New Facility for Bioengineering Research Opens in Los Angeles

In a world eager to solve the problem of rejection in organ transplantation, a young American scientist developed a breakthrough test in 1964 that would help establish the compatibility of tissue types between organ donors and patients in need of transplants. Even though, today, efforts to meet organ transplant demand are shifting toward the field of bioengineering, as researchers search for ways to recreate complex organs with patient-derived cells, the legacy of that scientist, Paul Ichiro Terasaki, continues to inspire discoveries in transplant medicine through his philanthropic ventures.

The Terasaki Institute for Biomedical Innovation (TIBI), a nonprofit research organization established by Terasaki, professor emeritus of surgery at the David Geffen School of Medicine at the University of California Los Angeles (UCLA), will open the doors to a new facility in 2022. The newly-acquired addition will house interdisciplinary research in bioengineering, micro- and nanoscale technologies to enable transformative biomedical innovation as part of continuing research to solve the biggest problems related to organ transplantation and beyond.

Earlier this month, the Terasaki Institute announced the revamping of a building in the Woodland Hills area of the city of Los Angeles. Once home to the Weider Health and Fitness Center, created by bodybuilder and entrepreneur Joe Weider, the two-story building will be custom-designed to house the latest technology in cutting-edge research and will provide 50,000 square feet of floor space for up to 200 employees.

Located just 22 miles north of the original Terasaki Institute facilities in Westwood, the new space devoted to laboratory research will be designed to accommodate multiple teams of scientists, who will be developing bioengineered systems, devices, and other products with several biomedical applications. This new facility will be fully equipped to enable such technologies as tissue engineering and regeneration, biofabrication using 3D printing, nano- and micro-engineering, stem cell engineering, and the creation of human organs on chips.

When the new facility is inaugurated, with the renovation of the building set to begin in fall 2020, it will become the Terasaki Institute’s third research facility. In addition to the ample space and unique design features of the laboratory, the new facility will include in-house technology translation capabilities to be able to build prototypes and scale models of devices engineered by the institute. It will also be able to accommodate meetings, seminars, and conferences to further the education and exchange of ideas among its researchers and collaborators.

“I’m very excited about the addition of the new building to the Terasaki Institute. I believe that this addition will give us needed research space to bring together a number of leading scientists in our efforts to develop the next generation of biomedical innovations,” said Terasaki Institute’s new director and CEO, Ali Khademhosseini. “I’m particularly excited about furthering the great legacy of the Weider family and the building’s history in promoting health and fitness by focusing on individualized cures and diagnostics.”

Previously at Harvard Medical School, the Wyss Institute for Biologically Inspired Engineering, and most recently at UCLA Bioengineering, Khademhosseini has been an influential figure in pushing bioengineering forward. His research in regenerative medicine, tissue engineering, and micro- and nanotechnologies for the treatment of diseases has been related to advancements that allow reprogramming of adult cells to become progenitors, as well as editing genes. The bioengineer has also created a technique that uses a specially adapted 3D printer that could help advance the field of regenerative medicine by making it possible to 3D print complex artificial tissues on demand. He has also established the Khademhosseini Lab, an industry-leading tissue engineering lab that is co-sponsored by both MIT and Harvard and acts as a strategic partner to 3D bioprinting startup BioBots.

Ali Khademhosseini (Image: Ali Khademhosseini)

Stewart Han, president of the Terasaki Institute, has been working hard overseeing the planning and renovation of the new building: “It is exciting to be able to create a brand-new laboratory and research facility from the ground up, and it will greatly enhance our research capabilities when it’s completed. We also know that the new building will facilitate the future growth of our institute.

Founded in 2001, the Terasaki Institute was made possible through an endowment from the late Paul Terasaki, and it is expected to continue leveraging scientific advancements that enable an understanding of personalized medicine, from the macroscale of human tissues down to the microscale of genes, as well as to create technological solutions for some of the most pressing medical problems of our time.

Paul Terasaki in front of the Terasaki Life Sciences Building UCLA. (Image: Leslie Barton/UCLA)

“The board of the Terasaki Institute is very excited about the purchase of the new building in Woodland Hills, and we look forward to developing it into a world-class biomedical research center,” said board chair and diagnostic radiology specialist Keith Terasaki. “My father, the late Paul I. Terasaki, started the Terasaki Institute in hopes that it will make impactful discoveries in medical research. This new research facility will enable us to do so.”

To the field of transplant surgery, transplant pioneer Paul Terasaki enabled a broad understanding of organ transplant outcomes around the world. More than 70 years after his original discovery, patients still rely on organ donor transplants and the fundamentals of Terasaki’s laboratory developed tissue typing tests are still used today for the determination of transplant compatibility. Nonetheless, the Terasaki Institute envisions a world where personalized medicine is available to all. So, as the researchers at the institute continue to address the challenges that can finally advance the field of organ transplants from human donors to bioengineered artificial organs, they might bridge the gap between sickness and health. With one of the most productive 3D printing researchers as director, Khademhosseini, and a new facility to further explore biofabrication technology, we can expect to hear much more from the Terasaki Institute in years to come.

The post New Facility for Bioengineering Research Opens in Los Angeles appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

A Guide to Bioprinting: Understanding a Booming Industry

The success of bioprinting could become the key enabler that personalized medicine, tissue engineering, and regenerative medicine need to become a part of medical arsenals. Breakthroughs in bioprinting will enable faster and more efficient patient care and recovery. Biofabrication could be used to reshape the foundations of drug development, medicine, cosmetics, organ transplantation, and many other fields. It will transform the way doctors repair damaged ligaments, recreate tissues, and even reproduce the layers of the skin.

We are entering an era of bioprinting revolution. But to understand the role that bioprinting will play in the future, it is important to look back at how early discoveries in the field provided a strong basis to push its capability forward:

  • Back in the ’90s, Anthony Atala, pediatric surgeon, urologist, and director of the Wake Forest Institute for Regenerative Medicine (WFIRM) in North Carolina, created by hand bladders, skin, cartilage, urethra, muscle, and vaginal organs. By the end of that decade, the Institute used a 3D printer to build a synthetic scaffold of a human bladder, which they then coated with cells taken from their patients and implanted it, preparing the stage for bioprinting.
  • Then in 2002, scientists from Harvard University printed two-inch-long mini-kidneys capable of filtering blood that was then transplanted back into genetically identical cows, where they started making urine. The novel research raised the prospect of using stem cells taken from human patients with kidney failure to create new organs for transplant.
  • However, it wasn’t until 2003, when bioengineering professor Thomas Boland adapted a Hewlett-Packard inkjet printer in his lab at Clemson University to begin printing a bioink made of living bovine cells suspended in the cell-culture medium, that bioprinting began to materialize. This led to the creation of the world’s first 3D bioprinter, capable of creating living tissue from a solution of cells, nutrients, and other bio-compatible substances.
picture os a man using the bioprinter on a limb

A member of WFIRM team operates with the bioprinter (Image: WFIRM)

Twenty years later, researchers still face challenges as they continue working with bioprinters and bioinks. Even though there has been an increasing adoption of the technology, the extent of its potential has not been fully exploited. From choosing the bioinks to actually bioprinting human tissues and organs, this new field is quickly becoming the go-to technology that bioengineers, researchers, and hospitals need to evolve from lengthy and cumbersome manual work to scalable and replicable results.

How Well Do you Know Bioprinters? (or How Bioprinters Work and Who Makes Them)

Bioprinters work by extruding cells and other biomaterials contained in bioinks, from syringes that deposit the material layer by layer to create different types of tissues or organ-like constructs. The technology behind the bioprinters vary. Nonetheless, to date, the three main and most popular bioprinting technologies are extrusion, inkjet, and laser-based bioprinting. Some mainstream examples are:

  • Some manufacturers, like Cellink or Allevi, use pneumatic-driven extrusion systems that pump high-pressure air in a cartridge to force bioinks to flow through a nozzle. 
  • Other fabrication systems, such as the one designed by Poietis has laser-assisted bioprinting that allows cells to be positioned in three dimensions with micrometric resolution and precision to design living tissue.
  • Another type of bioprinting technology uses a stereolithography-based bioprinting platform. Vendors using this process include Volumetric and Cellink’s jointly produced Lumen X projection stereolithography based bioprinter.
  • Another project that could revolutionize the way surgical procedures are performed is handheld bioprinters; these systems enable surgeons to deploy cells — or material to aid in cellular growth — directly into a defect site in the body, such as severely burnt skin, corneal ulcerations or bone. One of the most talked-about handheld bioprinters has been Australia’s University of Wollongong BioPen, allow surgeons to repair damaged bone and cartilage by “drawing” new cells directly onto bone in the middle of a surgical procedure. Although still in pre-clinical trials, these devices have attracted the attention of healthcare practitioners due to its versatility.

A few of the main manufacturers supplying the market include 3D Bioprinting Solutions, Allevi, Aspect Biosystems, Cellink, nScryptregenHuInventiaRegemat3DPoietis, and more. Last year, 3DPrint.com counted 111 established bioprinting firms around the world. Mapping the companies that make up this industry is a good starting point to understand the bioprinting ecosystem, determine where most companies have established their headquarters and learn more about potential hubs, like the one in San Francisco.

Types of Bioinks

3D bioprinters use bioinks. Bioinks are substances made of living cells that can be used for 3D printing complex tissue models — they mimic an extracellular matrix environment to support the adhesion, proliferation, and differentiation of living cells. Choosing which bioink to use can be challenging. To date, we have witnessed researchers using bioinks based on several biomaterials, such as alginate, gelatin, collagen, silk, hyaluronic acid, even some synthetic-biomaterials-based-bioinks.

The promise of hydrogels. A macromolecular polymer gel constructed of a network of cross-linked polymer chains, hydrogels are able to meet the stringent requirements of cells and are the basis of almost all bioink formulations. As stated in “Engineering Hydrogels for Biofabrication”, published in Advanced Materials, “hydrogels are particularly attractive for biofabrication as they recapitulate several features of the natural extracellular matrix and allow cell encapsulation in a highly hydrated mechanically supportive threedimensional environment.” This makes hydrogel-based bioinks a very promising choice for many researchers and bioengineers.

Bioinks from patients’ cells. The biomaterials can also use a patient’s own cells, adult stem cells, manipulating them to recreate the required tissue. The source of the cells varies depending on what researchers are bioprinting. For example, in the case of Alzheimer’s disease, experts at the University of Victoria in Canada, have bioprinted neural tissues using stem cells as a tool for screening drug targets for the disease. The ability to program patient-specific cells is the beginning of customized bioprinting since the unlimited potential of these cells can be used to regenerate or repair damaged tissue. 

Polbionica’s bioinks (Image: Polbionica)

What is Bioprinting Good For?

What is most exciting about bioprinting, are the many ways that doctors and researchers are using currently available devices in the market or are creating their own systems to facilitate new processes and applications. The orchestrated interaction between machine and user has led to innovation that could reinvent the world of tissue engineering.

Moving oncology forward:  Bioprinting is being employed in the battle against cancer, whereby scientists create tumor models for research. Modeling cancer using 2D cell cultures fails to accurately replicate the microenvironment of tumors. This is why scientists have turned to biofabrication tools to make three-dimensional models that mimic the intricate in vivo tumors. These models help test anticancer drugs; aid scientists in understanding the underlying causes of metastasis, and can even personalize treatment for individual cancer patients. There have been plenty of initiatives that apply bioprinting to oncology. These range from immersion bioprinting of human organoids to printing cancer tissues in 3D

Microtumors (Image: CTI Biotech)

The market for oncology-oriented bioprinting seems sure to grow. The number of patients suffering from the disease continues to go up. In 2018 alone there were 17 million new cases of cancer worldwide, and projections suggest that there will be 27.5 million new cases of cancer each year by 2040. What that effectively means is that we are witnessing an increase in oncology bioengineering research and whether it is for glioblastoma, bone cancer tumors, or lung models with tumors, the implications can be profound since the ability to use bioinks and bioprinters to create tumors frees researchers of the many ethical concerns associated with testing as well as reduces the costs associated with such research activities. 

Building scaffolds: Probably the most important practical use for bioprinting at the present time is in regenerative medicine. For instance, in 2019, researchers from North Carolina State University (NCSU) and the University of North Carolina at Chapel Hill created a 3D biomedical fiber printer used to create biocompatible scaffolds. Also, Harvard researchers working in Jennifer Lewis’ Lab at Harvard´s Wyss Institute for Biologically Inspired Engineering and John A. Paulson School of Engineering and Applied Sciences (SEAS), came up with a much talked about breakthrough new technique, the SWIFT method, that allows 3D printing to focus on creating the vessels necessary to support a living tissue construct. A team of researchers at Texas A&M University have even developed a 3D printable hydrogel bioink containing mineral nanoparticles that can deliver protein therapeutics to control cell behavior.

Limitations of Bioprinting

Though we heard it many times before, knowing that someday 3D printed artificial organs could eliminate the need for an organ donor waiting list is comforting. Creating personalized replacement organs sounds like the solve-all solution to the organ shortage crisis, yet, a functional organ compatible for human implantation may be decades away. Today, 3D printed organs are still raw to be used for transplantation and lack the vasculature required to function within the human body.

Creation. Last year, mainstream news outlets headlined a story about researchers who had 3D printed a heart. However, the published scientific paper behind that story described how a group of scientists from Tel Aviv, Israel, created bioink out of heart cells and other materials from a patient, and were able to develop cardiac patches and ultimately, 3D print comprehensive tissue structures that include whole hearts. The tissue was shaped in the form of a tiny heart that was kept alive in a nutrient solution. The paper expresses how this development could not function like a real heart since the cells in the construct can contract, but don’t yet have the ability to pump.

This was certainly not the first heart to be 3D printed, yet Tal Dvir, who led the project at Tel Aviv University’s School of Molecular Cell Biology and Biotechnology, indicated that never before had it resulted in an organ “with cells or with blood vessels.” It was an amazing breakthrough for the field, and it proves that biotechnology has made significant advances, but it is still a long way from creating organs that can be transplanted to people, considering that the vasculature — the network of blood vessels that feeds the organ — remains a challenge, but scientists are determined to troubleshoot these issues.

So, no matter how enticing the idea of successfully bioprinted organs sound, stories like this remind us to keep the hype in check, making the work of news outlets fundamental for reporting advancements in research and medical breakthroughs (which usually take much more time).

Where to Next?

Organ bioprinting. The application of 3D bioprinting will be a game-changer in medicine, as the machines successfully replicate tissues and organs, build muscles and cartilage, and enable the adoption of customized medicine. The long-term dream for bioprinting has always been the routine printing of body organs. Current ongoing projects include Michal Wszola’s 3D bioprinted bionic pancreas or Organovo’s 3D bioprinted liver.

The space frontier. Bioprinting in space could hold the key to developing fully functional organs. This is because bioprinting without gravity allows organs to grow without the need for scaffolds. The National Aeronautics and Space Administration (NASA) considers that terrestrial gravitation represents a significant limitation, while a gravity-free environment, magnetic and diamagnetic levitation will allow for biofabrication of 3D tissue constructs with a scaffold-free and even nozzle-free approach. Some bioprinters have already been launched and used in space.  This includes nScrypt and Techshot’s BioFabrication Facility (BFF), or the Organaut 3D bioprinter created by Russian biotech firm 3D Bioprinting Solutions and Roscosmos, the Russian state corporation responsible for space flights.

Healthcare at its best. More prosaically, biomaterials specialist and a professor of biofabrication at Queensland University of Technology, Australia, Mia Woodruff, has been advocating the hospitals of the future for years. She has an exciting vision of a future where the fabrication of patient-specific replacement tissue and organs is safe, cost-effective, and routine. Though perhaps years from happening, her vision is in tune with what many think bioprinting could become, that is, with enough researchers, companies, and funding.

An astronaut aboard the ISS using Techshot’s BioFabrication Facility or BFF (Image: Techshot/NASA)

Coming regulation. Back here on Earth, there will be a growing need for common guidelines for bioprinting to make the process more standardized. In the EU, for example, there currently no particular regulatory regime governing the whole bioprinting process, but piecemeal legislation is relevant in relation to tissue engineering and regenerative medicine. While the Food and Drug Administration (FDA) of the United States plans to review the regulatory issues related to the bioprinting of biological, cellular and tissue-based products in order to determine whether additional guidance is needed beyond the recently released regulatory framework on regenerative medicine medical products.

As the development of the technology strongly advances and proves successful for researchers, we will surely continue to observe brilliant minds perfecting devices and biomaterials, envisioning new systems for future needs, especially as startups emerge out of universities and research institutes, and established companies upgrade their machines to face the limitations we previously addressed in this article.

Still, there is a long way to go, what was largely built so far is a very promising technology. For instance, fully functional organ fabrication for transplantation might take decades. Nonetheless, the unquestionable contribution of bioprinting to so many fields remains an incentive to invest in this area to overcome medical challenges and to move the healthcare industry in a different path, where technology will not only aid in curing diseases but also guiding people by helping them stay healthy, recognizing symptoms early and personalizing solutions in real-time. 

The post A Guide to Bioprinting: Understanding a Booming Industry appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

CollPlant Biotechnologies Raise $5.5 Million

Regenerative medicine company CollPlant announced new fundraising of $5.5 million in convertible loans intended to support the advancement of their research projects in the fields of medical aesthetics and 3D bioprinting of tissues and organs. On September 9, the company revealed a new private placement with Ami Sagi, CollPlant’s largest shareholder, and other US accredited investors with many years of extensive experience in 3D printing.

The Israel-based clinical-stage company CollPlant is focused on developing and commercializing tissue repair products for orthobiologics, and advanced wound care markets. Their products are based on their rhCollagen (recombinant human collagen), which is produced with CollPlant’s proprietary plant-based genetic engineering technology for use in tissue repair products. Last year the company even entered into an agreement with United Therapeutics to use their BioInk‘s in the manufacture of 3D bioprinted lungs for future transplant in humans.

CollPlant BioInk

The initial closing of the new capital raise took place on September 3, when Mr. Sagi purchased $2 million of the convertible loans through a non-brokered private placement. The remaining $3.5 million in convertible loans were purchased by the US accredited investors.

Since CollPlant is headquartered outside of the US, the convertible loans totaling $5.5 million, automatically convert into the company’s American Depositary Shares (ADS), a US dollar-denominated equity share of a foreign-based company available for purchase on an American stock exchange. In the case of CollPlant, at a conversion price of $4 per ADS following approval of the transaction by CollPlant’s shareholders. Both Sagi and the US investors will also receive three-year warrants to purchase up to an aggregate of 1,625,000 ADSs. Sagi has already agreed to fund an additional $1 million following the execution of a license and/or a co-development agreement between CollPlant and a strategic business partner.

“We are now focused on facilitating our development programs of dermal fillers and regenerative breast implants. Our collaboration with United Therapeutics, which is using our BioInk technology for 3D printing lungs, is progressing, and we continue to expand our business collaborations with large international healthcare companies that seek to implement our revolutionary regenerative medicine technology. We are very pleased to have entered into this transaction with Mr. Sagi and the other investors,” stated Yehiel Tal, CEO of CollPlant.

Bioink for 3D printing

CollPlant is one of two companies developing biotechnology in Israel. The up and coming firm launched its new headquarters and R&D center in Rehovot (Israel) last May, for the development of its product pipeline, including the BioInks for 3D bioprinting of tissues and organs, and dermal fillers for medical aesthetics that can be injected into wrinkles.
“In the medical aesthetics market, we are moving forward with the development of a new dermal filler product line, addressing the need for more innovative aesthetic products to treat wrinkles. CollPlant is advancing collaborations with leading companies in this segment. Our new product line will be based on the combination of hyaluronic acid, a naturally-occurring, moisture-binding compound, with our plant-based, tissue regenerating rhCollagen,” detailed Tal while announcing the financial results for the company’s first quarter ending last March.
CollPlant works with collagen, a protein found in tissues such as tendons, skin, blood vessels and bones, and producing it from tobacco plants genetically engineered with five human genes. Its first successful products approved for sale in Europe are used for tendonitis and wound care, and according to company Chairman Jonathan Rigby, they are seeking to commercialize their products in the United States. The company is working hard at reaching their long term goals in regenerative medicine, including transplantable lungs for patients with serious medical conditions, bone repair and chronic wound closure.
Most recently, the firm announced the creation of their 3D bioprinted implants for the regeneration of breast tissue and the successful production of the first prototypes. According to company officials, the implants will be comprised of CollPlant’s proprietary type I recombinant human collagen and additional materials. Loaded with fat cells taken from the patient, these implants are intended to promote breast tissue regeneration. Eventually, the scaffold is designed to degrade and be replaced by newly grown natural breast tissue, that is free of any foreign material.
“The implants we are developing leverage our 3D bioprinting technology and the unique properties of our recombinant human collagen, that has an excellent safety profile. We believe that our technology can eliminate the high risk for adverse events associated with permanent breast implants and provide a revolutionary alternative. This technology is already raising interest from leading companies in this segment,” claims Tal.
CollPlant has made significant progress over the past two years thanks to the combination of their breakthrough technology, new R&D center, and developing new product lines for aesthetics and wound markets, enabling the company to move forward with more products and partnerships.
[Images: CollPlant]

The post CollPlant Biotechnologies Raise $5.5 Million appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

A Bioprinting World Map

With 109 established bioprinting companies and many entrepreneurs around the world showing interest in the emerging field, it’s just a matter of time before it becomes one of the most sought after technologies. Mapping the companies that make up this industry is a good starting point to understand the bioprinting ecosystem, determine where most companies have established their headquarters and learn more about potential hubs, like the one in San Francisco. The technology has gained increasing attention due to the ability to control the placement of cells, biomaterials, and molecules for tissue regeneration. Researchers are using bioprinting to create cardiac patches meant to be transplanted directly onto a patient’s heart after a cardiovascular attack, as well as custom printing an implant to precisely fill the space left after removal of diseased bone. Bioprinting has been used to conduct testing for 3D printing of tailored skin grafts for patients with large wound areas, print muscle, and even for microstereolithography 3D printing to repair damaged nerve connections. Bioprinting companies around the world are continuously innovating in regenerative medicine, drug therapies, tissue engineering, stem cell biology and biotechnology; getting a lot of attention from a public eager to envision a future with better patient care, alternatives to organ transplants and customized medical treatments. In an attempt to increase knowledge and research, most bioprinting firms have established partnerships with a number of research organizations, universities, and even government institutions, to jointly create and develop projects that are often published in academic journals. Actually, the literature available on the subject to date is quite vast and growing thanks to the advances in biotechnology, and a great tool for communicating and validating most of this breakthrough knowledge.

The data we collected reveals that the United States is the biggest player, with 39 percent of the companies headquartered in 18 states. And although 28% of the total number of companies in the US are located in California, 33 percent have emerged in East Coast states like Massachusetts, New York, New Jersey, and Maryland. The European continent is home to 35 percent of the companies, followed by Asia with 17 percent, Latin America (5%) and Oceania (3%). Countries like Great Britain, Germany, and France absorb most of the businesses, which represent a 53% stake out of all the European companies. The leader in Asia is China with three big names, although the country is heavily relying on university research to advance the technology and researchers are using their own in-house designed research, which is probably why we are still waiting to see an expansion of companies.  

Researchers, private companies and universities everywhere are very interested in advancing bioprinting technologies. And although there is a long way to determine how these results will perform in a clinical setting, advances show that the potential in therapeutic and regenerative medicine, surgeries, and overall healthcare are huge. Even 4D bioprinting may have the potential for greater strides in medicine and tissue regeneration since it shows more control over pore size, shape, and interconnectivity. The bioprinting business is giving scientists and medical researchers the tools to prototype, model, build and solidify living human tissues. From printing machines to bioinks, even scanners, and software to further enhance their work, this interconnected environment has the potential to transform life as we know it.

Pioneer companies such as Organovo, regenHUCELLINK, and Digilab have been at the forefront of bioprinting for years, creating some of the most innovative machines in the market, which, in the right hands, can make all the difference. Such as the case with Organovo’s bioprinting platform, recently implemented by Leiden University Medical Center scientists to develop stem cell-based bioprinted tissue treatments for kidney disease or Cellink’s Bio X machine which a Florida A&M University professor used to create the first 3D print of human cornea in the United States.

Many of these businesses are focusing on tissue engineering, like Cyfuse Biomedical, Regenovo Biotechnology, Aspect Biosystems or nScrypt. For instance, researchers using Allevi printers have been automating the creation of tumor models, printing vasculature within 3D gels, and achieving physiological markers unseen before in tissues. This requires a ton of knowledge about the microenvironment of the specific tissues and organs through biomimicry, or by the manufacturing of artificial tissues or organs by reproducing cellular and extracellular components natively present. This know-how is essential for in vitro manufacturing of living tissues with the same size and geometry as native organs.

Many commercially available 3D bioprinters are used in several research areas, like bioengineering, disease modeling, or studies of biomaterials. There are different versions, including syringe based extrusion of hydrogels or bioinks, inkjet printing, laser-induced forward transfer (LIFT), (which is a relatively new printing technique that enables transfer from a thin-film donor material onto a chosen receiver placed nearby), and stereolithography (a form of 3D printing technology used for creating models, prototypes, patterns, and production parts in a layer by layer fashion using photopolymerization).

Bioprinting is leading the way into some of the most advanced research ever done in medicine, in a way becoming a beaming source of hope for hundreds of thousands of people who consider the future of healthcare to be focused on patient-specific treatment and an increased life expectancies. Thanks to many of the breakthroughs done at research facilities around the globe and booming interest in the applications of the technology, perhaps in a year, our map will need to be updated and bioprinting companies will have increased significantly. Still, the core of what they are doing has remained the same for the past couple of years, and partnerships continue to emerge among businesses, scientists and researchers, eager to apply their innovative spirit, knowledge of biological sciences, engineering, mathematics and other fields that are contributing to the unstoppable evolution of bioprinting, so that it can eventually transition from the research and development phases to the pre-clinical and trial, getting one step closer to changing people’s lives.

NORTH AMERICA

The US and Canada bioprinting market include the following companies:

  1. 3D BioTherapeutics
  2. 3D Biotek
  3. Advanced BioMatrix
  4. Advanced Solutions Life Sciences
  5. Aether
  6. Allegro 3D
  7. Allevi
  8. BioLife 4D
  9. Biospherix
  10. Brinter
  11. Cell Applications
  12. CELLINK
  13. Celprogen
  14. DigiLab
  15. Embodi3D
  16. Frontier Bio
  17. Hyrel
  18. International Stem Cell
  19. Koligo Therapeutics Inc.
  20. Lung Biotechnology PBC
  21. Nano 3D Biosciences
  22. Nanofiber Solutions
  23. nScrypt
  24. OrganoFab Technologies
  25. Organovo
  26. PreciseBio
  27. Prellis Biologics
  28. Qrons
  29. Rainbow Biosciences
  30. Ronawk
  31. Rooster Bio
  32. Samsara Sciences
  33. SE3D
  34. STEM Reps
  35. SunP Biotech
  36. Superlative Biosciences Corporation
  37. SuperString
  38. TeVido Biodevices
  39. TheWell Bioscience
  40. Tissue Regeneration Systems
  41. United Therapeutics Corporation
  42. Vivax Bio
  43. Volumetric
  44. Aspect Biosystems
  45. Biomomentum

EUROPE

The European bioprinting ecosystem is as follows:

  1. Poietis
  2. regenHu
  3. CTI Biotech
  4. Cellenion
  5. I&L Biosystems SAS
  6. Innov’Gel
  7. Printivo
  8. Cellbricks
  9. GeSim
  10. Black Drop Biodrucker
  11. Medprin Biotech
  12. Greiner Bio-One
  13. Innotere
  14. BiogelX
  15. OxSyBio
  16. ArrayJet
  17. Manchester BIOGEL
  18. 3Dynamics 3D Technologies
  19. Oxford MEStar
  20. ProColl
  21. FabRx
  22. Roslin Cellab (Censo Biotechnologies)
  23. PhosPrint
  24. Ourobotics
  25. Vornia Biomaterials
  26. Prometheus
  27. Twin Helix
  28. Xilloc Medical
  29. Labnatek
  30. 3D Bioprinting Solutions
  31. Regemat 3D (Breca)
  32. Artificial Nature
  33. Ebers
  34. Fluicell AB
  35. Biolamina
  36. CELLnTEC
  37. Morphodyne
  38. Axolotl Biosystems

ASIA

Asia’s new and booming bioprinting market:

  1. FoldInk Bioprinting
  2. Revotek
  3. MedPrin
  4. Regenovo
  5. Pandorum technologies
  6. Next Big Innovation Labs
  7. IndiBio
  8. BioP India
  9. OrgaNow
  10. 3DPL
  11. CollPlant
  12. Accellta
  13. Next 21 K.K.
  14. Cyfuse
  15. KosmodeHealth
  16. Nephtech 3D
  17. Osteopore
  18. Rokit

LATIN AMERICA

Latin America’s incipient bioprinting environment:

  1. Tissue Labs
  2. 3D Biotechnologies Solutions
  3. BioPrint 3D
  4. WeBio
  5. Life SI

Is your company not listed? Email joris (at) 3DPrint.com

An Indian Bioprinting Startup is Working on 3D Printed ‘Liquid Cornea’ for Corneal Grafts

In the last few years, there has been a continuous growth of bioprinting companies around the world, probably because the medical field is one of the most exciting industries taking advantage of 3D printing. After all, health is one of the top priorities for most people and when some of the top biotech startups create soft human tissue-like structures, vascular networks and three-dimensional liver tissue constructs for experimentation, curiosity strikes. Along with some of these technical milestones in 3D printing is Bengaluru-based firm Pandorum Technologies’ successfully engineered cornea tissue. Thanks to their cell-laden hydrogel, they can promote scarless healing of corneal wounds by regeneration. Like most firms in the industry, Pandorum is pushing the technology hoping to eventually become part of the no donor required utopia. We must caution our readers however that from a thing becoming possible in bioprinting and 3D printing for medicine it may take several decades before it is available to you and me. 

Pandorum’s bio-engineered cornea

The cornea is a thin piece of transparent tissue on the front of the eye that resembles a soft contact lens and is vulnerable to disease and injury. The World Health Organization (WHO) estimates that corneal opacities accounted for 7% of the world’s blind population in 2010, making it the third most common cause of blindness. And over 12 million people are waiting for a corneal transplant globally while 20% of childhood blindness is estimated to be caused by the cornea. In India alone, bilateral corneal blindness affects 1.2 million people and there are not enough donated corneas for transplants. A few years back a survey globally quantified the considerable shortage of corneal graft tissue, with only one cornea available for 70 needed, and although efforts are still strong for cornea donation everywhere, it is also crucial for bioengineering to look for alternative solutions.

Pandorum’s novel hydrogel uses a combination of specialized stem cells and bio-mimetic that can be directly applied in a minimally invasive manner as ‘Liquid Cornea’ to corneal wounds and perforations and used to print transparent and suturable corneal lenticules embedded with live corneal cells for therapeutic applications and future human implantation to treat visual impairment. The bioengineered extracellular matrix with corneal cells developed as ‘Liquid Cornea’ and Corneal Graft for Human implantation is a regenerative approach towards vision restoration through tissue engineering. It is designed for a simple, minimally-invasive application procedure, to reduce the need for post-operative medication and care.

The tissue engineering and regenerative medicine startup company announced the development of their bioengineered cornea tissue study at the annual meeting of the Association for Research in Vision and Ophthalmology (ARVO) held in Vancouver, Canada, last April. Where Tuhin Bhowmick, co-founder of Pandorum said that “being able to bioengineer critical tissues such as the human cornea is a significant milestone.” And while the work is currently in the animal studies stage, the research team is getting ready for their first pilot human trials in 2020. Founded in 1928, ARVO is the largest eye and vision research organization in the world that includes nearly 12,000 researchers and clinicians from over 75 countries.

“Though surgically replacing the opaque tissue with a clear corneal allograft is usually effective in improving vision, there is an acute shortage of cadaveric human corneas available for transplantation. In India alone, there are over a million people suffering from a bilateral loss of vision due to corneal disorders, and at least a few folds more from unilateral corneal blindness. At Pandorum, we are working to close this gap using a bioengineering approach through stage-wise development of a platform, which is ultimately aimed to liberate us from the dependencies on human donor cornea,” suggested Bhowmick.

It’s quite a big deal for an Indian company to do such groundbreaking work since the Asia Pacific is the fastest growing 3D bioprinting region in the global market due to the presence of a huge patient population and continuously developing economies, including India and China, with growing healthcare industries. According to the Indian Brand Equity Foundation, in 2017 the Indian healthcare sector was one of the fastest growing industries, advancing at an annual growth rate of over 22% since 2015 and is expected to reach 130 billion dollars in 2022.

But Pandorum is not entirely new to bioprinting, it was the first Indian company to 3D print a liver tissue and their work is focused on tissue engineering and regenerative medicine, a much broader field, with the final goal to develop both liver and cornea as lab-grown transplantable tissues. The company can generate tissues that comprise 10,000 to 1 million cells, still it could take up to five years to build the working prototype of a tissue that has billions of cells and can be transplanted into a patient -which will need to have its own blood vessel structure and be able to integrate within the receiver’s body. “Right now, our mini-liver tissue reflects the characteristics of those grown within the human body. So pharma companies can test the hepatotoxicity of drugs, or FMCG companies their products, nixing the need for animal trials,” explained Pandorum co-founder Arun Chandru last year in an interview with Forbes India.

Pandorum scientists working at the lab on tissue engineering

The startup incubated at the Bangalore Bioinnovation Centre (BBC), located at the National Centre for Biological Sciences campus is making tremendous progress in tissue engineering. Since it’s foundation in 2011 by academic entrepreneurs from the Indian Institute of Science, they have focused on research and development of artificial human organs, and have become quite a household name in India’s new bioprinting industry. Thanks to their bio-engineered liver and cornea tissue they are getting ahead of the game fast.

Pandorum is not the first tissue engineering startup that attempts to create a cornea, last October, North Carolina-based bioprinting startup Precise Bio announced plans to advance its research into bioprinted corneas. The company was the first to transplant a 3D printed cornea graft into an animal and plans to start with a human cornea suitable for transplantation soon. While earlier this year, Korean researchers successfully bioprinted tissue for cornea with transparent bioink. On the academic front, Newcastle University researchers successfully 3D printed human corneas from stem cell bioink. With all the startups and university researchers racing to create the most compatible and functional organs that could one day replace organ transplantation, the stakes are high with pressure from the public opinion, anxiously awaiting a change in the way medicine will solve some of the most complex illnesses. The 3D bioprinting field is entering a very exciting time, but some big challenges in bringing these therapies to reality are still out there.

Bioprinting 101 – Part 11, Tissue Engineering and Regenerative Medicine

Microscopic view of Tissue

I am glad to be running this series thus far. It seems that people are very interested with the subject matter, and I myself have learned even more as well. The series has discussed various technologies within bioprinting. We have also discussed a variety of bioprinting materials. We have barely even scratched the surface on topics we can talk about. In this article we are going to look into tissue engineering and regenerative medicine applications of 3D bioprinting.

Let us first define our terms of interest. Tissue engineering is the use of a combination of cells, engineering and materials methods, and suitable biochemical and physiochemical factors to improve or replace biological tissues. Tissue engineering involves the use of a tissue scaffolds for the formation of new viable tissue for a medical purpose. We have talked about the use of bioprinting scaffolds in order to create tissue layers for organs and other parts of the body. One must understand that as a bioengineer, most of the techniques used to create tissue is based on biomimicry. Biomimicry refers to the design and production of materials, structures, and systems that are modeled on biological entities and processes. We are limited in our scope due to the fact that biology is a complex system and it is difficult to mimic natural and living processes. 3D bioprinting is a tool that expedites biomimicry and allows us to create rapidly with synthetic resources.

What is needed to create a scaffold for tissue engineering purposes

Regenerative medicine and tissue engineering go hand in hand. We are looking to build materials that may have innate regenerative properties within our bodies. This is a process that is essential to living organisms – the ability to repair oneself after damage or trauma. Regenerative medicine is a branch of translational research in tissue engineering and molecular biology which deals with the “process of replacing, engineering or regenerating human cells, tissues or organs to restore or establish normal function”. Extracellular matrix materials are commercially available and are used in reconstructive surgery, treatment of chronic wounds, and some orthopedic surgeries. This is the future of medical care in many ways. Our understanding of the ECM and bioprinting is evolving, and technology is continuously improving. The future of ECM biomaterials in tissue engineering and regenerative medicine applications is promising. Progress in decellularization techniques and optimization of recellularization strategies will improve various aspects of an ECM scaffold and its ability to be regenerative. These traits include biocompatibility, endothelializa­tion, and functional anastomosis into the host vasculature.

Regenerative Medicine and 3D bioprinting

Endothelialization refers to the creation of endothelial tissue. Endothelial tissue refers to the tissue the layer of cells lining the inside of blood and lymph vessels, of the heart, and of some other closed cavities. Anastomosis a cross-connection between adjacent channels, tubes, fibers, or other parts of a network. These are major concerns when it comes to tissue engineering and regenerative medicine due to how we need to understand the need for biomimicry. We have to realize that it takes an absurd amount of precision to even build systems that replicate the inner structure of a vascular tissue layer. Then we have to think about how this will be self healing as well. This does not deter the development of this technology though as more people are intrigued by this subject matter on a daily basis.

3D bioprinting is an amazing step in the right direction, and there are companies, universities, and startups who are trying to be on the cutting edge of this field. The wealth of knowledge being created in this field is immense and frankly would intimidate people who are not aware of how vast the field is.

Now I believe the way for us to really delve deep within this series from now on is to start interviewing the leaders within this field. Due diligence will be done for the public to get more in depth understanding from industry experts. It is important to interview a variety of people within this field as no one necessarily is a specialist in this field. There seems to be a lot of cross pollination and multi skilled individuals.  It makes for a wide variety of knowledge to be learned within the field of biology, synthetic biology, biomimicry, biophysics, chemistry, biochemistry, biomaterials, material science, biomedical fields, and a bunch of other fields I have not had a chance to mention. I personally believe that the revolution of bioprinting is a bit early. There is just so much development from different places. It is difficult to see the best methods at the moment. I will try to interview others to gain more insight and build a repertoire of knowledge for all readers.

This article is part of a series that wishes to make bioprinting more accessible. It starts with bioprinting 101, Hydrogels, 3D Industrial Bioprinters, Alginate, Bioinks, Pluronics, Applications, Gelatin, and Decellularized Extracellular Matrices.

3D Printing Research CrAMmed: DTU, TU Delft, and Imperial College London

In this edition of CrAMed, our academic additive manufacturing digest, we bring you the latest literature on metamaterials, 4D printing, regenerative medicine, multimaterial 3D printing and more from leading institutions around the globe. 3D printing better bones In recent years, 3D printing has helped make important breakthroughs in regenerative medicine and tissue engineering. Continuing this trend, […]

Interview with Dr. Vahid Serpooshan, Who Created a ‘Heart Attack Patch’ With the Help of 3D Printing

According to the World Health Organization, cardiovascular disease is the number one cause of death globally. An estimated 17.9 million people died from cardiovascular disease in 2016, representing 31% of all global deaths. Treatments for all manner of cardiovascular impairments are therefore a high priority. A very prevalent ailment in that category is a heart attack which happens to over 735,000 Americans a year

A team of researchers led by Dr. Vahid Serpooshan, an assistant professor of Biomedical Engineering and Pediatrics at Georgia Institute of Technology and Emory University School of Medicine, have created a patch with a regenerative protein to treat the infarcted myocardium (cardiac muscle, a part of the heart that gets damaged during a heart attack). According to Georgia Institute of Technology the patch will cover the infarcted tissue with a collagen patch infused with a  protein called FSTL1, which is tailored to fit an area a little larger than the dead tissue. Dr. Serpooshan used bioprinters to develop the patch using a collagen gel. The patch is about to start its pre-clinical trial phase at Emory University’s School of Medicine in Atlanta, and a clinical trial is already ongoing in Europe for a version of this patch device. So it could be a couple more years before they are available for patient treatment. Dr. Serpooshan’s Lab (which has two locations at both Emory University and Georgia Tech) uses a multidisciplinary approach to design and develop micro/nano-scale tissue engineering technologies with the ultimate goal of generating functional tissues and organs. 3DPrint.com reached out to talk to Dr. Serpooshan about his team’s groundbreaking work. 

Professor Vahid Serpooshan sets up the medical 3D printer that will print a patch engineered to strengthen heart muscle damaged in a heart attack. (Photo by Rob Felt, Georgia Institute of Technology)

How has 3D printing helped to engineer the patch?

3D printing has been a huge help in manufacturing the patch in so many ways. It enabled us to incorporate vasculature inside the patch, something that would not have been available with traditional tissue engineering techniques, since they offer really limited potential to create complex, functional vasculature in thick, 3D tissue constructs. Additionally, it allowed us to have a controlled deposition of different cells, biomaterials, and molecules to form heterogenous, complex 3D structures that closely mimic native tissue structure. Also it provided us with patient -and disease- specificity: we utilize MR or CT imaging data obtained from patients to create 3D printed tissue constructs that precisely match the patient’s diseased or damaged tissue. Finally, bioprinting technologies have enabled tissue engineers to markedly enhance resolution and precision in various tissue manufacturing endeavors, making precision medicine even more promising.

What 3D printer do you use to create the patch?

We are mainly using two types of 3D bioprinters for this project. A BioAssemblyBot bioprinting system, made by Advanced Solutions Inc. (an American company in Louisville, Kentucky). This is the ONLY six-axis robotic arm printer in the market, with a resolution down to approximately 20 to 50 μm (microns). The second bioprinter is a BIO-X from Swedish biotech company Cellink, a pioneer in bioprinting.

An illustration of the heart with the cardiac patch already in place (Serpooshan Lab)

How long will it take to manufacture the patch?

Biomanufacturing of a cardiac patch at a clinically-relevant scale would take about 15 to 30 minutes, depending on the number of cell types involved, the vasculature design, and other factors. This enables the clinics, hopefully in the near future, to have heart attack patients come to the clinic, conduct CT or MR imaging, prepare 3D digital model of the damaged tissue, and sending it to the bioprinter to manufacture a patch device customized for that patient.

Vahid Serpooshan designing the myocardial infarct patch (Photo by Rob Felt, Georgia Institute of Technology)

Is there already a procedure in place to apply the patch?

Actually, there already is a procedure to apply the patch. We use a left thoracotomy approach to get access to the surface of the heart and suture the patch onto the epicardial layer of the heart, covering the myocardial infarction (also called a heart attack) area. There are currently some ongoing works trying to minimize the aggressiveness of this surgical procedure, potentially using catheter-based techniques.

What are the benefits of using collagen in the patch?

Collagen is the most abundant protein of the human body. This protein highly supports cell viability, proliferation, and function. It is a biodegradable protein which is a major advantage for in vivo applications, facilitating timely integration of the implant with the host tissue and avoiding long-term immunogenic complications. For our 3D bioprinting works, we use gelatin methacrylate (gelMA). Gelatin is derived from collagen (a hydrolyzed collagen) and offers similar advantages. The main advantages of gelMA for bioprinting of cardiac patches include: acceptable compatibility with cardiac cells (cardiomyocytes), tunable biomimetic mechanical properties (stiffness), controllable degradation rate, and of course, great printability (rheology properties).   

The collagen gel used to develop the 3D printed patch. (Photo by Rob Felt, Georgia Institute of Technology)

What percentage of heart disease patients will benefit from this device?

This therapy is designed for a specific group of heart attack patients, approximately one third of patients who either arrive too late to the clinics or are resistant to current catheter-based reperfusion methods and pharmacologic therapies.

If approved, Dr. Serpooshan’s patch could help over 200,000 patients per year.

Aspect Biosystems and Maastricht University Begin Joint 3D Bioprinting Research Collaboration

The Institute for Technology-Inspired Regenerative Medicine (MERLN) at Maastricht University in the Netherlands works to be a leader in the biomedical engineering field by training an interdisciplinary generation of scientists and conducting innovative research. The institute is on a mission to maximize public outreach in the field through the development and commercialization of important research, and its vision is focused on ambition, infrastructure, and knowledge sharing.

That is why MERLN is happy to announce that it will be starting a collaboration with Canada-based Aspect Biosystems, one of the major biotechnology companies in terms of tissue engineering and 3D bioprinting. Aspect is also well known for its microfluidic 3D printing technology, which is helping to pave the way for new advancements in understanding regenerative medicine, fundamental biology, disease research, and developing novel therapeutics.

Privately held company Aspect works to strategically partner up with pharmaceutical and biotechnology companies, in addition to academic researchers like the ones at MERLN, in order to develop commercially and physiologically relevant tissues. Aspect then uses these tissues to help speed up the discovery and development of new therapies and drugs.

As part of this collaboration, an RX1 Bioprinting Platform by Aspect will be placed inside Professor Lorenzo Moroni’s Lab at the university. There, Dr. Carlos Mota, the head of bioprinting research, will put it to good use developing 3D bioprinted kidney tissue.

“At Aspect, we are committed to collaborating with leading research groups in tissue engineering and regenerative medicine to realize the broad applicability of our technology. Patients on life-saving, but onerous, dialysis treatment are often found waiting for donor organs that are severely limited in supply. Tissue engineers recognize the potential of their work to alleviate this problem, but kidney tissue is complex and extremely challenging to create,” said Tamer Mohamed, the President and CEO of Aspect Biosystems. “There is also a strong need for suitable pre-clinical in vitro kidney models to predict nephrotoxicity and study disease in the biopharmaceutical industry. By combining the deep expertise at MERLN with our microfluidic 3D printing technology, we are increasing our capacity to tackle these kidney-related challenges head-on.”

The Moroni Lab, a research group that’s part of the MERLN institute, was originally founded at the University of Twente in 2009 for the purposes of using biofabrication to control the fate of cells. Now, it has multiple local and international collaborations.

As part of the terms of the collaborative research agreement with the university, Aspect will now have the option to continue developing and commercializing its products based on the results of its joint research with Maastricht University.

“This is an exciting opportunity. Aspect’s microfluidic bioprinting technology is very appealing from a flexibility and modularity perspective,” said Professor Moroni and Dr. Mota. “At Maastricht University, we have been investing a lot of energy in developing 3D bioprinted in vitro models, which we consider a first immediate step in gaining the knowledge needed for developing regenerative medicine solutions for complex tissue and organ replacement. We already took our first steps in kidney tissue models and we are particularly excited to apply our expertise with Aspect’s platform technology and join forces with their innovative team, which we expect will accelerate our findings and impact in this space.”

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

3D Printing News Briefs: December 30, 2018

In this week’s abbreviated 3D Printing News Briefs, we’ve got a story on a new type of 3D printing that makes it easy to 3D print small objects, and a distinguished professor gives a TEDx talk about the importance of interdisciplinary research. Wrapping things up, we’ve got a video about an amazing 3D printed 1/6 scale vehicle model.

Shrinking 3D Printer

A schematic of the Alice in Wonderland image that was etched and shrunk in the 3D shrinking printer. [Image: Ed Boyden et al.]

A team of researchers from MIT, Harvard, and the Pfizer Internal Medicine Research Unit in Cambridge, Massachusetts recently published a paper, titled “3D nanofabrication by volumetric deposition and controlled shrinkage of patterned scaffolds,” in the Science journal about their innovative new method of shrinking 3D printing, which makes it easy to 3D print very small objects. A technique called implosion fabrication 3D prints an object, then shrinks it down to the required size. The shrinking 3D printer can work with different materials, such as quantum dots, metals, and DNA, and can also fabricate complicated shapes like microscopic linked chains as well.

MIT researcher Ed Boyden, one of the co-authors of the paper, developed the shrinking 3D printing method by thinking of reversing a process where brain tissue is expanded so it’s possible to see its finer structure. The team found that they could shrink a structure by about 8,000 times in multiple tests, and proved its viability by etching a structure of Alice in Wonderland and shrinking it down to 50 nanometers from 1 cubic millimeter. The research team believes that their shrinking 3D printers could be used to make small, high resolution optical lenses for driving cars, though the possibilities for this technology are practically endless.

TEDx on Interdisciplinary Research

Distinguished Professor Dietmar W. Hutmacher, the director of the Centre for Regenerative Medicine and the Australian Research Council Training Centre in Additive Biomanufacturing at the Queensland University of Technology (QUT), is an inventor, educator, biomedical engineer, and intellectual property creator, and has been responsible for multiple breakthroughs in bioprinting. He recently gave a talk at a TEDx event about the importance of interdisciplinary research as it applies to regenerative medicine, which works to help patients with damaged tissues due to disease or accident. Prof Hutmacher himself has converted a bone tissue engineering concept all the way from the lab to clinical application involving in vitro experiments, preclinical studies, and clinical trials, and in the TEDx talk discussed how “one walks the talk to orchestrate an interdisciplinary team” where everyone can share knowledge and naturally learn the important required competencies. He presented a patient case of a young father’s long bone defect, where his interdisciplinary research team was made up of clinicians, engineers, material scientists, molecular and cell biologists, polymer chemists, and veterinary surgeons.

“In regenerative medicine there is a great move to introduce interdisciplinarity in the research programs, as well as in the scholarships,” DProf Hutmacher said in the YouTube video. “However, most of the teams are rather doing multidisciplinary research, which does not lead to what we have done in the past moving a bone tissue engineering concept into the clinic.”

To see the rest of DProf Hutmacher’s TEDx talk, check out the video below:

1/6 Scale Model of 1961 Dodge D100

Over the years, we’ve seen some pretty cool 3D printed vehicle models that have been both scaled up and scaled down, but I think this one takes the cake: a highly detailed, 1/6 scale model of a 1961 Dodge D100 truck, created by maker Konstantin Bogdanov. Including filming, the project took him a year to complete, and Bogdanov writes that the YouTube video he created is more of a project diary, though it can also be used as a tutorial.

Using a blueprint of the Dodge, Bogdanov modeled the cab of the truck in Blender and 3D printed it out of polyamide; additional materials used to build the model include aluminum foil, Styrene rods, plywood, artificial leather, and acrylic paint. His 44 minute YouTube video shows some of the modeling work, and then moves on to the nitty gritty details of building all the separate pieces of the truck model, from the doors and fenders to the chassis and grille, and finally assembling everything before painting and weathering the model. Plus, at about the 2:06 minute mark, Bogdanov’s adorable cat makes its first of multiple appearances in the video! If you’re interested in making your own 1/6 scale model of the 1961 Dodge D100 truck, you can download the STL files for both the four motor mount and the tractor wheels. Check out the video for more details.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.