that he wanted to progress. This is what kept us going.”

Unfortunately, Nik’s short Achilles tendon and low muscle tone kept him on his toes.

He was afraid of walking because his feet were in a really bad position,” said Petra Timošenko, Nik’s physiotherapist. “If he had tried to walk longer like that, he would have injured the bones and the joints.”

Matej knew he had to find a better way to help his son.

The lack of comfort and high price combined with all the cons were enough that I decided to do something about it. I didn’t have the solution at that time, but I wanted to find a better way to design it,” Matej said. “I was just trying to help my son the best possible way.

I didn’t know how orthoses are produced currently, so I was able to look outside of the box.”

He had heard of 3D printing, and after conducting some research, determined that the technology was accurate enough to create a properly-fitted orthosis. One of the benefits of 3D printing, especially in the healthcare field, is its ability to design customized products at a more affordable cost, and Matej was confident he could create a custom, 3D printed orthosis that would give Nik the correction and support he needed.

After a few attempts, Matej successfully digitized Nik’s feet, learned 3D modeling, and spent the next six months researching and experimenting, and eventually developed an innovative workflow, which starts with placing the patient’s feet, in the corrected, standing position, on a vacuum bag.

An iPad-mounted structure scanner scans the footprints from the bag, while the feet are also 3D scanned from above, and the data is merged and cleaned up into an accurate representation. The custom orthosis is designed right on the 3D scanned foot in CAD software, and then 3D printed in high resolution on a Form 2 3D printer with Durable Resin.

The first 3D printed prototype reached almost to Nik’s knee and kept him from walking freely, so Matej got to work on the second iteration, creating a prototype that fit inside a regular shoe. Finally, a successful prototype was created.

“In two or three days he was walking, and we were not needed to take care of him so that he doesn’t fall anymore,” Matej said. “The change was immediate, it was unbelievable.”

Nik’s orthosis is barely visible.

Just how braces align teeth, the 3D printed orthosis keeps Nik’s foot in the corrected position. It’s best to use orthoses at a young age, as children’s bodies can adapt while they grow. Physiotherapy also helps to strengthen ligaments and muscles.

When he’d been using the orthosis for two or three months, for the first time, I saw Nik smiling,” said Timošenko. “After four or five months, he started to become faster and faster. His steps became longer, and his walking more smooth. He actually started to dance.

Now I can do much more sophisticated exercise with him. We can run on a treadmill, we can jump, because I know that his feet are in the right position and I can’t cause any deformation to his bones or joints, that might, on the long term, require an operation to correct. If he didn’t have this orthosis, his feet would be in danger.”

Matej created four versions of Nik’s 3D printed orthosis.

The first version gave him confidence and stabilized him. The second version improved his overall walking smoothness,” Matej explained. “Then the third helped him get better posture, and that’s when he really started to enjoy the walking and started to play around. The fourth orthosis corrected his right foot that was off the center of his body, so now he’s able to stand with his feet together in a straightened, upright position.”

After looking at the workflow, and measuring Nik’s feet with and without his 3D printed orthoses, certified orthotist and prosthetist Dejan Tašner knew that Matej had created a novel solution. He is able to make an affordable custom orthosis in less than 24 hours, and the devices are also comfortable.

3D printing allows us to create orthotics with different thicknesses in different areas. We can apply a more thick area where it’s needed and minimal thickness to the areas where correction is not required,” Matej explained. “This is not possible with current solutions.

Orthoses don’t need to hurt, only without pain can the children accept them.”

Matej and his wife decided to certify the workflow, which is now patent-pending, so the process and components will meet standard requirements for medical devices and allow for clinical trials. Matej quit his job to focus on 3D printed, patient-specific 3D printed children’s orthotics full-time and, together with Mateja, Tašner, and Timošenko, formed a new company called aNImaKe.

At the moment, we are testing with several patients with different pathologies from age three to 11,” Tašner said. “We already see improvements in terms of biomechanics, which is the main goal. But also, crucially, a positive change in sentiment that the parents see in the daily life of their children because they need to feel comfortable to use the orthosis often enough to improve their walking.”

aNImaKe hopes to expand the technique to other parts of the body, such as a hand brace that helps young CP patients spread their fingers.

We want to enlighten others in the medical industry about the tools that are available today to provide better options to the children,” Matej said. “Orthotics should be built for a person, and should treat only the symptoms, not be standardized solutions that put them in boxes.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Source/Images: Formlabs]