3D Printing News Briefs, August 5, 2020: Titan Robotics & Braskem, 3DPRINTUK

Today’s 3D Printing News Briefs is about materials and a 3D printed version of a real building. Titan Robotics and Braskem are partnering up to offer new solutions in 3D printed polypropylene, while 3DPRINTUK is expanding its materials and post-processing capabilities. Finally, the Coit Tower House in San Francisco now has a 3D printed miniature replica.

Titan Robotics & Braskem Announce Partnership

Braskem Polypropylene pellets for 3D printing

Production AM solutions provider Titan Robotics and petrochemical company Braskem have announced their strategic partnership, which has resulted in the launch of a new polypropylene (PP) resin that’s been optimized for 3D printing large-format production parts. The two companies spent over a year researching and developing the new material, which is the first commercially available grade of unfilled PP engineered specifically for 3D printing on Titan’s industrial Atlas 3D printers with pellet extrusion. The features of PP include chemical resistance, dimensional stability, impact strength, low density, recyclability, and thanks to this new partnership, Titan and Braskem will be able to offer improved industrial AM solutions.

“3D printing large parts using polypropylene resin has been a challenge for many years,” stated Rahul Kasat, Titan Robotics’ Chief Commercial Officer. “In collaboration with Braskem, a global leader in the polypropylene market, we have now solved that challenge. Our industrial customers will be able to print functional parts with this first of its kind polypropylene grade. We are also excited to continue to develop new polypropylene based solutions for our customers in collaboration with Braskem.”

Titan is also an authorized distributor of Braskem’s 3D printing pellet products.

3DPRINTUK Expanding Materials & Post-Processing

PEBA Dyed Close Up

SLS low volume production specialist 3DPRINTUK is branching out with its introduction of the flexible PrimePart 2301, a polyether block amide (PEBA) material with good chemical and water resistance, rubber-like characteristics not dissimilar to TPU, excellent detail resolution, and a higher melting point than most other resin-based elastomers. The material would be a good fit for batch production runs and rugged end-use applications, including handles, sports equipment, air ducts, and gaskets. Additionally, the company has invested in DyeMansion’s PowerShot S system, which uses a proprietary PolyShot Surfacing (PSS) process that allows 3DPRINTUK to offer a shot peening post-processing service that can improve the surface finish of 3D printed parts.

“At 3DPRINT UK we have honed and optimized the SLS 3D printing process over many years to achieve the best possible results off our machines for a wide range of relevant applications, that continue to grow in scope. However, the post processing of parts — from cleaning through to further optimised surface finishes — has always been a necessity for many of our clients. Expanding our post processing capabilities is a vital part of the business, and the DyeMansion PowerShot S system is an important next step in our expansion, enabling us to offer our many and varied clients the benefits of shot peened 3D printed parts from a single source,” said Nick Allen, the CEO and Founder of 3DPRINTUK.

3D Printed Coit Tower House

The 210′ tall Coit Tower was built in the early 1930s in San Francisco’s Telegraph Hill neighborhood as a way to beautify the city. The art deco tower, a recognizable sight on the city’s skyline, was added to the National Register of Historic Places in early 2008, and 12 years later, Yuriy Sklyar, the founder, CEO, and head of design & marketing at design studio Threefifty, has 3D printed a replica tower that stands over 7′ tall…a 1/20 scale. Utilizing a Creality CR10S5, a Replicator 2, and a MakerBot system, Sklyar, who has been utilizing 3D printing since 2013, called this unique project a “great opportunity to leave a lasting mark on the best city in the world – and its art community.” It took a month to create the base of the tower, as he had to redo a lot of it, eventually installing a heated silicone bed and heat enclosure to reduce the amount of warping. The next month was spent printing “the 4 giant sections of the fluted tower design.”

“Each one of these four sections, just like the real tower, consists of 4 sub-sections – I wanted to be very accurate with such details. At first these were limited in height by the 3rd party 3D printer, so only 2 sub-sections were supposed to be printed at a time, and then joined together with metal plates and nuts/bolts, but since I was now working on my own terms, I decided to reduce the amount of work for myself, and at the same time reduce the number of bolts/nuts/plates to just 4 sets, instead of 8,” Sklyar wrote.

“Each one of these sections takes about 3.5-4 days to print using a single 1.1mm shell @ 10% infill, which created for a surprisingly strong structure, since I instructed the infil to have a 45% overlap with inner and outer walls.”

You can check out his post for the very specific details of the project, but I’ll leave you with just a few – including all of the hardware used, the 3D printed Coit Tower weighs a total of 24 kg, and took over 7.5 km of ColorFabb’s nGen filament, SUNLU PETG and Gizmo Dorks PETG filament to print. Sklyar designed the whole thing from scratch, and the columns are joined by steel plates secured by bolts and in-printed nuts.

The post 3D Printing News Briefs, August 5, 2020: Titan Robotics & Braskem, 3DPRINTUK appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing Webinar and Virtual Event Roundup, July 19, 2020

A variety of topics will be covered in this week’s webinar and virtual event roundup, including additive manufacturing in aerospace, CAMWorks, product management, post-processing, and more. Read on to learn more about, and register for, these online opportunities.

AM in Aerospace Virtual Panel

On Tuesday, July 21st, Women in 3D Printing (Wi3DP) will host the third event, “Additive Manufacturing for Aerospace”, in its virtual panel series. Sponsored by AlphaSTAR and Link3D, the panel will focus on how AM is used in the aerospace industry. Moderated by AM-Cubed founder Kristin Mulherin, the speakers are Anna Tomzynska, Director and Additive Manufacturing Chief Engineer for Boeing; Deb Whitis, GE Aviation Chief Engineer; and Eliana Fu, Senior Engineer, Additive Technologies, at Relativity Space.

Pre-registration will begin at 11 am EST, with a welcome speech at 11:25. The hour-long panel will begin at 11:30, with plenty of time for live Q&A, and there will be a virtual networking reception at 12:30. Register for the virtual panel here.

3DEO Webinar – Why I Switched From CNC Machining

Also on July 21st, metal 3D printing company 3DEO is hosting a live webinar, entitled “Why I Switched From CNC Machining: An Engineer’s Perspective on Transitioning to Metal 3D Printing.” The webinar, which starts at 1 pm EST, will feature 3DEO Applications Engineer Julien Cohen, who will explain the major differences between metal 3D printing and CNC machining. The following topics will be covered:

  • Compare CNC machining and 3DEO’s proprietary metal 3D printing process

  • Understand the value metal 3D printing offers engineers in design and flexibility

  • Learn about the pros and cons of each process and when metal 3D printing makes sense

  • Discover three real-world case studies of 3DEO winning versus CNC machining

  • See 3DEO’s process for going from first articles to production

You can register for the webinar on 3DEO’s website.

Free CAMWorks Webinar Series

To make sure professionals in the CAM industry have easy access to educational and training materials during the COVID-19 crisis, a free CAMWorks webinar series has been launched. Each session will give attendees the opportunity to increase their CAM skills, learning about more advanced features that can help maintain business operations. SOLIDWORKS CAM and CAMWorks: Getting Started” is on Tuesday, July 21st, at 10:30 am EST, and will be a training session on using the integrated CNC programming system SOLIDWORKS CAM Standard. It will also provide an introduction to the Technology Database (TechDB), which can automate the CNC programming process. “SOLIDWORKS CAM for Designers: A Path to Better Designs” will also take place on July 21st, at 2 pm EST, and will focus on how to use SOLIDWORKS CAM to reduce cost, improve design, and make it easier to manufacture parts.

You’ll need to attend the “Getting Started” webinar before attending “SOLIDWORKS CAM and CAMWorks: Getting Started with the TechDB” on Thursday, July 23rd at 10:30 am EST. This is a more in-depth training session for using the TechDB included in SOLIDWORKS CAM and CAMWorks. The final webinar in the series is “The Future of Manufacturing in the COVID Era,” also held on July 23rd, at 2 pm EST. This session will help attendees learn how to automate part programming to stay productive and competitive during and after the pandemic.

Protolabs Webinar: HP’s Multi Jet Fusion

On Wednesday, July 22nd, at 2 pm EST, Protolabs will be hosting a webinar with HP, called “Tips and Tricks to Leverage Multi Jet Fusion in your Product Development Cycle.” One of the company’s Applications Engineers, Joe Cretella, and Brent Ewald, HP’s Solution Architect, will discuss design tips that result in good MJF parts, how to implement the technology, and where MJF fits within additive and subtractive manufacturing.

This webinar will help attendees understand how the HP Multi Jet Fusion technology 3D printing process can be leveraged in various stages of the product development lifecycle. The experts at HP and Protolabs have teamed up to give you key insights into Multi Jet Fusion materials, processing capabilities, and part quality. Whether the attendee is new to additive manufacturing or evaluating Multi Jet Fusion for their production project, this presentation will help identify when the technology provides the most value and what to consider when manufacturing Multi Jet Fusion parts.”

Register for the webinar here.

Dassault Systèmes on Project Management Solutions

At 10 am EST on Thursday, July 23rd, Dassault Systèmes will hold a live webinar,”Discover How to Deliver Projects on Time and Under Budget, a Real-time Online Experience,” all about collaborating with integrated project management solutions connected to 3D engineering data in order to drive project success. Dassault speakers Maximilian Behre, the Online Industry Business Consultant Director, and 3DS Industry Process Consultants Siddharth Sharma and Alessandro Tolio, will discuss project management challenges, shortening the design cycle through the 3DEXPERIENCE platform, provide a demonstration of Project Management on the cloud, and answer questions.

“Whether you are managing big programs that involve hundreds of people or are leading a smaller project, an easy to use integrated project management solution will help you to seamlessly collaborate across all disciplines with any stakeholder. Connect the dots between Marketing, Engineering to Manufacturing and customer services.”

Register here.

KEX Knowledge Exchange on Post-Processing

Finally, former Fraunhofer IPT spinoff KEX Knowledge Exchange AG is holding its second webinar on its KEX.net web platform, “Online Seminar Post-Processing for Additive Manufacturing,” on Thursday, July 23rd. Lea Eilert, the project and technology manager for the ACAM Aachen Center for Additive Manufacturing, will teach attendees about typical heat treatment for AM materials, the necessity of post-processing for 3D printed components, and various post-machining and surface finishing methods.

Register for the webinar here. In addition, Eilert will also present the third KEX webinar on August 6th, entitled “Market, Costs & Innovation.”

Will you attend any of these events and webinars, or have news to share about future ones? Let us know! 

The post 3D Printing Webinar and Virtual Event Roundup, July 19, 2020 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Sinterit Releases Three Accessories for its Low-Cost SLS Systems

Sinterit, a polish manufacturer of low-cost selective laser sintering (SLS) systems, is releasing several accessories for managing SLS prints: a vacuum, a sandblaster and a platform. These tools are meant to be used with Sinterit’s Lisa and Lisa PRO 3D printers.

The Sinterit ATEX Vacuum with Cyclone Separator. Image courtesy of Sinterit.

The Sinterit ATEX Vacuum Cleaner with Cyclone Separator is a specially designed vacuum for removing unsintered powder from print chambers so that it can be reused for subsequent jobs. The E.U.’s ATEX certification is meant to validate the fact that the machine can be used safely with potentially dangerous materials, such as SLS powders. The Cyclone Separator divides reusable powder during the vacuuming process so that it can easily be poured back into the printer for follow-up prints.

Image courtesy of Sinterit.

The Sandblaster XL is a larger version of the original Sandblaster, designed for users of the larger Lisa PRO. In addition to featuring a workspace that is double the size of the original Sandblaster, the device includes two separate nozzles, lighting, a variety of nozzle diameters and more protective PE foils.

The Sandblaster XL. Image courtesy of Sinterit.

The Sinterit Platform is designed for greater comfort and easy-of-use for the Lisa and Lisa PRO systems in that it can be used to transport these petite, yet heavy systems. The height of the platform is meant to provide greater ergonomy to the user, so that they can more easily remove prints and maintain the printer. The leg height can be adjusted depending on whether it is being used for the Lisa or Lisa PRO.

The Sinterit Platform. Image courtesy of Sinterit.

Akin to watching the development of printing systems by manufacturers that are newer to the additive manufacturing space is observing the release of accessories, as these companies learn that 3D printing is not isolated to the printers themselves but all of the tools needed to maintain the machines and process the parts. Just as HP is working to develop more automated post-processing units for its multi jet fusion machines or Formlabs develops new rinsing and curing stations for stereolithography parts, companies like Sinterit are releasing their own necessary accessories, such as the Powder Sieve, and improving them as their printers are out in the field.

Also interesting to note is the fact that, while the Lisa and Lisa PRO are lower cost machines, compared to industrial SLS printers, the necessary accessories are likely going to add to the overall price of operating the printers. Nevertheless, Sinterit has lower costs in mind, so its own post-processing products may be less expensive than those associated with larger SLS machines. As a result, we may see some interesting innovations, such as the built-in Cyclone Separator unit, that can only be delivered by a scrappy, cost-conscious startup like this one.

The post Sinterit Releases Three Accessories for its Low-Cost SLS Systems appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

NTU Singapore: Robotic Post-Processing System Removes Residual Powder from 3D Printed Parts

Researchers from Nanyang Technological University in Singapore wrote a paper, titled “Development of a Robotic System for Automated Decaking of 3D-Printed Parts,” about their work attempting to circumvent a significant bottleneck in 3D print post-processing. In powder bed AM processes, like HP’s Multi Jet Fusion (MJF), decaking consists of removing residual powder that sticks to the part once removed. This is mostly completed by human operators using brushes, and for AM technologies that can produce hundreds of parts in one batch, this obviously takes a long time. Manual labor like this is a significant cost component of powder bed fusion processes.

An operator manually removing powder (decaking) from a 3D printed part.

“Combining Deep Learning for 3D perception, smart mechanical design, motion planning, and force control for industrial robots, we developed a system that can automatically decake parts in a fast and efficient way. Through a series of decaking experiments performed on parts printed by a Multi Jet Fusion printer, we demonstrated the feasibility of robotic decaking for 3D-printing-based mass manufacturing,” the researchers wrote.

A classic robotic problem is bin-picking, which entails selecting and removing a part from a container. The NTU researchers determined that 3D perception, which “recognizes objects and determining their 3D poses in a working space,” would be important in building their bin-picking system. They also used a position-controlled manipulator as the baseline system to ensure compliant motion control.

The NTU team’s robotic system performs five general steps, starting with the bin-picking task, where a suction cup picks a caked part from the origin container. The underside is cleaned by rubbing it on a brush, then flipped over, and the other side is cleaned. The final step is placing the cleaned part into the destination container.

Proposed robotic system design for automated decaking.

Each step has its own difficulties; for instance, caked parts overlap and are hard to detect, as they’re mostly the same color as the powder, and the residual powder and the parts have different physical properties, which makes it hard to manipulate parts with a position-controlled industrial robot.

“We address these challenges by leveraging respectively (i) recent advances in Deep Learning for 2D/3D vision; and (ii) smart mechanical design and force control,” the team explained.

The next three steps – cleaning the part, flipping it, and cleaning the other side – are tricky due to “the control of the contacts” between the parts, the robot, and the brushing system. For this, the researchers used force control to “perform compliant actions.”

Their robotic platform made with off-the-shelf components:

  • 1 Denso VS060: Six-axis industrial manipulator
  • 1 ATI Gamma Force-Torque (F/T) sensor
  • 1 Ensenso 3D camera N35-802-16-BL
  • 1 suction system powered by a Karcher NT 70/2 vacuum machine
  • 1 cleaning station
  • 1 flipping station

The camera helps avoid collisions with the environment, objects, and the robot arm, and “to maximize the view angles.” A suction cup system was found to be most versatile, and they custom-designed it to generate high air flow rate and vacuum in order to recover recyclable powder, achieve sufficient force for lifting, and firmly hold the parts during brushing.

Cleaning station, comprised of a fan, a brush rack, and a vacuum outlet.

They chose a passive flipping station (no actuator required) to change part orientation. The part is dropped down from the top of the station, and moves along the guiding sliders. It’s flipped once it reaches the bottom, and is then ready to be picked by the robot arm.

Flipping station.

A state machine and a series of modules make up the software system. The machine chooses the right module to execute at the right time, and also picks the “most feasible part” for decaking in the sequence.

The software system’s state machine and modules perform perception and different types of action.

“The state machine has access to all essential information of the system, including types, poses, geometries and cleanliness, etc. of all objects detected in the scene. Each module can query this information to realize its behavior. As a result, this design is general and can be adapted to many more types of 3D-printed parts,” the researchers explained.

The modules have different tasks, like perception, which identifies and localizes visible objects. The first stage of this task uses a deep learning network to complete instance detection and segmentation, while the second uses a segmentation mask to extract each object’s 3D points and “estimate the object pose.”

Example of the object detection module based on Mask R-CNN. The estimated bounding boxes and part segmentations are depicted in different colors and labelled with the identification proposal and confidence. We reject detection with confidence lower than 95%.

“First, a deep neural network based on Mask R-CNN classifies the objects in the RGB image and performs instance segmentation, which provides pixel-wise object classification,” the researchers wrote.

Transfer learning was applied to the pre-trained model, so the network could classify a new class of object in the bin with a high detection rate.

“Second, pose estimation of the parts is done by estimating the bounding boxes and computing the centroids of the segmented pointclouds. The pointcloud of each object is refined (i.e. statistical outlier removal, normal smoothing, etc.) and used to verify if the object can be picked by suction (i.e. exposed surfaces must be larger than suction cup area).”

Picking and cleaning modules are made of multiple motion primitives, the first of which is picking, or suction-down. The robot picks parts with nearly flat, exposed surfaces by moving the suction cup over the part, and compliant force control tells it when to stop downward motion. It checks if the height the suction cup was stopped at matches the expected height, and then lifts the cup, while the system “constantly checks the force torque sensor” to make sure there isn’t a collision.

Cleaning motion primitives remove residual debris and powder from nearly flat 3D printed parts. The part is positioned over the brush rack, and compliant force control moves the robot until they make contact. In order to maintain contact between the part and the brushes, a hybrid position/force control scheme is used.

“The cleaning trajectories are planned following two patterns: spiral and rectircle,” the researchers explained. “While the spiral motion is well-suited for cleanning nearly flat surfaces, the rectircle motion aids with removing powder in concave areas.”

A combination of spiral and rectircle paths is used for cleaning motions. Spiral paths are in red. The yellow dot denotes the centroid of the parts at beginning of motion. Spiral paths are modified so they continue to circle the dot after reaching a maximum radius. The rectircle path is in blue, parameters include width, height, and direction in XY plan.

The team tested their system out using ten 3D printed shoe insoles. Its cleaning quality was evaluated by weighing the parts before and after cleaning, and the researchers reported the run time of the system in a realistic setting, compared to skilled human operators.

In terms of cleaning quality, the robotic system’s performance was nearly two times less, which “raised questions how task efficiency could be further improved.” Humans spent over 95% execution time on brushing, while the system performed brushing actions only 40% of execution time; this is due to a person’s “superior skills in performing sensing and dexterous manipulations.” But the cleaning quality was reduced when the brushing time was limited to 20 seconds, which could mean that the quality would improve by upgrading the cleaning station and “prolonging the brushing duration.”

Additionally, humans had more consistent results, as they are able to adjust their motions as needed. The researchers believe that adding a cleanliness evaluation module, complete with a second 3D camera, to their system would improve this.

Average time-line representation of actions used for cleaning.

“We noted that our robot ran at 50% max speed and all motions were planned online. Hence, the sytem performance could be further enhanced by optimizing these modules,” the team wrote. “Moreover, our perception module was running on a CPU, implementations of better computing hardware would thus improve the perception speed.”

While these results are mainly positive, the researchers plan to further validate the system by improving its end-effector design, optimizing task efficiency, and adapting it to work with more general 3D printed parts.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

The post NTU Singapore: Robotic Post-Processing System Removes Residual Powder from 3D Printed Parts appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Italian Researchers: Eliminating FDM Support Structures with New Algorithm

As researchers from Italy present a novel system for avoiding the use of support structures in additive manufacturing processes, they delve further into an issue that continues to plague users who would prefer not to spend the additional time in post-processing efforts. With their findings outlined in ‘Fused-Deposition-Material 3D-Printing Procedure and Algorithm Avoiding Use of Any Supports,’ the authors explained that they performed their study with FDM (FFF, Material Extrusion), but their work could be transferred to other methods of 3D printing too.

In this study, the research team recognizes the benefits of 3D printing, from lower costs, lower production times, less waste, less space needed for inventory, and more, but they emphasize the desire to truly move away from subtractive manufacturing in using only what material is needed—without any requirements to remove supports later.

“Considering the high number of printable materials and structures that can be realized, together with the peculiarities of FDM technology, it is possible to achieve various and interesting physical proprieties, such as flexibility, toughness, thermal resistance, and electrical conductivity,” state the authors, going on to point that that logically, printing without supports is highly desirable to refine quality, as well as conserving materials.

(a) Support-based object and (b) support-free object.

One of the best ways to avoid dealing with bridges and overhangs (areas that initially lack support during the 3D printing process) is to ‘design for printability.’ This may not always be possible though; in fact, the researchers point out that can often be nearly impossible when designing parts and prototypes.

There are other options also for avoiding having to 3D print with support structures, such as designing parts into a variety of sub-blocks which are easier to deal with in fabrication. While the process of removing supports is eliminated though, users must still spend time in post-processing for assembly, finishing, and more.

(a) Object with poor printability; (b) printable object filleting the floating area; (c) printable object splitting critical area from main body.

Although there are a variety of other choices that could be made regarding design, printing, and post-processing and finishing, the researchers created an algorithm for manipulating the slicing process, allowing them to still print ‘supportless bridges and very steep overhangs.’

Flowchart of proposed algorithm.

For this study, the researchers integrated their new method into Tips slicing software—a customized version of Slic3R. For 3D printing, they used a 3DPRN H5, featuring a dual tilting extruder setup.

(a) Testing 3DPRN LAB H5 FDM printer; (b) dual-extrusion setup utilized for test.

Four different samples were created in the study as the researchers created three with a 90° overhang, and one with a bridge. Each sample was 3D printed ten times, alternating with supports, without, and then with the use of the Print on Air algorithm.

Test samples printed for analysis: (a) bridge, (b) rectangular 90° overhang, (c) circular 90° overhang, (d) triangular 90° overhang (pictures not in scale with each other.

“The layer height was set at a constant value of 0.2 mm, while speed, acceleration, jerk, and cooling were automatically set by the slicer,” explained the researchers.

While there was ‘no effective’ measurement available for samples without supports, floating layers were reported as ‘drooped’ and the prints failed.

“PoA, on the other hand, was capable of remaining within one-layer error (0.2 mm) from the ideal dimension. Supposedly, this error came from the cooling deformation of the plastic (wavy-surface finish) rather than actual material droop; hence, a better cooling profile could further improve the results. Moreover, for larger pieces, this issue is inherently reduced since the extruder physically moves farther away from each deposited strand, reducing unwanted heat exchanges between itself and printed sections.”

Ultimately, the researchers decided that the procedure would be best used when overhangs were required, rather than bridges.

Printed samples: (a) bridge structure (left to right): Print on Air (PoA), supports, supportless; (b) rectangular overhang (left to right): PoA, supports, supportless; (c) circular overhang printed with PoA; (c) triangular overhang (left to right): PoA, supportless.

“The proposed approach can be applied to any object, including long bridges and convex surfaces. The algorithm was accurately tested both with differently shaped overhangs and bridges,” concluded the researchers.

“From analysis, we can conclude that, regardless of shape, the supported structures showed the best accuracy across almost all measurements. However, given that, from a geometrical point of view, the accuracy of the obtained shapes with the proposed algorithm was fully comparable with the previous, considering the saved material, time, and postprocessing, our proposal is a valuable tool.”

Dealing with supports and finishing processes will undoubtedly continue to be an ongoing conversation among 3D printing users and those engaged in AM processes as well as integrating innovation into robotics, developing other methods and tools such as cutting devices, soluble supports, and more.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Fused-Deposition-Material 3D-Printing Procedure and Algorithm Avoiding Use of Any Supports’]

The post Italian Researchers: Eliminating FDM Support Structures with New Algorithm appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Is This the Best Way to Manually Post-Process an FDM 3D Printed Part?

Researchers Jinjin LiuHai GuBin LiLu ZhuJie Jiang, and Jie Zhang from the Nantong Institute of Technology and Jiangsu Key Laboratory of 3D Printing Equipment and Application published a paper, titled “Research on Artificial Post-Treatment Technology of FDM Forming Parts,’ about using manual post-processing on 3D printed parts made with FDM technology, which has a low molding accuracy that can cause stair-stepping.

“Due to the “step effect”, the printed parts have rough surface, obvious stripes, poor surface quality, and cannot meet the customer’s or specified requirements, so post-processing is very important. This paper mainly studies and summarizes the manual post-processing technology of FDM printed parts, and provides the specific implementation method of post-processing, providing reference for the post-processing of FDM formed parts and other forming processes,” the researchers wrote.

Figure 2. The vase model.

In order to “further improve the surface quality and strength” of 3D printed models, post-processing is often necessary. Some of the more common methods of post-processing FDM formed parts include:

  • Chemical treatment with organic solvent
  • Heat treatment
  • Mechanical treatment with a sander or grinder
  • Surface coating treatment

In this paper, the researchers focused on a manual post-treatment process, which requires several items to work properly, such as a spray pen air pump with air storage tank, a coloring pen and tool set, gloves, a mask, water-diluted solvent in a solvent bottle, quick dry small fill soil, 80 to 3000 mesh sandpaper, a cleaning agent, a file, and others.

The team fabricated a post-treatment vase model as an example, using PLA material and an Einstart 3D printer. Once the vase was printed, they removed the plate with the model on it from the printer.

Figure 4. Model finished printing. Figure 5. Demolition of support.

“…the model is smoothly removed from the bottom plate with a shovel, and then to check whether there is strain concentration model, relatively weak parts with small first stripping knife to spin out the model and the support, and then has a long nose pliers clamping a direction support, applying a constant force, the location of the tiny support can use the file to remove,” they wrote.

To clean up a rough surface, the researchers noted that you can use low mesh sandpaper to sand and polish it. The model and the low mesh sandpaper should be immersed in water and sanded along the model’s texture, as this can both extend the sandpaper’s life and smooth out the model’s surface.

Then, they moved on to a technique called quick dry small fill, which involves the addition of a small amount of filling material to gaps in the model; then, the fill is evenly daubed with a hard scraper.

Figure 7. Apply small patch of soil evenly. Figure 8. Polished to make it smooth.

“Then wait for 30 seconds, after filling soil has hardened, using 1200 mesh to 1500 mesh sandpaper in, as shown in figure 8, If there are still tiny grooves and repeat the above steps,” the researchers wrote. “To be in addition to the groove after no large-area fill soil, feel smooth, can proceed to the next step.”

The next step is spray can water fill soil spraying. First, the model’s surface should be washed with water, and then the spray pot is used to fill the soil, before the model is wiped with a non-woven cloth and sprayed at “the ventilated position,” keeping the nozzle at about 20 cm and uniformly spraying the model one to three times, quickly.

“Generally, choose gray spray pot water to fill the soil, because gray is a neutral color,” the team explained.

Figure 10. High mesh sandpaper grinding.

Once the water is sprayed and the soil is filled, air drying takes place. Then, 2000-3000 high-mesh sandpaper is applied for “slight grinding” along one direction, before moving on to the coloring phase.

The 3D printed, polished and processed model should first be washed and dried before pigments are applied. A spray gun can be used to add either a base color or one that covers a large area of the model; you’ll need a 1:2 ratio of diluent to pigment for spraying, and you should be able to adjust the amount of air injection while you’re spraying.

“Brushes of different thicknesses and sizes can be used to paint the details,” the team wrote. “It is accessible to use 00000 pens to paint the detailed parts of the figures, or use different widths of the cover tape to cover and then spray the spray gun to paint.”

Once the paint and spray paint have dried completely, you can uniformly spray protective paint on the model; the research team used B603 water-based extinction for their 3D printed vase.

The team shared a few more notes on making the post-treatment process run smoothly, such as the importance of using software to reduce the amount of unnecessary support structures, coating the print plate with a thin layer of glue to prevent deformation, and observing the model while it’s being printed.

Figure 13. The vase is finished after processing.

“Secondly, in the manual post-processing should look to the protection work, grinding water mill is the best way to model processing, be patient, 80-2500 mesh, use each mesh sandpaper required time from long to short, low mesh sandpaper grinding along the texture of the model, high mesh sandpaper grinding should be turned around,” the researchers concluded. “When mixing colors, you should understand in advance the relationship between light and shade, brightness and purity of various colors, warm and cold color selection, etc.”

They noted that “the degree of difficulty” for post-processing methods, and the methods themselves, can vary with different 3D printing technologies – what works for FDM may not necessarily work for SLA, and so on.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

The post Is This the Best Way to Manually Post-Process an FDM 3D Printed Part? appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Why Automated Post Processing Makes Manufacturing With 3D Printers Possible

In Material Extrusion (FDM), we can now use inexpensive machines to make dimensionally accurate & tough parts in various materials at low cost. These parts can fulfill many industrial and manufacturing applications bar one glaring defect. Material Extrusion (FDM) parts are often ugly, and layers can be seen on the rough parts. FDM parts and materials are improving all the time; parts are getting smoother and better looking out of the machine. Clusters of FDM machines bring throughput and versatility and have begun to be used to manufacture parts at scale.

With Selective Laser Sintering (powder bed fusion), one can make thousands of individual parts in many different geometries. Highly detailed polyamide SLS parts have been used for tens of thousands of surgical guides and have found many industrial applications. All parts have to be depowered and cleaned of excess powder, however. Additional steps, such as mechanical finishing are often needed to close the open surface texture of SLS parts.

With Dye Mansion depowdering is combined with surface improvement and coloring to make parts more world proof.

With SLA (stereolithography, vat polymerization) tens of millions of molds have been made for jewels with millions more being used in the dental industry. Additionally, millions of intermediates have been made for aligners. Direct SLA parts in hearing aids have revolutionized the In The Ear hearing aid industry, winning the market in customized fit ITE hearing aids. And yet, every SLA part has to be cut off of supports manually, and most have to be filed down afterward. Parts have to be conveyed to a washing station and a UV flash machine.

Meanwhile, in the SLS world, the future of manufacturing consists of a man with a brush brushing off powder from a part. It won’t surprise you that a third of part costs are perhaps due to finishing and post finishing parts. We boast of machines that can, in a day, make a new part, only to casually leave out that this part may spend another day in a tumbler. We jump on the gleeful subsidy bandwagon that is Industry 4.0 while a lot of the cost of 3D printed parts is in conveyancing.

Additive Manufacturing Technologies‘ automated surface finishing colors and finishes in one step.

Significant part costs comprise of people carrying parts around a factory. A woman leans over, looks at a piece of paper, matches the part, carries it to her station and then later puts it on a tray where a colleague takes it to a new station. This is Industry Bore.0, not 4.0. And metal printing? Like all things, it makes the polymer part of our industry look easy. Parts have to be sawed off by hand, and a number of post-processing stations always pay a part: from HIP to EDM to shot peening to destressing to spending a week in a tumbler it often needs to happen to your metal part.

We can not ask industrial manufacturing firms to learn new ways of thinking, master design for additive, change parts in their inventory and take on new unknown risks in return for a future where parts are marched around a “factory.” I say factory partially in jest because currently manufacturing with 3D printing is much closer to a collective of be-dreaded sandal-wearing artisanal vegan soap makers than actual manufacturing.

Rosler’s AM Post Processing Line of machines remove powder, support and structures.

Imagine us, some hippie collective with handcrafted bamboo bowls trying to sell our way to the Six Sigma people? Just change everything; it will be great. Hope is the new one error per ten million. Do you want a Craft aircraft? Do artisanal aero engines sound like a good idea to you? Would you like to take a trip to Mars on a handcrafted rocket? Would you like your next hip to be made with love? Or would you prefer it to have things like quality control? We’re currently selling a dream to manufacturers that for many applications, we can not turn into a reality.

Post Process showing you parts before and after their process.

What can make 3D printing for manufacturing real? Automated Post Processing. By automating the entire post-processing chain, we can dramatically lower the part costs of 3D printed parts. We can make many more business cases worthwhile by making 3D printed parts significantly cheaper. By automating conveyancing throughout the plant, we can dramatically reduce the overall cost at high throughput. By offering post finishing to improve the surface quality of parts, we can make better looking and better-performing parts. Consumer-friendly and industry-friendly parts can ensure that the adoption of 3D printing is more rapid. The combination of automated post-processing with 3D printing will let parts be produced close to the consumer in wealthy countries at a reasonable cost. Improved post finishing processes will improve surface quality and let 3D printed parts be deployable for many more applications. If we integrate automated QC and QA processes into post-processing setups, we can genuinely offer manufactured 3D printed parts to many industries. Many firms are looking into automating the entire post-processing chain. From Post Process to Rosler, Additive Manufacturing Technologies and Dye Mansion, it is these companies that will unlock manufacturing for us all.

The post Why Automated Post Processing Makes Manufacturing With 3D Printers Possible appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

University of Pittsburgh Develops Depowdering Machine for Metal Printing

The University of Pittsburgh has developed a depowdering solution for metal 3D printers that could significantly reduce the cost of 3D printed metal parts. Lead by Professor Albert To, a team of undergraduates has made a gyroscope-based depowdering machine. Professor To is the leader of the AMRL, or ANSYS Additive Manufacturing Research Laboratory, at Pitt and also runs the MOST AM lab, which is a cutting edge lab that develops 3D printing simulation tools. To’s ANSYS AMRL teams decided to attempt a much more hands-on project, however, with this depowdering machine, the Pitt Depowdering Machine.

Why is depowdering important?

Post-processing accounts from anywhere from 30 to 60% of the cost of a metal 3D printed part. Far from a machine driven push-button process metal printing technologies such as Powder Bed Fusion require a high degree of manual labor. Files have to be prepared by hand, support strategies have to be thought up builds have to be nested and material has to be loaded. Once the build is done the parts have to be depowdered. This usually involves a brush and vacuum cleaner. Then parts will also have to be destressed, sawed off, tumbled and may require EDM, CNC, precipitation hardening, shot peening etc. All the while a human operator will be carrying the parts around a factory. The actual 3D printing metal process is still rather artisan even though we’re promising the world that we will make millions of car parts cost-effectively. To bridge this gulf automation will be necessary. Additive Industries is including post-processing steps in the machine others are making lines of machines aimed to reduce the cost. The cool thing about adding automated conveying, destressing, EDM wire, and other systems to an existing line is that these add ons can be used to reduce costs in existing lines and be used with machines from several vendors. All of metal 3D printing’s promises and promise will have to be fulfilled through the nuts and bolts of improving and creating industrial processes. Automated post-processing is a key element of that so Pitt’s machine is very timely to say the least.

Pitt Depowdering Machine

To tells 3DPrint.com,

“The depowdering machine employs a gyroscope design that can rotate the AM build 360 degrees in two orthogonal directions. There is a vibrator that is attached to the build and vibrates the build at a high frequency so that the powders are loosened up and come out from the build as the gyroscope is rotating through different angles. There is a funnel below the gyroscope that is used to collect all the powders coming out from the build. The machine is equipped with two sieves at the bottom of the funnel to sieve the powders to the right size for re-use.”

Such a device has the power to reduce a lot of carrying around and operator time. The speed at which one could depowder a build varies enormously but as per the team’s data they should have a huge productivity increase in terms of time over existing users.

“Typically, we put an AM build on the machine for 15-30 minutes depending on the size of the parts,” To said.

That’s not all, however: the machine may also be more efficient than existing processes.

“In one test, the machine shook out 5 more grams of powders after the technician did his best to depowder manually with the aid of a vibrator.”

A vibrator in a metal 3D printing context is a rotary or tub vibrator or a vibratory finisher which is a machine where parts are mixed in with media and then vibrated to de-clog and remove powder.

If the Pitt machine performs like this in continuous operation the savings could be significant.

To says,  “We are still evaluating whether to commercialize the machine and talking to other people about it at the moment.”

We would strongly encourage them to commercialize this machine. Any in line device that could really reduce the costs of 3D printed parts would make many more metal 3D printing applications possible.

 

3D Printing News Briefs: March 16, 2019

We’re starting with 3D software and medical 3D printing in today’s 3D Printing News Briefs, and then moving on to stories about some cool 3D printed projects. Sinterit has updated the software for its SLS 3D printers, and Deutsche Bahn is increasing efficiency with software solutions by 3YOURMIND. Medical 3D printing is on the rise in Sri Lanka. A designer whose work we’ve previously covered used Carbon technology to 3D print a unique pair of heeled shoes, and an Indian company used 3D printing to reduce the production time for a 6 ft superhero.

Sinterit Releases New Software Update

Desktop SLS 3D printer manufacturer Sinterit just released a new update for its Studio software, which all Lisa and Lisa Pro 3D printer users will now be able to access for a better consumer experience. The update gives these users a lot of positive changes, including more detailed and precise 3D printing with its PA11 Onyx and TPU Flexa materials and optimized slicing, which makes it easier and faster to manipulate models, while also using less RAM.

Sinterit has also made it possible to stream video via WiFi from its 3D printers’ cameras, so users can keep an eye on their prints remotely. In addition, the 3D printers now have an easier step-by-step guide on the screen to make the startup procedure smoother, and a new “About” button on the menu is helpful for optimized model preparation inside Sinterit Studio.

Deutsche Bahn Using 3YOURMIND Software Solutions

German railway company Deutsche Bahn (DB) has been working hard over the last five years to continue developing its 3D printing division. Now, DB has joined industrial 3D printing software solutions provider 3YOURMIND in a strategic partnership in order to increase the efficiency of its 3D printing processes, and also determine possible 3D printing applications from around its company in order to assemble a digital spare parts warehouse. The Berlin-based company’s software platforms allow customers to exploit 3D printing potential with digital workflows, and 3YOURMIND supports DB’s ambition to expand its own additive manufacturing reach.

3YOURMIND’s software will give DB employees access to a simple digital interface so they’re able to quickly submit new ideas for 3D printable parts based on applications they encounter every day. Then, the platform provides an analysis and identifies uses cases with the highest production potential, before DB experts shine a spotlight on the employees and choose the best projects to send into production.

Medical 3D Printing in Sri Lanka

According to Dr. Rajitha Senaratne, the Health Minister for the South Asian island of Sri Lanka, 3D printing for health applications will now be available for the first time in the country beginning this month at the National Hospital of Sri Lanka (NHSL). Minister Senaratne made this announcement in Colombo – the country’s largest city – at the 26th Annual Scientific sessions of the College of Medical Administrators, stating that doctors can provide more personalized care by using modern technology like 3D printing.

In conjunction with this announcement, RCS2 Technologies, the country’s sole 3D printer manufacturer with its Thrimána line, will be working with the country’s Ministry of Health to start up a 3D printed prosthetic manufacturing project.

3D Printed Generative Heels

Talented designer Masaharu Ono, currently working for Japan’s DiGITAL ARTISAN.inc, is well-known for his creative 3D printed projects in both the fashion and technology worlds. Now he’s back in the fashion world with a 3D printed pair of high heels that you’ve got to see to believe. On the artisanal project “Generative Heel – Formless” for DiGITAL ARTISAN, Ono worked with casting company Castem, chemical manufacturer JSR, and 3D printing company Carbon to create the sky-high heels.

“This is concept model for mass customization, but I just getting ready, I will sell it as soon as possible,” Ono told 3DPrint.com.

3D Printed Window Spiderman

An Indian manufacturing company by the name of STPL3D received an unusual order from a traditional fine arts manufacturer: an extremely detailed, 6-foot Spiderman sculpture for the opening of a new entertainment store. Typically, a project like this would take closer to two months, but STPL3D’s given deadline was just one week away. Using 3D printing, the company was able to complete it in just four days, which helped lower the cost and weight of the sculpture as well. Digital sculpting was used to modify an open source file to better fit the client’s needs.

“Our production team wanted to take full advantage of our array of 15 FDM machines so we could finish the project before the timeline, so we divided the 6 ft* 4 ft sculpture into 20 parts, then our post-processing team assembled the spiderman in 6-7 hours with plastic welding and glue to bring it in real shape that was required by the client,” Hardik Prajapati of STPL3D told 3DPrint.com.

“Post processing is always fun and all about teamwork. Our artistic and post-processing team played a major role in finishing the project that had matched our client’s expectation.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

A3DM and GPA Innova collaborate to advance post-processing for metal additive manufacturing

Vermont-based metal additive manufacturing company A3DM Technologies, and Spanish advanced technology firm GPA Innova, have announced a partnership to advance the post-processing of metal parts produced by additive manufacturing. The partnership between the two companies takes the form of a Collaborative Research and Development Agreement. As part of the agreement, A3DM technologies will develop optimized […]