5 Next-Level 3D Printed Drones That Are Pushing the Industry Forward

As the applications of drones varies and grows, it becomes more and more important to develop specific designs that are based on its particular function. A drone built for delivery requires different specifications than a drone built for surveying or image capture. 3D printing is driving this evolution of drone technology by providing access to affordable rapid prototyping and customization and allowing faster innovation to occur. Whether it’s for disaster relief, mapping, or carrying heavy payloads, a drone can better serve its function with the time and cost efficiency and attention to detail that 3D printing provides.

Here are 5 drone projects that have pushed the
boundaries with the help of 3D printing:

Disaster
Relief X VEIN Drone by Team ROK

After the Great East Japan earthquake and tsunami brought disaster on a massive scale in 2011, Yuki Ogasawara and Ryo Kumeda of Team ROK were inspired to create a drone built especially for disaster relief and search and rescue. A few years later they used 3D printing and generative design to create their x-shaped X VEIN drone. Because disaster aid presents its own specific set of challenges, the team used 3D printing to be able to customize their drone based on their exact needs.

The design features freeform curves, and a 3D printed lattice-patterned body for maintaining minimal weight while still giving it the strength required to operate in difficult conditions. X VEIN is able to fly within a 500 meter range and can be equipped with thermographic and infrared-imaging and capture images that can be viewed in real time to access remote or obstructed areas and help locate survivors. Because many of its parts are 3D printed, if they are damaged on a mission they can be re-printed and replaced on site. 3D Printing was a crucial tool to be able to have the level of design freedom necessary to build a drone with these specific needs and it ensures that the drone can be further customized in the future depending on the situation at hand.

CargoCopter
by KU Leuven Researchers

Built to deliver payloads over long distances, KU Leuven research team created the 3D printed CargoCopter, a hybrid drone that combines fixed wings and multi-rotors so that it can take off vertically, hover and then fly horizontally. It was designed to expand the range and speed of traditional multi-rotor drones and thanks to its hybrid nature can efficiently transition from take-off to long-distance flight. It can carry up to 5kg, has a range of 60km and can fly up to 100km/hour. The team used 3D printing to rapidly prototype over 3 years to arrive at this model and their designs were able to quickly evolve. Thanks to the customization flexibility of 3D printing they are able to optimize each new CargoCopter design based on the needs of its particular mission.

BLUEROV2
Submarine Drone by Blue Robotics

Aerial drones are not the only ones making use of 3D printing. When Blue Robotics set out to build their underwater drones, they needed parts that could withstand the harsh conditions of the ocean and had trouble sourcing ones that were durable enough and weren’t overly expensive. They then turned to 3D printing to be able to prototype their own parts at a much more affordable rate. Using 3D printing to prototype also led them to customize parts to fit their exact needs. The BLUEROV2 comes with a high definition, wide-angle low-light camera with two or four lights to illuminate the ocean around it. It can travel to a depth of up to 100 meters and is built to withstand currents. The ROV is designed with expansion and modification in mind, and is fitted with a customizable frame to accommodate a range of functions.

The tiny drone named Piccolissimo. Image source: PennToday

Piccolissimo
The Tiny Drone by Matt Piccoli from UPenn

In 2016, Matt Piccoli from UPenn’s School of Engineering and Applied Science designed the world’s smallest steerable drone “Piccolissimo”. The tiny drone comes in two sizes: one weighs 2.5 grams and is the size of a quarter, and the other steerable version is 2 grams heavier and a centimeter wider. It was 3D printed using lightweight plastic. It has two moving parts, the robot’s body and motor, which spins one way 40 times per second, and its propeller spinning 800 per second in the opposite direction. Its motion is determined by how quickly the propeller and body are spinning, which can be controlled by infrared signals. The drone can carry a load of up to one gram, like a small camera or sensor. Its size suggests that it would be a fitting model for surveying or search and rescue missions, as a few hundred could be used to cover more ground than a single larger sized drone.

The
Int-Ball by the Japan Aerospace Exploration Agency (JAXA)

The Int-Ball, or JEM Internal Ball Camera was built using 3D printing to float aboard the International Space Station taking video and photo documentation. The spherical drone arrived on the ISS in June of 2017 and weighs 1kg, has a 15cm diameter and moves with 12 propellers. The Int-Ball features both internal and external components produced using 3D printing and is designed to float in a zero-gravity environment with the ability to move autonomously or be maneuvered by operators on Earth. It is set to reduce the crew’s workload by 10% by taking on image capturing duties.


3D printing helps to redefine what is possible when it comes to exploring and achieving innovation in drone technology. Its efficiency in prototyping and customization make room for a higher level of productivity and imagination, improving the way drones are designed and manufactured. If you are looking to create the next innovative drone, 3D printing is essential to facilitating the most efficient and flexible production process.

See how Shapeways can help your drone business transition to 3D printing!

The post 5 Next-Level 3D Printed Drones That Are Pushing the Industry Forward appeared first on Shapeways Blog.

Kickstart Your Innovations With 3D Prototypes

The advent of crowd funding has opened up an entirely new model for bringing innovative products to market. And with the added advantage of 3D printing, crowdsourcing products as a path to the consumer market has become more effective, efficient and successful.

A Kickstarter Requirement

While there are multiple options and websites that function as crowd-sourcing platforms (i.e. asking customers to pre-pay or fund a new-to-market item before it goes into production to cover the upfront investment costs), Kickstarter is undoubtedly one of the most popular and utilized.

As part of their rules and regulations, Kickstarter requires a visual of the prototype along with a description and use guide. They also note that a graphical or computer-generated image of a product is specifically prohibited. Kickstarter requires that companies present a looks-like, functional working model as a prototype to both explain the product and to entice potential backers.

This is precisely why 3D printing has been such an effective and essential tool for companies looking to crowd source projects through Kickstarter. Other techniques for creating a working model may require substantial financial investment upfront, and/or increased working hours. Tooling, mold making, sculpting by hand as well as less effective techniques like “kit bashing” (mixing and matching parts from existing products to create something new) all lack the advantages 3D printing provides – custom-designed, precise and affordable models that can function as prototypes and final products.

So what type of products benefit from 3D prototyping for Kickstarter? The simple answer is – almost anything. 3D printing is not limited to any one category or industry, and can offer different benefits for different types of Kickstarter product pitches. Here are three examples from three different businesses that utilized 3D printing in their Kickstarter campaigns.

Customize Your Vision  

Boulton Eyeware’s custom-made eyewear. Image source: Boulton Eyeware.

Boulton Eyeware ran a successful Kickstarter campaign where they received a total of £35,000  ($26,000) to fund their pre-production costs. Their unique concept was based on one simple premise: every human face is different. Just as customers have fitted suits created for their bodies, Boulton felt there was a market for custom sunglasses for each individual’s face.

3D printing excels in customization, which is why Boulton Eyeware turned to this process, not only for their prototype, but for actual production as well. In order to create a working prototype to use on Kickstarter, Boulton went through 70 different concepts refining and changing their materials and finishing until a satisfactory model was achieved. It was the ease of use, cost effective process and robust selection of material that made 3D printing the right choice for their custom product.

Customized For Coffee Lovers

Fellow’s Stagg EKG Electric Kettle and Atmos Vacuum Canisters. Image source: Fellow

The ability to experiment with functionality is another major advantage to using 3D printing for Kickstarter prototypes. Fellow started as a class project that blossomed into a startup business based in San Francisco. Their simplistic goal: to create the world’s best cup of coffee. 

Dubbing themselves “coffee loving nerds” the team at Fellow led by founder Jake Miller found inspiration from across the globe and throughout history. They reviewed coffee pot designs from as far away as Scandinavia, as well as mid-century industrial designs.

Where 3D printing came into play was in the functionality
aspect.  In order to find that perfect
design that would brew and pour the coffee of their dreams, Fellow engineers
made hundreds of 3D prototypes, constantly changing, modifying and updating
their design to achieve the ideal result they wanted.

Using 3D printing not only provided a cost-saving measure with the ability to constantly change designs at a low cost, but it allowed them to see how their product would take up space in kitchens and countertops. By working in 3D, their designs could be reviewed both functionally and aesthetically in the real world. It became much easier to review a physical model because it was to scale, letting designers hold, manipulate and brew coffee using their 3D printed models.

Getting into the
Action

Valaverse’s action figure. Image source: Valvaverse

Turning to the toy category, Bobby Vale, a former designer at Hasbro, saw a hole in the consumer market for 6” highly articulated action figures that represented military soldiers and the different divisions of our service men and women.

Aiming to please the discriminating “adult collector” who looks for features such as sculpting detail, paint deco and above all a large amount of articulation points (for posing and display), Bobby was set up for success. He modeled his Valaverse military figures off of the successful Marvel super hero products he worked on in his previous position. 3D printing became the key tool to show off these features to potential funders on Kickstarter.

Both the durability and flexibility of 3D printing were important factors in creating the Valaverse 3D prototypes for Kickstarter. In order to show off the high level of articulation, each part needed to assemble and work just like a mass-produced action figure. The materials offered by 3D printing not only permitted his prototypes to articulate, but they could assemble and function exactly as finished products would. This permitted the most accurate and true-to-final prototype to illustrate his Kickstarter concept to potential backers.

All the Features You Need

3D printing is becoming more and more the go-to technology for prototyping visual models for crowd-funded campaigns.

At Shapeways, we offer 3D printing benefits that go above and beyond what consumers may find elsewhere. In addition to a vast selection of materials (over 75!) and the best quality checks by 3D printing engineers, printing with Shapeways requires no equipment to purchase or maintain. We handle all of the fast turnarounds and deliver exactly what you need to succeed for your campaign.

Whether you are looking for customization, to test out functionality, or demonstrate features that work like finished goods, 3D printing can be your best solution. The Shapeways team is here to provide all of your 3D prototyping needs in one place.

learn more

The post Kickstart Your Innovations With 3D Prototypes appeared first on Shapeways Blog.

How 3D Printing Helped Atlas Games Achieve Kickstarter Success

For over three decades Atlas Games has been in the business of fun. As a game innovator, their focus has been on tabletop play, including traditional card games, board games and roleplaying games.

Their latest endeavor Dice Miner is a dice-based game that for the first time in the company’s history was pre-sold through a Kickstarter campaign. Because of the high expectations Kickstarter funders have, an early visual of the product was necessary to show off the new game to potential backers.

In order to create these visual components, Atlas Games sought out our 3D printing services to prototype the game pieces they needed, and were able to utilize 3D printing for fast and cost-effective solutions from early prototyping to final-stage designs.

Jeff Tidball, Chief Operating Officer of Atlas Games, has a deep passion for games. For a look behind the scenes at Atlas Games’ newest creation, we interviewed Jeff to find out how the advantages of 3D prototyping was critical for Dice Miner’s Kickstarter success.

Could you give us a quick summary about Atlas Games as well as your latest game, Dice Miner?

Atlas Games is a tabletop game publisher with a 30-year history and deep catalog of board, card, and roleplaying games. We’re best known for card games like Gloom and Once Upon a Time. Dice Miner is a dice drafting game with 60 custom dice and a unique mountain component that organizes the dice across each game’s three rounds, showing which dice are available to choose at any given time as the game unfolds.

Dice Miner’s Deluxe Edition mountain. Photo source: Atlas Games

What was the purpose of using Shapeways to make prototypes for Dice Miner?

Dice Miner’s Deluxe Edition will have a plastic PVC mountain, so we used Shapeways to prepare early prototypes of that component. We used Shapeways for two purposes. First, to playtest using components as close as possible to the final version, to make sure they performed as we expected at the table. Second, to evaluate their producibility while holding physical objects, as opposed to needing to evaluate them only on screen, or in our imaginations. 

How did you come to the decision to use 3D printing instead of other manufacturing methods?

Other manufacturing methods, to produce only one or two copies of a component like Dice Miner’s Deluxe Edition mountain, simply do not exist. (Maybe we could have hired someone to hand-sculpt one? I don’t even know.)

Did you already have technical knowledge in 3D printing? If not, was there a learning curve to getting into this technology?

Prior to Dice Miner, I had done very little 3D printing for a previous game’s miniatures prototype, also with Shapeways. However, we had the help of a consultant we had hired to create our plastic components, so we were able to use his model directly to produce the prototypes we used. So there was not much of a learning curve, but that’s because we had hired folks to help us already.

3D prototype of Dice Miner’s Deluxe Edition mountain. Photo source: Atlas Games

What material(s) do you print in and why?

We went with [Versatile Plastic, which are] cheap and fast for our game components. We were looking solely at form and function, rather than having any particular materials requirements.

How much time and/or cost were you able to save by prototyping with Shapeways versus using another method?

I don’t really have anything like that [to compare], since the other options don’t really exist. I suppose you could think about the complete disaster that would arise if a $3,500 mold was created wrong — having a physical prototype can help avoid that instance. Although it’s a small change, spending one or two hundred dollars to hedge against that downside seems pretty reasonable. Creating early prototypes also helped us get an advanced copy to an outside previewer, which helped illustrate to potential campaign backers how the game is played. Waiting for copies of the game from the production line would have simply been impossible. Without a preview of the game, I suspect fewer backers would have been comfortable joining the Kickstarter. Again, no hard-and-fast metrics, but I suspect we’d have left money on the table without being able to preview the game in that way.

Dice Miner box set. Photo source: Atlas Games

Not only was Atlas Games able to succeed on Kickstarter, but they surpassed their goal by almost $80,000. Our 3D prototyping solutions were instrumental in this process by providing a simple and cost-effective means to creating a visual preview of the game.

And more importantly, game fans would now be able to “draft the dice” in Dice Miner with the empowerment that they helped make the game happen by supporting it on Kickstarter!

Are you creating a new game or product for an upcoming Kickstarter campaign? Find out how Shapeways can help with your rapid prototyping needs today.

The post How 3D Printing Helped Atlas Games Achieve Kickstarter Success appeared first on Shapeways Blog.

10 Reasons Product Designers Prototype With 3D Printing

Prototyping is a necessary stage in product development that can be time consuming and expensive for product designers, sometimes taking weeks-long chunks out of the development process. But as 3D printing technology has entered the scene, rapid prototyping has become its most popular application in all areas of design whether it be in jewelry, architecture or engineering, and more, because it facilitates the product design process considerably. Using 3D printing for rapid prototyping, designs can be tested and improved at a higher rate, therefore increasing production efficiency and cutting costs. Realistic iterations can be printed quickly for any stage of the design process, from a concept model to a functional prototype, and allow the designer to explore a physical piece to improve and avoid problems early on.

Want to learn more? Here are 10 ways rapid prototyping with 3D printing streamlines the design process:

1. Optimize The Design Using 3D Software

By creating the blueprints for the prototypes
and final design in 3D software, any edits or improvements to that design are
reflected accurately and promptly. The design can be visualized enough at this
initial stage to reduce any errors of communication and to make early
improvements that will save substantial time during the prototyping and
production stages. If the product or part requires customization, this design
can be revisited and expanded upon at any time.

2. Take Advantage of Form Freedom

3D design allows for the creation of complex geometries
that might not be as attainable in other processes. This allows for expanded
freedom in the design and the final shape of the product can only be limited by
the designer’s imagination. This flexibility makes it possible to produce a
professional proof of concept of innovative and original pieces without
sacrificing additional time or costs in the development process.

3. Save Time in Prototype Production

In traditional prototyping, the product designer or engineer would use materials such as cardboard, styrofoam or wood to create initial prototypes, then move on to creating functional prototypes using manufacturing processes typically used for finished products. This is often a costly and time-consuming process, and often not a practical use of resources when the product is still in the developing stages. With 3D printing, a prototype at any stage of the design process can be printed quickly and provide the exact information needed in that stage whether it is a proof of concept or a functional prototype. When developing a part, being able to reiterate quickly and affordably is crucial, and 3D printing facilitates that need for all stages of prototyping.

4. Save on or Eliminate Tooling Costs

3D Printing acts as an all-in-one production method for low-volume production and for rapid prototyping. The technology eliminates the need to gather other manufacturing components or machines. Manufacturing methods like injection molding are much more costly to set up, especially for small quantities, and make creating custom prototypes very expensive and time consuming.

5. Create More Time for Designing and Customizing

Instead of having to wait weeks for a prototype
to be constructed by hand or for a mold to be made, prototypes can be 3D
printed in a matter of hours or days depending on its size. It allows for
mistakes to be fixed more quickly and for the design to evolve at a much higher
rate, leaving more time for further innovation, customization or moving on to
the next design.

6. Save Time Communicating Ideas and Information

When a product or part is being developed, it is extremely important to be able to communicate without misinterpretation and to leave as little to the imagination as possible when discussing with a client or any other involved parties. 3D printed prototypes look more professional and can communicate details better than a 2D drawing. This enables more viable and specific feedback for revisions to be made quickly and efficiently. The better the level of information in prototyping stages, the better the final product.

7. Choose from a Wide Range of Materials Depending on Each Iteration’s Purpose

Different materials can be used based on different prototyping stages to illustrate or explore the integrity of the design. Early iterations can be printed in more affordable plastics such as our Versatile Plastic, while later, more refined versions can be printed in different materials to fit the specific needs or testing requirements of the product. Many of our materials are end-use ready, saving you the need to look for a manufacturer once the product is market ready.

8. Minimize Material Usage Where Possible

In initial stages of prototyping different printing methods can be used to save on materials. If a version of a prototype is meant to show the shape alone, for example, it can be scaled down and hollowed out. Lattice or honeycomb designs can be used for surfaces to cut down on materials and costs while still communicating key information about the part or product. The on-demand nature of 3D printing eliminates material waste during the prototyping stages.

9. Use 3D Printing Services for Prototyping

You can save a lot of money on equipment start-up costs by working with 3D printing services like Shapeways. By printing with a specialized service you do not need to own any printers or materials, your model will be reviewed by engineers before they are printed, eliminating trials and errors encountered when using your own machine. You are guaranteed a high level of quality control, the use of industrial-grade printers and should you need technical assistance, your inquiries will be answered by experts in the 3D printing space.

10. Use Realistic Prototypes for Marketing and Sales Needs

Once the final design has been revised and refined to satisfaction, realistic prototypes can be used to get a head start on marketing and sales promotions. A visual model of the product can be used before money is spent on manufacturing to test with potential customers, for use on a sales floor or to send your products to beta testers to help validate the design.

3D printing is a crucial tool for designers to facilitate a more efficient prototyping process. It saves time and money and also generates a higher level of design freedom, and improves communication with clients and prospective customers. By making the prototyping process faster and without sacrificing on quality, this helps design innovation maintain a competitive edge.

Ready to start prototyping your next idea, part or product with Shapeways? Upload your design now or get in touch with our team to discuss your unique innovation.

learn more

The post 10 Reasons Product Designers Prototype With 3D Printing appeared first on Shapeways Blog.

The World’s Best Sleep Fan Is A Fan Of 3D Printing: Rapid Prototyping With SNOOZ

SNOOZ is known as the world’s best-sounding white noise machine. The device, which houses a real fan, creates white noise to encourage sleep — without either the annoyance of a looping soundtrack or unwanted cold air in cooler months. The best-selling system is seeing success in travel and home use as the sleep fan continues to gain fans around the world.

Working with Shapeways to 3D print dozens (and dozens and dozens) of designs to reach the ideal sound system, the SNOOZ team cut substantial time and costs in their production process by rapidly prototyping. The savings over traditional machining was major enough that this Las Vegas-based startup has now been working with Shapeways for more than five years — and still has more product work with us in the pipeline for the next devices.

We interviewed SNOOZ CTO and Co-Founder Eli Lazar to dig into how SNOOZ utilized Shapeways’ 3D printing technology and services to make a new product possible.

SNOOZ Co-Founders Eli Lazar (left) and Matthew Snyder. Photo source: SNOOZ

Having parts machined was always an option too, but from our experience, that is 10-25x higher cost [than 3D printing], and perhaps 10x slower, which was just not an option for us.

Eli begins by laying out the big picture:

“The Shapeways printing service has really been instrumental to the success of our product and company. Our product is a specialized fan for sleeping, and in the quiet of a bedroom you can literally hear every frequency, so any unwanted tones people will pick up right away. We used Shapeways to print probably 100+ variations of our product to perfect the acoustics and create our signature sound.

As a result, by the end of this year we will have sold nearly 100k units, and we have a 4.7 star rating on Amazon (without manipulation) with nearly 1,500 reviews. SNOOZ is also used in nearly 2,000 hotel rooms across the country as well. 

To be very direct, without having access to the Shapeways printing service our product would not have been nearly as good as it is today, or perhaps, not a success at all. Shapeways gave just two average guys with very limited finances access to world class rapid prototyping at an affordable price. That has really made the difference in our product and the reviews we have received. In fact, we found the precision from Shapeways prints to be so good that when we machined our actual plastic molds for production, we didn’t have to do any changes and were able to go to production much faster and at a lower cost. We also have two new products coming out this year, both of which have been prototyped on Shapeways, and we have started on developing a new product which will be using Shapeways again for.”

After prototyping 100+ variations, SNOOZ created a market-ready product. Photo source: SNOOZ

At the beginning, how did you come to the decision to use 3D printing instead of other manufacturing methods?

“Without 3D printing, I am not sure we could have ever developed a viable product, or at least one that people actually liked. Our fan blade is entirely custom, and small details make a huge difference. A 1-degree extra twist in the blades or 1mm extra length or width of the blades, and it generates a whole different set of tones. You can use software to simulate the acoustics for a fan blade design, and we did do quite a bit of this. However, these simulations can take up to a few weeks to run, and they are really not accurate enough to predict the subtleties that we were interested in. The best way I can explain this is that a stringed piano is always acoustically superior to a digital keyboard, because the timbre (perceived sound quality) of real sound is just better than any digital replica. With that said, we had to make actual parts. Having parts machined was always an option too, but from our experience, that is 10-25x higher cost, and perhaps 10x slower, which was just not an option for us.”

Did you already have technical knowledge in 3D printing? If not, was there a learning curve to getting into this technology?

“We didn’t have any prior experience with 3D printing before SNOOZ. It was actually for this reason that I was drawn to the Shapeways website. A lot of other 3D printing services seemed to put the burden of getting the print right more on the user. When we first started using Shapeways in 2015, I think you were the only online platform where you could instantly get your 3D CAD analyzed for printing with a quoted price. Even still, I think Shapeways has the most user friendly website for 3D printing. The only learning curve was figuring out what tolerances to use so parts could snap together well. However, since I found Shapeways prints to be repeatable and accurate to the CAD, every time, it became pretty easy. I actually use the same tolerances we figured out worked in 2015 to this day, and that is nearly a five year span.”

Components of SNOOZ, a portable white noise sound machine. Photo source: SNOOZ

What material(s) do you print in and why?

“We have printed in SLA, Versatile Plastic (Nylon), and PLA (which you guys offered shortly). However, Versatile Plastic is our preferred choice for prototyping. The main reason is the strength of the parts. We actually produce some parts out of Nylon and the strength and flexibility of a 3D printed part is definitely on par with a Nylon molded part that comes out of an industrial factory.”

Are you able to share any quantifiable metrics on the time and/or cost you’ve saved by prototyping with Shapeways?

“I found an early quote to machine a single part for $381 that we eventually ended up just 3D printing with Shapeways for about $30. Since then, we have printed over 100 parts, so the savings has literally made the difference in us being able to afford to start SNOOZ. Also, in terms of timing, it is absolutely incredible to be able to design a part on Monday and have it in your hand within a week or so. If the legendary inventors of the past had access to this technology, the world would be a vastly different place today.”

SNOOZ has sold tens of thousands of units since 2015. Photo source: SNOOZ

By rapid prototyping with 3D printing, the
SNOOZ team was able to test out more than 100 designs to find their perfect
acoustic fit — and then translate the final prototype directly into scale
production. The ease with which SNOOZ put the pieces together, at a literal
fraction of the cost of traditional machining, highlights the effectiveness of
3D printing throughout the product development cycle. And today? We’re SNOOZ’s
biggest fans!

Find out how Shapeways can help with your rapid prototyping needs today.

The post The World’s Best Sleep Fan Is A Fan Of 3D Printing: Rapid Prototyping With SNOOZ appeared first on Shapeways Blog.

Creating Permanence – Why Prototyping in 3D Leads to Greater Success

Innovation has been a driving factor in our society from the very beginning. Ever since humans first made stone tools for carving, our world has been driven by innovating the “new.” 150 years ago, business leaders were often quoted that “everything that could be invented has been.” As we recharge our smart phones and watch private companies lift off into outer space, it is clear this thought is far from true.

For companies that focus on innovation, it is not only new ideas that drive their business, but also new tools that help to transform these ideas into working prototypes that help them achieve ongoing success.

For thousands of years it has been the pen and paper that has stood out as the primary tool for visualizing innovative concept in prototype form.  While writing instruments have unlimited capabilities in the 2D medium, in the end, the sum of their parts as a tool is limiting. Drawings, designs and sketches are by their nature restrictive and passive in scope. They are flat, 2D and can only be described as “plans on paper” or blueprints.

We are very fortunate to live in a time when designers have more tools than ever to assist in the visualization of their inspiration. And there is one tool in particular whose full power is unleashed when specifically applied to the prototyping process.

I’m talking about 3D printing.

What is Permanence? Turning An Object From Passive to Active

Whether the concept of 3D printing is foreign or familiar to you, there is no denying that this revolutionary technology by its very nature allows objects to transition from concept to permanence. And this is a key factor when applied to the prototyping process. So what is “permanence” and why is it important?

Permanence is the metamorphosis of an object, concept or expression from the 2D to the 3D. And what comes with permanence is not just the ability to visually see an object from multiple angles. Its major ontological impact is that an object with permanence is experienced actively.

What this means is that a drawing, a cartoon or a doodle is viewed in a passive experience. Like a comic book or a movie, you see it, and then you look away. There is no interaction. There is no weight, no tactile contact, no long-term interaction with the observer.

But an object with permanence is transformed into an active
experience. It is in three dimensions of space. It has weight, it has tactile integration.
And this emotional connection is key to the prototyping process.

With a 3D object, the observer can experience it in
countless ways that a passive drawing does not permit. How will gravity effect
it? What does it feel like? How does it look on a shelf with other objects when
moved from point A to point B?

Our 3D printing solutions allow design firms to generate a new design into a fully-rendered concept that one can hold, touch and interact with, and provides not only permanence as noted above, but also creates a path to improvement and redesign that 2D drawings never can.

Holding a 3D printed prototype in your hand allows you to
examine its faults, advantages and perhaps even discover capabilities you
didn’t even know it had. No longer are you limited to viewing your blueprints
and imagining what a design would look like, the 3D printing revolution has now
given you the power to examine, refine and redesign your creation in a way
never before permitted.

Give Potential Customers An Experience, Not A Presentation

When designers are limited to presenting their ideas in a
passive way it maintains a passive presentation. Anyone that is reviewing your
design, invention or concept when looking at a drawing does not experience a
solid relationship with that prototype concept. They view it, and then they
turn away (or cease viewing it). A passive experience.

A designer from our community tests out HP Nylon Plastic

But when holding a 3D model of your prototype in their hand – that is an active experience. And the emotional connection this creates is exponentially greater in creating positive feelings and interest in said prototype.

Using 3D printing, you can now transform a prototype from passive to active. No longer is your audience limited to merely viewing your prototype. They are now experiencing it. A 3D object cannot be avoided or ignored or experienced passively. And the ability to prototype this way is a major advantage to 3D printing.

The Exact Part You Need

The advantages of 3D printing prototypes does not stop with helping to create permanence and an active experience.

In addition to making your design into an active experience,
3D printing also allows for trial and error in the real world. And it allows
for an exact transformation of your imagination into reality.

Often design firms are limited by “parts on hand” when
creating what is termed a “looks like” or even a “works like” prototype model.
But with the revolution of 3D printing, any part, angle or object needed to
accurately represent or even function like your creation is now accessible.

Gone are the days when a broom handle and a stack of glued-together poker chips are substituted for the exact design you have in mind. With the advent of 3D printing, a 1:1 duplicate of your mind’s creation can now exist. And because it is in 3D, all of the advantages of permanence and an active experience as described above are now infused in your prototype.

With the new tools and powers provided by 3D printing, prototyping has not only become easier, it leads to designs that are exact duplicates of your imagination. No longer does your audience need to interpret a drawing or experience your invention passively. Creating a “looks like” model is now replaced with “a model.”

And how amazing is that!


Want to learn more? We’re here to help with your prototyping needs.

learn more

The post Creating Permanence – Why Prototyping in 3D Leads to Greater Success appeared first on Shapeways Blog.

Creating Permanance – Why Prototyping in 3D Leads to Greater Success

Innovation has been a driving factor in our society from the very beginning. Ever since humans first made stone tools for carving, our world has been driven by innovating the “new.” 150 years ago, business leaders were often quoted that “everything that could be invented has been.” As we recharge our smart phones and watch private companies lift off into outer space, it is clear this thought is far from true.

For companies that focus on innovation, it is not only new ideas that drive their business, but also new tools that help to transform these ideas into working prototypes that help them achieve ongoing success.

For thousands of years it has been the pen and paper that has stood out as the primary tool for visualizing innovative concept in prototype form.  While writing instruments have unlimited capabilities in the 2D medium, in the end, the sum of their parts as a tool is limiting. Drawings, designs and sketches are by their nature restrictive and passive in scope. They are flat, 2D and can only be described as “plans on paper” or blueprints.

We are very fortunate to live in a time when designers have more tools than ever to assist in the visualization of their inspiration. And there is one tool in particular whose full power is unleashed when specifically applied to the prototyping process.

I’m talking about 3D printing.

What is Permanence? Turning An Object From Passive to Active

Whether the concept of 3D printing is foreign or familiar to you, there is no denying that this revolutionary technology by its very nature allows objects to transition from concept to permanence. And this is a key factor when applied to the prototyping process. So what is “permanence” and why is it important?

Permanence is the metamorphosis of an object, concept or expression from the 2D to the 3D. And what comes with permanence is not just the ability to visually see an object from multiple angles. Its major ontological impact is that an object with permanence is experienced actively.

What this means is that a drawing, a cartoon or a doodle is viewed in a passive experience. Like a comic book or a movie, you see it, and then you look away. There is no interaction. There is no weight, no tactile contact, no long-term interaction with the observer.

But an object with permanence is transformed into an active
experience. It is in three dimensions of space. It has weight, it has tactile integration.
And this emotional connection is key to the prototyping process.

With a 3D object, the observer can experience it in
countless ways that a passive drawing does not permit. How will gravity effect
it? What does it feel like? How does it look on a shelf with other objects when
moved from point A to point B?

Our 3D printing solutions allow design firms to generate a new design into a fully-rendered concept that one can hold, touch and interact with, and provides not only permanence as noted above, but also creates a path to improvement and redesign that 2D drawings never can.

Holding a 3D printed prototype in your hand allows you to
examine its faults, advantages and perhaps even discover capabilities you
didn’t even know it had. No longer are you limited to viewing your blueprints
and imagining what a design would look like, the 3D printing revolution has now
given you the power to examine, refine and redesign your creation in a way
never before permitted.

Give Potential Customers An Experience, Not A Presentation

When designers are limited to presenting their ideas in a
passive way it maintains a passive presentation. Anyone that is reviewing your
design, invention or concept when looking at a drawing does not experience a
solid relationship with that prototype concept. They view it, and then they
turn away (or cease viewing it). A passive experience.

A designer from our community tests out HP Nylon Plastic

But when holding a 3D model of your prototype in their hand – that is an active experience. And the emotional connection this creates is exponentially greater in creating positive feelings and interest in said prototype.

Using 3D printing, you can now transform a prototype from passive to active. No longer is your audience limited to merely viewing your prototype. They are now experiencing it. A 3D object cannot be avoided or ignored or experienced passively. And the ability to prototype this way is a major advantage to 3D printing.

The Exact Part You Need

The advantages of 3D printing prototypes does not stop with helping to create permanence and an active experience.

In addition to making your design into an active experience,
3D printing also allows for trial and error in the real world. And it allows
for an exact transformation of your imagination into reality.

Often design firms are limited by “parts on hand” when
creating what is termed a “looks like” or even a “works like” prototype model.
But with the revolution of 3D printing, any part, angle or object needed to
accurately represent or even function like your creation is now accessible.

Gone are the days when a broom handle and a stack of glued-together poker chips are substituted for the exact design you have in mind. With the advent of 3D printing, a 1:1 duplicate of your mind’s creation can now exist. And because it is in 3D, all of the advantages of permanence and an active experience as described above are now infused in your prototype.

With the new tools and powers provided by 3D printing, prototyping has not only become easier, it leads to designs that are exact duplicates of your imagination. No longer does your audience need to interpret a drawing or experience your invention passively. Creating a “looks like” model is now replaced with “a model.”

And how amazing is that!


Want to learn more? We’re here to help with your prototyping needs.

learn more

The post Creating Permanance – Why Prototyping in 3D Leads to Greater Success appeared first on Shapeways Blog.

The Future Of Aerospace 3D Printing

Innovations in the aerospace industry have been seeing huge strives when it comes to 3D printing. Aerospace companies and organizations from around the globe are using 3D printing for both prototyping and end-use parts. These applications have been ramping up for years — and now we’re looking ahead to the future of 3D printing in aerospace.

Aerospace
3D Printing Today

Aerospace is a unique fit for 3D printing, offering a prime application area for many of the benefits of additive manufacturing technologies. Among these benefits are:

  • Part consolidation
  • Lightweighting
  • Complex geometries (“freedom of design”)
  • Rapid prototyping
  • Low-volume production
  • Digital inventory

Leveraging these benefits is proving
transformative for aerospace manufacturing as today’s aircraft, rockets, and
other commercial, private, and military aerospace builds are increasingly able
to perform better than ever before. Fewer, lighter parts mean fewer assembly
points that could be a potential weakness as well as a lighter weight
structure, enhancing fuel efficiency and load capabilities.

Aerospace has long been a ‘city on a hill’ for
additive manufacturing, offering highly visible proof points of the
technology’s high-flying potential to very literally fly high.

Like in the automotive industry, many
aerospace entities have been using 3D printing internally for years, if not
decades. Also like the automotive industry, though, many companies have seen
the technology as a competitive advantage best kept somewhat under wraps. This
has perhaps benefited these companies’ bottom lines — but it has limited the
visibility of these applications.

The GE fuel nozzle — which famously reduced from approximately 20 welded pieces into one 3D printed (and 25% lighter weight) piece — was among one of the highest-profile individual applications to be publicly shared. Such use cases are only ramping up; between 2015 and 2018, for example, GE 3D printed 30,000 of those fuel nozzles. Still, though, these examples are often heard over and over again because many other specific use cases are still seen as proprietary ‘secret sauce’ and not public knowledge.

The cat’s out of the bag by now, though, and
it’s almost an assumption that any aerospace company is in some way utilizing
3D printing in its operations.

From SpaceX and NASA to Boeing and Airbus,
this is certainly the case. These companies are among the highest-profile in
aerospace to share at least some look into their 3D printing usage.
Applications range from visible cabin components in passenger airplanes to
made-in-space tools on the International Space Station, with both mission
critical and aesthetic uses well represented.

The secrecy of ‘secret sauce’ is slowly
changing, too, as in addition to broadening adoption of 3D printing, space
exploration is becoming privatized.

Organizations like SpaceX certainly have their fair share of trade secrets but are also open about their use of 3D printing in applications from spacecraft to personalized astronaut helmets. 3D printing is often coming into play as well to not only make components of rocket engines, but also in new uses such as at Rocket Crafters for their fuel grains.

Smaller, private companies working in the
space industry are celebrating the technologies they use to gain traction in
technological advance and out-of-this-world achievements. By highlighting
instead of hiding the tech helping them to accelerate toward their own
liftoffs, these new entities are contributing directly to a shift in the
conversation around aerospace technologies.

Aerospace
3D Printing Tomorrow

When we look ahead, we can see an even brighter
future for an aerospace industry making more and better use of additive
manufacturing opportunities.

While certainly the technologies will improve,
providing natural points of improvement even from those areas already
leveraging additive manufacturing, the largest single point of future impact
for aerospace overall will simply be wider spread adoption.

While the 3D printing industry has
historically been excellent at internally sharing the benefits of the
technology (like those bulleted above), a sticking point has been in
externalizing this message. Aerospace becoming a more open industry with these
new private entities on the rise, and with more participants discussing the
advanced technologies they put to use every day, will see industrial additive manufacturing
gaining more attention, and more traction, overall.

If the GE fuel nozzle made anyone do a
double-take, the next innovations to come — or even those already accomplished
and not yet publicized — are sure to be fully head-turning.

Further parts consolidation, lightweighting,
and other means of taking advantage of the freedoms that DfAM (design for
additive manufacturing) enables have the potential to see massive advances in
aircraft and spacecraft manufacture.

By optimizing every part of an aircraft,
completely rethinking and redesigning the whole, a manufacturer might see
unprecedented capabilities emerge. In an industry where every ounce of
structural weight matters and lessening any possible point of failure is a
must, industrial 3D printing is an obvious fit.

The technology will only continue to make headway into the aerospace industry going forward, and with that larger general footprint will come more significant discrete advances. The future of aerospace and 3D printing is a relationship that will be ever more tightly intertwined.

learn more

The post The Future Of Aerospace 3D Printing appeared first on Shapeways Blog.

The Business Case For 3D Printing Prototypes

If practice makes perfect, then prototyping should lead to the perfect final product. But how does your business select the best-fit technology to prototype?

Dozens of options are available to choose
among when making a prototype. We’re going to explore why businesses are
choosing 3D printing for their prototypes.

Prototyping
From Concept To Creation

Prototyping typically involves a number of
stages, each requiring a physical product made to meet the needs of a
go-to-market step of a new design and subject to an array of testing
procedures.

These, broadly, include:

  • Concept
  • Assembly / Fit
  • Functional
  • Life Test
  • Regulatory

From a rough conceptual creation that prioritizes speed and appearance, a prototype is necessary to bring a design from idea to the physical. The earliest stages of prototyping often require the fastest turnaround in fabrication, as getting an actual object in hand is the only way to gauge viability for product development.

As each stage of prototyping progresses,
though, needs change. The prototypes must become less rough around the edges as
those edges will be subject to testing for fit, functionality, mechanical
properties, and other physical needs.

A final prototype may often be visually if not
tactilely indistinguishable from an end-use product, which can help in showing
potential investors or creating marketing materials for a new product even
before mass production ramps up.

Speeding
Time-To-Market With Rapid Prototyping

3D printing is a young technology suite, and
one with many names. While it is increasingly referred to as additive
manufacturing today, with end-use part production possible, most notably for
low-volume or spare parts manufacture, the technology’s first nomenclature in
the 1980s was synonymous with its initial primary use: rapid prototyping.

When you speak to someone who’s been in this
industry since its early days, they may still naturally refer to “rapid
prototyping” or “RP” more often than “3D printing” or “additive manufacturing”
through many years of ingrained habit.

Decades later, rapid prototyping remains the
primary application for 3D printing technologies across the world.

What is it about 3D printing that adds the
“rapid” to “prototyping”? Digitization.

Taking a 3D model directly to a 3D printer for
fabrication speeds the process of prototyping. Digital models can be made quite
quickly using a variety of 3D printing technologies, removing the needs for
many steps in other, more traditional fabrication technologies. No tooling is
needed, for example, nor is there a waiting period while molds are made and
filled. It’s also much faster and more precise than hand-fabricating.

Additive manufacturing adds material, rather
than removing it from blocks as is done in subtractive methods like CNC, saving
on costs of materials that even for prototypes can run up total project costs.

3D
Printing Process & Materials For Prototyping

The selection of 3D printing process and
material can be adjusted for specific needs at every stage of product design.

During initial prototyping stages, a low-cost
material can be used with low infill and thicker layers, lowering material
costs and speeding print time to create a rough-and-ready first look at a new
design.

Whether plastic or metal, 3D printing can
quickly fabricate a product that will come to look and feel just like the
desired end result.

By starting with a low-cost plastic material
and moving after a few iterations to metal, for example, a product that will
eventually be conventionally fabricated using metal can come to market much
more quickly than would be the case by machining each iteration — a
traditional pathway that ultimately costs much more in terms of time, money,
and labor.

Following early proof-of-concept stages,
subsequent versions can be made similarly quickly to get to just the right look
and fit before moving into more finessed prototypes. Tweaking a digital file to
adjust for better look, fit, appropriate scale, or other needs can be done
quickly, with a next iteration 3D printed potentially same-day.

Some 3D printing options, like HP and Carbon, also enable the capability of prototyping and producing on the same system or family, as different materials and parameters can move ever closer to a market-ready product. By iterating on the same system that will be used for the final product, quality control can be kept in-hand every step of the way, meaning there are no surprises when the first end-use production begins.

3D
Printing For Prototyping

When working with a service bureau like
Shapeways, additional expertise and access to different technology suites comes
into play for a high-quality experience every step of the way.

Shapeways’ rapid prototyping services offer:

Fast Turnaround

Our quick print turnaround times ensure that you’ll get your prototypes back faster than you would with traditional manufacturing processes.

Variety of Materials

Our wide selection of materials allows you to test your products in everything from plastic to metals.

Reliable Quality

Our high quality enables you to assess factors such as ergonomics, usability, manufacturability, and material testing.

When it’s time to move to the next phases of prototyping, a different 3D printing process and/or material may be in order to start getting into the right look and feel for a final product. Working with an experienced service partner offers helpful guidance in making these selections and moving on rapidly to the next iteration, ensuring the right choice is made at every step and keeping your project on track, on time, and looking just as you designed it.

learn more

The post The Business Case For 3D Printing Prototypes appeared first on Shapeways Blog.

Game Design and 3D Printing – A Perfect Partnership

Inherent to the 3D printing revolution are several amazing design
aesthetics that are ideal for prototyping toys in the game category.

Whether your game time involves traditional board games like Monopoly and Clue or you are an RPG (Role Playing Game) enthusiast engaged in dice-based fantasy like Dungeons and Dragons; the application of 3D printing can be a perfect fit.

Let me explain!

Perhaps you are a game designer looking to find ways of adding unique playing pieces to you game prototype. A quick review of existing board games provides a clear insight into how 3D printing can offer a great path to success.

The Aesthetics of Game Piece Design

No matter the board game, playing pieces have two key features that make them ideal for 3D printing:

1) Game tokens are never articulated

2) They are always a single bright color

Why is this? Functionally, these two design parameters have
been part of the manufactured gaming category for decades because both design
choices make the playing pieces simple to move around the board and visually
stand out to each of the players.

Whether one is looking at the “pawns” of Sorry or the silver object pieces of Monopoly, the essential play pattern of a board game requires players to easily identify all of the objects on the board (or “field”). And because board games require a higher cognitive level (compared to building blocks or action figures/dolls) the market is almost always an older child or adult, removing much of the risk of toy safety issues.

Not Just Classic Games, But Ancient Games!

Even going back to ancient games like Chess, the success and popularity of the board game was directly dependent on players being able to quickly recognize both their own pieces and their opponents. Likewise, visual identification within your own pieces is just as essential. Reviewing a Chess set, while the material for the pieces can vary from metal, porcelain, wood to plastic; the shape of the individual pieces are unique.

Like the colors of the two opposing “armies,” shape in game pieces like Chess help players (and spectators) to quickly identify each type of piece and likewise their unique abilities/moves. A queen’s silhouette looks nothing like a rook, and good luck mixing up a knight and a pawn visually!

An even more simplistic example that also supports the need
for uniform shape and color is Checkers – or even Chinese Checkers. Both games
consist of “armies” of a single color attempting to outwit the opponent’s
pieces and move across a game field. Unlike Chess, Checkers in all of its forms
has one unified shape for all of the pieces. Color is the single factor used to
identify your team versus your opponents.

In modern manufacturing and licensing, there have been a
fantastic amount of Chess and Checkers sets that break these basic visual
rules, and to be honest, doing so often leads to versions of games that are
surprisingly more difficult to play.

As an example, in licensed Chess sets where the traditional-shaped pieces are replaced by characters from a specific intellectual property (i.e. Star Wars, Super Heroes, Harry Potter, etc) adding colors and unique shapes to every piece may make them visually fun to look at for a fan, but at the same time it makes them exponentially more difficult to identify during play. While these sets are fun to collect and display, attempting to play out a game with multi-colored, multi-shaped pieces adds to the difficulty of playing the game itself.

Why Simplistic Design is Needed for Game Pieces

The goal of a board game is to win, and winning takes more than strategy, skills or luck; it also takes focus and concentration. Simplifying the game token shape and using uniform single colors is a proven tactic for successful game design. This is the reason that manufactured games for the last 80 years have embraced this aesthetic technique. Likewise it is the reason handmade game sets going back thousands of years have also utilized this concept.

The human eye is instinctively drawn to color and shape and those are two of the major advantages to 3D printing game pieces with Shapeways.  3D printing is maximized when a single color and single shape are generated. The board game category is literally dependent on this design choice.

And 3D prototyping is in no way limited to designing playing pieces. Take a quick look at almost any board game and you will note that almost every part of the game that is not “the board” (usually made of cardboard or mashed pulp) is also a simple shape molded in a single color.

From the hotels and houses of Monopoly, to the large white spinner of Life. The list goes on and on. Weapons in Clue, avatars in Dungeons and Dragons, question pie pieces in Trivial Pursuit. Even the dice used in board games are in single colors and basic shapes. The very nature of board games and the need to quickly identify all items on the field invariably call for the use of single colors and easily identifiable shapes.

Both of these design aesthetics are maximized with the power
of 3D printing. And because no two games use the same tokens, pieces, avatars
or spinners, there is a constant need for new design cues, visuals and shapes
in the game category. Every game created needs its signature icons. And the
very nature of playability requires these icons and pieces to be single colored
and simple in shape.

3D Printing’s Core Competencies are an Ideal Game Design Solution

The flexibility and customization of 3D printing has empowered designers using the technology to see their imagination take physical shape. In a product category like gaming, the ability to prototype unique single-color pieces and game tokens is not only an advantage, it is essentially required.

So, if you are a game designer looking to inspire and wow players or potential retailers, Shapeways’ 3D printing technology not only provides an easy-to-use prototyping solution for unique game pieces, but is one that embraces and maximizes the very design ascetics that have made board games popular and fun to play for thousands of years!

learn more

The post Game Design and 3D Printing – A Perfect Partnership appeared first on Shapeways Blog.