3D Printing News Briefs: December 26, 2019

For your holiday edition of 3D Printing News Briefs, we’ll get business out of the way first – Wipro 3D has launched Addwize, a new Additive Technology Adoption and Acceleration Program. Moving on, Prusa interviewed animatronic model senior designer Joshua Lee about their shared interest in 3D printing. Finally, Voodoo Manufacturing helped an artist bring her 2D artistic vision to full-sized 3D life.

Wipro 3D Introduces Addwize Program

Scale vendors: Foundation – blue; Advanced – green; Practitioner – orange

Additive manufacturing solutions provider Wipro 3D, a business of Wipro Infrastructure Engineering, has launched a new Additive Technology Adoption and Acceleration Program called Addwize, which will address all the phases in the AM adoption cycle within academia and industry. The multi-platform, OEM-agnostic adoption program will help interested organizations and institutions fully understand 3D printing, evaluate business cases for the technology, and then scientifically use it to create value. It’s designed to help stakeholders of all levels, and academia, adopt and scale their usage of AM for business benefits.

“Wipro 3D addwize™ is designed and developed to support any organization or institution who is either evaluating metal Additive technology, has AM in their near future technology roadmap or has already invsted in AM, create business value using metal AM,” said Ajay Parikh, Vice President and Business Head, Wipro 3D.

“There is no lower or upper limit to the size of the organization who wants to evaluate AM.”

Prusa Interviews Animatronic Model Designer Joshua Lee

Not too long ago, the Research Content Team at Prusa met award-winning animatronic model senior designer Joshua Lee in Prague, who has over 25 years of experience in the film industry working on such movies as Prometheus, The Fifth Element, and even the Star Wars and Harry Potter series. The team took advantage of the opportunity to speak with Lee about a topic near and dear to all their hearts – 3D printing, which he uses often in his work.

“We use a lot of different techniques of 3D printing in the filming industry,” Lee told Prusa. “We only really adopted it in the last 5 years. I am really using it a lot now.

“The thing I like the most is how 3D printers help when you have really tight deadlines. The film director has a new idea and you just wish there were more hours in a day. We used to do a lot of “all-nighters” to get things made. If you’ve got your own 3D printer, you can design something quickly, press print and you can go home to bed – that’s the best thing! In the morning, you are up and running again and this amazing print awaits you there. I still get a small thrill, every time I come in and see this thing that has magically appeared there overnight.”

To hear more of what Lee had to say about the materials he uses (PLA and PETG), his preferred desktop printer (Original Prusa MK3), and specific Star Wars-related projects he used 3D printing for, check out the rest of the interview in the video below:

Voodoo Manufacturing Assists with 3D Printed Art Installation

Back in 1976, artist Agnes Denes created a 2D art piece called Probability Pyramid – Study for Crystal Pyramid, and has long since dreamed of turning into a life-size installation. In early 2019, her dream seemed like it would become reality when NYC-based art space The Shed began working with her on the project. The team didn’t have much luck with acrylic, glass, or mold injection, and so turned to Brooklyn’s Voodoo Manufacturing for assistance. There were a lot of requirements for the project – the Pyramid required several groups of bricks in unique sizes and shapes, totaling 5,442 translucent bricks that could be stacked to easily transport and form the pyramid; Voodoo 3D printed bricks that were 99% hollow, so they were less breakable and very lightweight.

“A lot of traditional manufacturing happens abroad. Because Voodoo’s factory is in Brooklyn, the team at The Shed would have an easier time accessing the parts as the sculpture was built. By the same token, as part of her commitment to environmental responsibility, it was very important for Agnes Denes to keep the production local,” Voodoo explained.

“The use of 3D printing was much more in line with her vision than traditional sculpture construction methods. This also allowed us to test multiple versions of the Pyramid digitally instead of having to build many physical versions.”

Thanks to Voodoo’s digital factory, the exhibition Agnes Denes: Absolutes and Intermediates opened on time. The retrospective, which features the 3D printed installation, will be displayed at The Shed until March 22, 2020.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

The post 3D Printing News Briefs: December 26, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

France: FDM 3D Printing with Graphite for Better Battery Cells

In the recently published ‘Three-Dimensional Printing of a LiFePO4/Graphite Battery Cell via Fused Deposition Modeling,’ French researchers explore improved ways to create batteries. The researchers chose FDM 3D printing due to its versatility, accompanied by a graphite/PLA filament.

Energy and sustainability are widely-discussed topics—and concerns—around the world today, and as the technology of 3D printing has continued to progress via a wide range of different software, hardware, and materials, so has innovation in areas like energy storage and batteries. This includes customization of shapes, to include:

  • Electrodes
  • Separators
  • Solid polymer electrolytes
  • Current collectors

Today, batteries and electronics can be directly integrated into 3D printed products, as a direct result of the need to ‘maximize energy storage while reducing volume and weight…’ Previous researchers have used commercial graphene-based polylactic acid filament as material, successfully 3D printing devices; however, loading of materials was consistently low enough to impact electrochemical performances substantially.

Summary of filaments characteristics prepared for FDM process reported in literature. Helium pycnometer material densities were used for weight-volume conversion.

For this study, the researchers were already aware that the material limitations could be overcome with the addition of a plasticizer:

“Indeed, we reported a highly loaded 3D printable graphite/PLA filament specifically conceived to be employed as negative electrode in a lithium-ion battery and to feed a conventional FDM 3D printer. Active material content (graphite) within the filament, was increased as high as possible (49.2 wt% of graphite in the total composite thus corresponding to 773 mg of active material per cm3) to improve the electrochemical performances while preserving enough mechanical strength to be printed thanks particularly to the addition of poly(ethylene glycol) dimethyl ether average Mn ∼ 500 acting as plasticizer,” stated the researchers.

“Hence, an unprecedent reversible capacity for a negative electrode disc obtained via FDM was achieved: 200 mAh g−1 of active material (99 mAh g−1 of the total composite or also to 154.6 mAh cm−3) at current density of 18.6 mA g−1 (C/20) after 6 cycles and 140 mAh g−1 of active material (69 mAh g−1 of the total composite or also 108.2 mAh cm−3) at current density of 37.3 mA g−1 (C/10).”

The researchers furthered their work, however, centering the study around optimizing both LFP-PLA and PLA-SiO2 composite-based 3D-printing filaments as they explored the use of carbon black for the conductive additive for the positive electrode and ceramic additives in the separator. With the flexibility afforded through 3D printing, more complex geometries can be created, along with better optimization of materials, and easier assembly as all the parts can be created at one time.

“Well aware of the limitations induced by nominal resolution of 3D printer, this work serves here as proof of concept,” stated the researchers.

(a) Formulation process: (1) After mixing all of the components into a solvent, slurry is spread on a glass support by doctor blading technique and a film is finally obtained; (2) Composite film homogeneous pieces are introduced in an extruder. A typical 1.75 mm diameter 3D-printing filament is obtained and rolled; (3) Filament is introduced into a commercial FDM 3D-printer; DSC curves: (b) pure PLA, PLA/LFP wt% 40/60 and PLA/LFP/PEGDME500 with different amount of conductive additive (CSP); (c) comparison between film, filament, and 3D-printed disc for the 10%CSP sample.

The plasticizer, poly(ethylene glycol) dimethyl ether average Mn~500 (PEGDME500), was used, with a little exothermal crystallization peak (Tc) around 80 °C’ induced. Temperature differences were constant, and according to the researchers, the plasticized PLA/LFP films displayed Tm inferior than without plasticizer, diminishing from 142 °C to about 132 °C.

To encourage conductivity, the research team created samples with a varying range of CSP. When this content was increased, endothermal peaks were unchanged; however, this was not the case for the exothermal crystallization peak (Tc), which was altered to lower temperature, reaching 74 °C for the 20% CSP sample. The scientists stated that such behavior could possibly be attributed to the CSP in the PLA matrix.

3D printed samples were fabricated using a Prusa MK3 3D printer.

“This study, by merging both battery and 3D-printing technologies, addressed numerous electrochemical (thickness, electronic and ionic conductivity, electrolyte uptake) and 3D printing parameters (infill density, infill pattern, perimeters, over and under-extrusion, retraction), and opens the way for a better performing 3D printed lithium-ion battery,” concluded the researchers.

“Finally, as this work acts here as proof of concept, authors are well-aware that for now electrodes and separator patterns are 2D and thus achievable using non 3D printing techniques. Future work, however, would be concentrated on complex 3D-battery architectures that necessitates significant system adjustments and a thorough design optimization. Upcoming research may also be dedicated to mechanically ameliorate the FDM 3D-printer resolution and simplify the tedious steps to print the full-battery in one-shot by using a multi-nozzle configuration.”

Researchers continue to seek better ways to 3D print batteries, from customizing bespoke filament to 3D freeze printing, innovating for wearables, and more. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

(a) Arrhenius plots of the electrical conductivity for samples containing CSP as conductive additives; (b) Capacity retention plots at different C-rate for the film and 3D-printed disc 10%CSP sample. (c) Charge/discharge capacity profiles for the 3D-printed disc 10%CSP sample. Note that for those experiments, a commercial fiber glass separator was used; (d) Conductivity after 1 h and 10 h within the electrolyte 1 M LiPF6 in EC:DEC 1:1 vol% for samples containing different SiO2 content.

(a) Different separator infill patterns that can be obtained by using classic 3D-printing slicer software (40% infill density); (b) Various infill densities of the same infill pattern (Hilbert curves); Capacity retention plots at 4.25 mA.g−1 (C/40) for the complete assembled battery after 1 h impregnation: (c) using 100% infill density separator and (d) using a 70%infill density Archimedean chords pattern. Here, note that each layer is 200 µm thick.

[Source / Images: ‘Three-Dimensional Printing of a LiFePO4/Graphite Battery Cell via Fused Deposition Modeling’]

The post France: FDM 3D Printing with Graphite for Better Battery Cells appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.