Evonik and Evolve Additive Solutions partner to develop new materials for STEP 3D printing

Evonik, a leading German chemical company, has announced a partnership with Evolve Additive Solutions to advance the range of thermoplastic materials for Evolve’s Selective Thermoplastic Electrophotographic Process (STEP) technology. “STEP has been developed for volume manufacturing so offering the widest range of thermoplastic materials to our customers is a critical element for production,” stated Steve […]

Evonik’s €400 million PA 12 plant moves closer to completion

Evonik, the largest specialty chemicals producer in the world, has announced that its VESTOSINT (PA 12) production plant has now entered the project implementation phase, after the completion of the conceptual and basic engineering stages. This is a major step for Evonik since the foundation of the facility. The €400 million VESTOSINT plant is part of one […]

Researchers Investigate Applicability of Using 3D Printing for Mass Production of Satellites

[Image: Tomsk Polytechnic University]

As the world works to find faster, more cost-effective ways to get to space, it’s necessary to test out innovative, modern technologies, such as 3D printing, rather than stick to the more conventional but expensive methods. Most current 3D printed thermoplastic satellites are developed as part of academic projects that have a low budget, such as the small Tomsk-TPU-120, and it’s very important to achieve fast, flexible, and automated serial production of reliable satellites for less money.

This is the subject of a paper, titled “Material Characterization of Additively Manufactured PA12 and Design of Multifunctional Satellite Structures,” that was written by a collaborative group of researchers from the the German Aerospace Center (DLR), the Fraunhofer Institute for Manufacturing Engineering and Automation (IPA), and the University of Stuttgart Institute of Space Systems (IRS).

Exploded view of the technology demonstrator with GPS receiver unit.

The abstract reads, “Increasing cost pressure on satellite builders and their suppliers push the motivation to open up for new designs and processes. This paper investigates the applicability of thermoplastic additive manufacturing for mass production of satellites. First, the potential of the cost-effective 3D-printing material Polyamide 12 for space structures is examined. Tests include mechanical and thermal-vacuum properties. In the second step, a multifunctional technology demonstrator is designed and a first qualification test is performed. This demonstrator integrates electronic and thermal management components and shows considerable volume savings. Additionally, the automatable processes used for manufacturing enable further cost reductions in series production.”

The researchers worked to demonstrate the potential of their multifunctional, inexpensive, 3D printed satellite, first by testing how usable PA 12 – an easily processed thermoplastic material – is for mass-produced aerospace applications like satellites, and then by designing and testing a multifunctional demonstrator, which is basically a “sandwich with a 3D-printed honeycomb core.”

“On the one hand, this makes so far unusable design space available,” the researchers said about their demonstrator’s structure. “On the other hand, it can be manufactured by highly automatable and flexible processes, for example by a combination of FFF printing and automated fiber placement (AFP). The demonstrator structure is used to show the possible solutions for integrating functions into the structure by 3D-printing. Furthermore, it demonstrates the potential of multifunctional structures for future satellites. To demonstrate the applied integration concepts, an additional shaker specimen is designed and tested.”

In order to test out both FDM and SLS 3D printing, the team used Stratasys’ carbon fiber-reinforced polymer Nylon 12CF and PA 2200 from EOS for their research, and performed mechanical, outgassing, and thermal vacuum tests on specimens produced in three different orientations in order to measure the Young’s Modulus and tensile strength. In regards to the thermal vacuum cycling test, the mechanical properties of the 3D printed specimens were slightly improved, though elongation at break decreased.

Tensile strength of SLS processed PA 12 and short carbon fiber reinforced FFF
processed PA 12.

“The SLS processed pure PA shows mechanical properties very similar to the manufacturer specifications. It also does not show significant anisotropy with respect to the printing orientation. The carbon fiber reinforced PA, on the other hand, shows a strong anisotropy,” the researchers explained. “Regarding the in plane and sideways specimens, tensile strength is drastically increased by the reinforcement. The standing specimens, on the other hand, show reduced strength. Similar behavior can be observed regarding the Young’s Modulus. Young’s Modulus of the reinforced material, however, is always above the pure PA. Furthermore, it can be noted, that the standard deviation off all tests is less than 5 %.”

Test component for vibration testing; (a) the
printed honeycomb core with integrated electronics; (b) test component mounted on the shaker.

The team concluded that the PA materials do show good potential for inexpensive space applications, though an elaborate test program will be necessary for a true qualification process.

A technology demonstrator, which includes 3D printed cable ducts that integrate coaxial cables and cable bundles, was used to verify both the functionality and feasibility of the 3D printed satellites’ function-integration for electronic, propulsion, and thermal management components, and the researchers determined that, at least in this project, an integration of propulsion components was not feasible.

The researchers produced and submitted a test component, complete with a gyroscope sensor, connector, ultrasonic embedded wire, and other planned functions, to vibration testing. The component was made with a PETG honeycomb core, in order to “ensure that results on the functionality of the concept are available before the optimization of the printing process for the PEI honeycomb core.”

After the vibration test, the team detected no visible damage or change to natural frequency, and could verify the electronic system’s total functionality.

“The technology demonstrator points out the capability of multifunctional sandwich structures for satellites. The concept makes so far unusable design space accessible and can generate considerable volume savings. A First successful vibration test confirms the design,” the team concluded. “A weight reduction, on the other hand, is unlikely since printed honeycomb is not lighter than standard aluminum honeycombs. However, the multifunctional structure offers further cost saving by an automated production suitable for mass production and reduced assembling costs.”

The researchers determined that several additional steps, such as a comprehensive cost analysis, are required in order to present a “holistic evaluation of the presented concept”

Co-authors of the paper are Simon Hümbert, Lukas Gleixner, Emanuel Arce, Patrick Springer, Michael Lengowski, and Isil Sakraker Özmen.

Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Stratasys Releases Dedicated Chopped Carbon Fiber Polyamide 3D Printer Fortus 380mc Carbon Fiber Edition

Stratasys/Team Penske Copyright: Scott R LePage

Stratasys today is launching a 3D printer specifically intended for carbon-fiber-filled Nylon 12. The Fortus 380mc Carbon Fiber Edition which we wrote about before will cost $70,000 in the US and is on sale now. Stratasys has offered carbon fiber 3D printing for a number of years now but only on systems priced above $200,000.

Stratasys Senior Vice President of Sales, Pat Carey says of the move,

They’ve told us they want an affordable solution but in a reliable, industrial-quality system. So we’re now offering a more accessible system that’s based on our Fortus 380mc platform. Because the 380mc CFE is dedicated only to carbon-fiber-filled Nylon 12 and one other material, we’re able to currently offer it at the lowest price for any of our industrial printers.”

Stratasys describes the applications of the material as

“Stratasys expects the quickest adopters of its Fortus 380 CFE 3D Printer to be those making tooling and fixtures and those in industries that include Automotive; Recreational Sporting Equipment; Marine; Orthosis and Prosthesis; Defense; Aerospace; Medical Equipment; Oil and Gas.Similar to a typical injection molded carbon fiber reinforced plastic part, Stratasys Nylon 12CF is 35 percent chopped carbon fiber by weight, and it exhibits the highest stiffness-to-weight ratio of any FDM or FFF 3D printed part.”

“Stratasys Nylon 12CF is up to four times stronger than a competitively priced alternative in the X and Y axis, and it will maintain its mechanical properties at a 40 percent higher temperature. The Fortus 380mc CFE is between two and five times faster than the competitively priced carbon-fiber-based 3D printer.”

“Parts don’t exhibit appreciable warpage or shrinkage and will hold to
a tight tolerance. “

“The Fortus 380 CFE builds parts in 0.010 in. (0.254 mm) layer thickness. The system is also compatible with ASA thermoplastic, for which is can build in either 0.010 or .005 in. (0.127 mm) layer thicknesses. The 3D printer’s build chamber measures 14 x 12 x 12 in. (355 x 305 x 305 mm). It offers water-soluble support material removal, which eliminates the need for manual labor to remove the supports.

Terry Wohlers of Wohlers Associates says,

“For many years, the additive manufacturing industry has seen a need for a diversity of
machines that produce parts in high-strength composite materials, I’m hopeful the newest
machine from Stratasys will help to meet this need by offering strong parts in carbon fiber
and Nylon 12.”

IndyCar and NASCAR Examples 

Team Penske, an IndyCar and NASCAR team makes prototypes and end-use parts from carbon-fiber-filled Nylon 12. Lightweight mirrors were made of the material and used in racing. Lightweight 3D printed mirrors is actually a tried and true application that has been tested and used across many racing series. It is also sometimes a bit of a crib since race teams feel comfortable talking about mirrors and their associated geometries. Meanwhile, they usually use the technology for other parts of the car that they are less open about discussing especially the more angelic teams. Racing itself is an exciting area, especially one for showcasing your products. It is also the gateway drug to the automotive industry. Upon reading the press release this was the first thought that came to mind along with, is this the Innovator’s Dilemma again as well as MarkForged must sure be doing well.

Stratasys/Team Penske
Monday 18 December 2017
Copyright: Scott R LePage

MarkForged

MarkForged has a continuous composite 3D printer that should produce strong parts but may tend to be more limited in design freedom. The company has pitched to the car industry from the beginning and is finding clients, growth and customers there. With Porsche on board as an investor, the erstwhile small company’s growth is vexing perhaps to Stratasys. Perhaps the firm is trying to toy with MarkForged’s inertia until its own High-Speed Sintering technology is ready for automotive? Stratasys is also a Desktop Metal investor and that company has sued MarkForged over patents related to metal printing, which MarkForged is also engaged with. Although this would be a tempting conclusion I think that there is much bigger game afoot.

Innovator’s Dilemma

Invented FDM as a technology and commercialized it, this is now used by over 500 or so startups worldwide clamoring for market share and growth. In the long run rather than one venture-backed firm I think that this hardscrabble open ecosystem is what could be a competitive threat to Stratasys. To place obstacles in between oneself’s profit centers and the oncoming hordes seems like a wise decision. The release of the competitively prices 123 systems from Stratasys and below this, the Makerbot printers are a testimony to this. Essentially I believe that Stratasys is trying to delay the competition by at several hereto noncontested price points place interesting propositions for companies willing to industrialize 3D printing for manufacturing. Bizarrely a few years ago there were barely any functional parts capable 3D printers between the price point of $2000 and $5000 and none between $20,000 and $100,000. So Stratasys is filling out its product line up in order to motivate companies to partner with it now for the long run. This is a crucial time in 3D printing because many firms are certifying parts, qualifying parts and going into production for the first time. There is also the Troop of Gorillas. These soft and gentle giants munch on leaf after leaf and just want to make the world a better place through plastics.

Polyamide  

Polyamide is a huge market and a material that is used in many industrial applications. The Troop of Gorillas consists of a dozen or so chemicals and polymer companies each doing billions in revenue. A few of these, namely, Evonik, Arkema, DSM, Dow, BASF and Sabic have a lot of polyamide capacity and are active in investing in polyamide high-performance materials. These materials are subject to higher heat deflection, continuous service temperature and strength than existing materials. They also let these companies sell a reformulated version of existing capacity at an elevated price point. These companies would be more than happy to invest in significant revenue for the long term for their materials. PPA’s or high-performance polyamides will be a battleground in many applications in the years to come, a big win in volume for 3D printed automotive would be huge for each of these firms. Indeed, I still believe that BASF’s high interest in 3D printing stems mainly for it to be a source of next-generation PPA’s. So what application and industry will give us the biggest volumes the soonest?

Automotive

Impact, wear, stiffness and overall familiarity that components manufacturers have with the Polyamide (Nylon 12) material is driving adoption of this material in automotive. It has been used for a long time in prototyping and for small production runs. The material has been used in bridge manufacturing by companies such as CRP and the automotive companies have considerable expertise in it. Especially the divergent parts of the Volkswagen group and BWM. PPA’s are high performance enough to be used inside the engine bays, inside the cabin on exterior parts and throughout the supply chain in tooling, jigs, and fixtures. They’re more expensive than bulk and engineering plastics but often cheaper than ultra high-performance materials such as PEEK and PEI. They’re also far easier to use than those materials. So a new high-performance niche which is usable at volume is emerging. And the players in this niche have a fundamental choice between partnering up now to industrialize for the next decades. Its a game of musical chairs.

Fortus 380CF

Musical Chairs 

And in the musical chairs game, there is a choice between the future performance of open systems and the current performance of Stratasys systems. Closed Stratasys systems that do not permit you to use any outside materials are more reliable with higher repeatability at this point. Open systems have lower reliability but much lower costs. This machine introduction, therefore, seems aimed squarely at introducing 3D printing in manufacturing for automotive. This is a system that universities can afford so that they can do research on these carbon fiber materials. This system an alternative to high-temperature printers that are emerging around the same price point for PEEK and PEI. These systems will be cheaper to buy but the part cost will be higher than with carbon fiber filled polyamide. Stratasys is, therefore, positioning this as an alternative to MarkForged, high-temperature systems, existing powder bed fusion systems and the promise of open systems in the future. You know us, you trust us, here is something that you can buy today. Vis a vis powder bed fusion FDM has a clear advantage in large singular parts and flat parts while SLS may be better for many thousands of small parts (this is geometry and size dependent). I think that this is a smart move to position this now for production at a lower price point with more acceptible part costs for automotive. In the coming year or two, the game of musical chairs in automotive will be played with partners for materials and production found. And once the music stops, the game will be over.