GE Additive Partnering Up with Honda and Triumph Group for 3D Printing Acceleration

GE Additive, which is attending the Farnborough International Airshow this week, has been busily dropping announcements from the trade fair, the latest of which is centered around its AddWorks additive consulting service provider. GE Additive and AddWorks were chosen by the Honda R&D Co., Ltd, Aircraft Engine R&D Center in Japan to help increase the development of 3D printed aerospace applications for its future generation aircraft engines.

SmarTech Publishing stated that over $280 billion will be invested in additive manufacturing over the next decade, and GE Additive wants in. Last spring, the company announced that it would be increasing its focus on additive manufacturing, planning to sell 10,000 3D printers by 2026 and become a $1 billion business by 2020. This announcement was followed by setting up operations in Japan this winter, and announcing that more commercial offerings would be available last month. Now, it’s continuing to increase its commercial efforts in Japan by focusing on important industries like automotive and aerospace.

“We are pleased that Honda Aircraft Engine R&D Center has selected GE Additive to be its vendor in providing AddWorks consulting services to further the use of this transformative technology in its future generation aircraft engines,” said Thomas Pang, the Director of GE Additive in Japan. “We are in the best position to share our learnings from our own additive journey, having started from prototyping to successfully applying it to mass production for aviation engine parts.”

Honda R&D Headquarters

GE and Honda have been partnering together in the aviation industry for over ten years, first setting up the joint venture GE Honda Aero Engines LLC in 2004 between Honda Aero and GE Aviation, and then creating the GE Honda HF120 jet engine for use on lighter business jet aircraft like the successful HondaJet – the most delivered in its category last year.

To assist customers in adding 3D printing to their business workflows, GE Additive provides materials, 3D printers, and the engineering consultancy services of AddWorks; these consultants use their AM expertise to help clients figure out if adopting 3D printing will be beneficial in terms of performance and cost. GE Additive is hopeful that AddWorks will help Honda Aircraft Engine R&D Center, and ultimately lead to further growth of its partnership with the company and increased AM adoption in aerospace.

At its Japan location, GE Additive will sell Concept Laser and Arcam EBM 3D printers, along with materials, both directly and through local resellers to customers in the country that focus on heavy industry, automotive, and aerospace.

In addition to the partnership with Honda, Pennsylvania-headquartered Triumph Group, a leader in the aerospace industry, is working to further its own AM strategy by selecting two of GE Additive’s 3D printers and a variety of AddWorks design and engineering consultancy service packages. Triumph hopes that these new additions will help to support both its commercial objectives and its R&D initiatives.

“I really admire Triumph’s smart and progressive strategy in adopting a multimodality approach to their additive journey. And when you add to that the deep experience and divergent thinking of our AddWork’s team, I look forward to seeing the results of what I hope will be a long and rewarding relationship,” said Jason Oliver, the President and CEO of GE Additive.

Triumph works in all levels of the aerospace supply chain, ranging from single components and complex systems to aerospace structures, in order to offer solutions for an aircraft’s entire product life cycle. The company enjoys a competitive advantage over similar businesses thanks to its ability to integrate several capabilities and products.

The aerospace company chose an M2 Cusing Multilaser DMLM system from Concept Laser, as well as an Arcam EBM Q20plus system, both of which should be fully installed at its Seattle R&D facility within Q3 of 2018.

“Triumph Group is excited to work with GE Additive to broaden Triumph’s utilization of additive manufacturing technology. Thus far we have successfully used additive manufacturing for prototyping, and we are rapidly growing its use for design competency,” said Dan Crowley, the President and CEO of Triumph Group. “This partnership with GE Additive will strengthen our additive manufacturing capability, accelerating our ability to design and develop future on-wing solutions for our customers.”

L-R: Gary Tenison, VP Strategy & Business Development, Triumph Group; Jason Oliver, President & CEO, GE Additive; Dan Rowley, President & CEO, Triumph Group; David Joyce, Vice Chair of GE and President and CEO, GE Aviation; Tom Holzthum, EVP Integrated Systems, Triumph Group; Ryan Martin, Sales Leader Americas, GE Additive

Right from the beginning, GE Additive’s AddWorks team will work with Triumph in multiple areas, such as advising on prototyping strategies, discovery workshops, and materials selection.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below. 

[Images provided by GE Additive]

3D Printing Golf Clubs and Equipment

Golf is a popular sport in corporate America and adds about $70 billion dollars a year to the American economy. Companies are always testing new products that will catch the attention of golfers. The 2018 PGA Merchandise Show displayed the latest and greatest from golf manufacturers; everything from top of the line golf clubs to 3D printed golf balls. These tech savvy products are aimed at bringing golf to the attention of the younger generation. Research and Development tax credits are available to companies that partake in the improvement of existing products or the creation of new ones.

The Research & Development Tax Credit

Enacted in 1981, the federal Research and Development (R&D) Tax Credit allows a credit of up to 13 percent of eligible spending for new and improved products and processes. Qualified research must meet the following four criteria:

  • New or improved products, processes, or software
  • Technological in nature
  • Elimination of uncertainty
  • Process of experimentation

Eligible costs include employee wages, cost of supplies, cost of testing, contract research expenses, and costs associated with developing a patent. On December 18, 2015, President Obama signed the bill making the R&D Tax Credit permanent. Beginning in 2016, the R&D credit can be used to offset Alternative Minimum Tax and startup businesses can utilize the credit against $250,000 per year in payroll taxes.

3D Printed Callaway Golf Clubs

Callaway Golf recently announced a collaboration with Titomic, an Australian additive manufacturing company. Callaway plans to bring additive manufacturing into the golf world while also improving performance and efficiency. Titomic developed a new process for 3D metal printing called Titomic Kinetic Fusion. This process uses cold gas spraying to apply titanium particles to a structure to create parts that can withstand a great amount of force. Research and development of the prototypes will be produced at Titomic’s Melbourne facility which houses the world’s largest 3D metal printer. This isn’t the first instance of additive manufacturing in the golf industry, as last year Krone Golf created a 3D printed golf club.

Krone Golf

Krone Golf and CRP Group designed a club that was created by using a mixture of additive manufacturing and subtractive manufacturing. Designing the perfect golf club is a difficult task. Some aspects to take into consideration include swing, impact and follow-through. Restrictions such as size and weight of competitive golf clubs make it hard to develop new clubs. The miniscule characteristics of a club need to be altered in order to improve performance and additive manufacturing provides a way to make the changes needed for the development of new clubs. The body of the KD-1 driver is made from a Windform SP carbon composite that is resistant to shock and vibration, while the face is made of Ti 6AI-4V, a durable titanium alloy that is CNC machined and sanded for smoothness. Krone Golf is fascinated with how well the CNC machined parts and the Windform material work together exactly as designed. The performance test and computer simulations show the KD-1 to outperform any driver on the market today.

Grismont Paris

Golfers who want to separate themselves from the crowd will want to look to Grismont Paris. Grismont Paris produces 3D printed, custom-made golf clubs that can be finished in gold, copper, or metal. Clement Pouget-Osmont, a passionate golfer, started off making club heads for himself and friends out of his apartment in France. Now Grismont collaborates with engineers, artists, craftsmen, and clubmakers to create custom tailored 3D printed golf clubs unlike anything else on the market.

3D printing artists work together with engineers to create a harmonious balance between style and performance. Several aspects of a golf club can be adjusted to better fit the customer including center of gravity position, lie, loft, offset, club head weight, weight distribution, and  handedness. You have the option to either put in your specifications online or you can arrange a fitting session where experts will tailor your golf clubs to your every demand.

3D Printed Golf Ball

Nike is prototyping a 3D printed golf ball that is engineered to last longer and outperform even the best of golf balls on the market. Nike isn’t new to producing top of the line golf balls. The athletic company still uses elastomeric material for an inner core and a rigid material for an outer core, but 3D printing improves this process by conducting smoother transitions between materials and adding a new type of geometric configuration called a void, which could lead to performance enhancements. Nike is prototyping with different configurations, such as forming each shell layer away from the work surface, a type of assembly that is unattainable through traditional methods. Lastly, golf balls would be fused with DuPont Surlyn by using a 3D printing technique called fused deposition. While the golf ball is not on the market yet, expect Nike to announce the product in the near future.

3D Printed Accessories

For the golfers who want to 3D print on their own, Thingiverse has creations available to anyone. Makerbot, the company behind Thingiverse, designed a golfing kit that anyone can print. The kit includes CAD models for golf tees, golf forks (divot repair tool), and ball marker. The golf fork and ball marker can even be customized to display your initials or logo on the face.

Conclusion

The golf industry is constantly trying new methods of manufacturing in the quest for better performance. Club manufacturers, even brand names such as Callaway, are utilizing 3D printing in the production process in order to improve the smallest technical aspects of the golf club unattainable using traditional manufacturing methods such as injection or compression molding. Grismont is taking 3D printing to the next level by 3D printing custom-made heads and fine tuning them into top-of-the-line luxury golf clubs. 3D printing has a strong future in the golf industry and as more companies research the potentials of additive manufacturing, expect 3D printed products to become widespread in the golfing world.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 


Charles Goulding and Ryan Donley of R&D Tax Savers discuss 3D printed golf equipment.

3D Printing News Briefs: June 29, 2018

In today’s 3D Printing News Briefs (the last one this month, how is the summer going by so quickly?!), a few companies are announcing special honors and recognitions, and then we’re sharing stories stories about some interesting new 3D printing projects, and finally wrapping things up before the weekend with some business news. Renishaw’s Director of R&D has been honored by the Royal Academy of Engineering, while MakerBot earned an important designation for its 3D printing certification program for educators and Renovis Surgical Technologies received FDA approval for its new 3D printed implant. Festo is introducing three new bionic robots, one of which is partially 3D printed, and CINTEC is using 3D printing for its restoration of a famous government house. GE wants to use blockchains for 3D printing protection, and ExOne announced a global cost realignment.

Royal Academy of Engineering Honors Renishaw’s Chris Sutcliffe

Earlier this week, the Royal Academy of Engineering (RAE) awarded a Silver Medal to Professor Chris Sutcliffe, the Director of Research and Development of the Additive Manufacturing Products Division (AMPD) for global metrology company Renishaw. This award is given to recognize outstanding personal contributions to British engineering, and is given to no more than four people a year. The Silver Medal Sutcliffe received was in recognition of his part in driving the development of metal 3D printed implants in both human and veterinary surgery, and also celebrates his successful commercialization of 3D printed products with several companies, including Renishaw, and the University of Liverpool.

“Throughout my career I’ve worked hard to commercialise additive manufacturing technology. As well as AM’s benefit to the aerospace and automotive sectors, commercialisation of AM and associated technologies has been lifechanging for those with musculoskeletal diseases,” said Sutcliffe. “The award celebrates the successes of the engineers I have worked with to achieve this and I am grateful to receive the award to recognise our work.”

MakerBot’s Certification Program for Educators Gets Important Designation

One of the leaders in 3D printing for education is definitely MakerBot, which has sent its 3D printers to classrooms all over the world. Just a few months ago, the company launched a comprehensive, first of its kind 3D printing certification program, which trains educators to become 3D printing experts and create custom curriculum for STEAM classrooms. An independent review of the program showed that it meets the International Society for Technology in Education (ISTE) standards, and it has earned the prestigious ISTE Seal of Alignment from the accreditation body. In addition, a survey conducted over the last three years of over 2,000 MakerBot educators shows that the percentage of teachers reporting that MakerBot’s 3D printers met their classroom needs has doubled in just two years.

“This data shows that MakerBot isn’t just growing its user base in schools. We’re measurably improving teachers’ experiences using 3D printing,” said MakerBot CEO Nadav Goshen. “Much of this impressive teacher satisfaction is thanks to the effort we’ve put into solving real classroom problems—like the availability of 3D printing curriculum with Thingiverse Education, clear best practices with the MakerBot Educators Guidebook, and now training with the new MakerBot Certification program.”

Earlier this week, MakerBot exhibited its educator solutions at the ISTE Conference in Chicago.

FDA Grants Clearance for 3D Printed Interbody Spinal Fusion System 

California-headquartered Renovis Surgical Technologies, Inc. announced that it has received 510(k) clearance from the FDA for its Tesera SA Hyperlordotic ALIF Interbody Spinal Fusion System. All Tesera implants are 3D printed, and use a proprietary, patent-pending design to create a porous, roughened surface structure, which maximizes biologic fixation, strength, and stability to allow for bone attachment and in-growth to the implant.

The SA implant, made with Renovis’s trabecular technology and featuring a four-screw design and locking cover plate, is a titanium stand-alone anterior lumbar interbody fusion system. They are available in 7˚, 12˚, 17˚, 22˚ and 28˚ lordotic angles, with various heights and footprints for proper lordosis and intervertebral height restoration, and come with advanced instrumentation that’s designed to decrease operative steps during surgery.

Festo Introduces Partially 3D Printed Bionic Robot

German company Festo, the robotics research of which we’ve covered before, has introduced its Bionic Learning Network’s latest project – three bionic robots inspired by a flic-flac spider, a flying fox, and a cuttlefish. The latter of these biomimetic robots, the BionicFinWave, is a partially 3D printed robotic fish that can autonomously maneuver its way through acrylic water-filled tubing. The project has applications in soft robotics, and could one day be developed for tasks like underwater data acquisition, inspection, and measurement.

The 15 oz robot propels itself forward and backward through the tubing using undulation forces from its longitudinal fins, while also communicating with and transmitting data to the outside world with a radio. The BionicFinWave’s lateral fins, molded from silicone, can move independently of each other and generate different wave patterns, and water-resistant pressure and ultrasound sensors help the robot register its depth and distance to the tube walls. Due to its ability to realize complex geometry, 3D printing was used to create the robot’s piston rod, joints, and crankshafts out of plastic, along with its other body elements.

Cintec Using 3D Printing on Restoration Work of the Red House

Cintec North America, a leader in the field of structural masonry retrofit strengthening, preservation, and repair, completes structural analysis and design services for projects all around the world, including the Egyptian Pyramids, Buckingham Palace, Canada’s Library of Parliament, and the White House. Now, the company is using 3D printing in its $1 million restoration project on the historic Red House, which is also known as the seat of Parliament for the Republic of Trinidad and Tobago and was built between 1844 and 1892.

After sustaining damage from a fire, the Red House, featuring signature red paint and Beaux-Arts style architecture, was refurbished in 1904. In 2007, Cintec North America was asked to advise on the required repairs to the Red House, and was given permission to install its Reinforcing Anchor System. This landmark restoration project – the first where Cintec used 3D printing for sacrificial parts – denotes an historic moment in structural engineering, because one of the reinforcement anchors inserted into the structure, measuring 120 ft, is thought to be the longest in the world.

GE Files Patent to Use Blockchains For 3D Printing Protection

According to a patent filing recently released by the US Patent and Trademark Office (USPTO), industry giant GE wants to use a blockchain to verify the 3D printed parts in its supply chain and protect itself from fakes. If a replacement part for an industrial asset is 3D printed, anyone can reproduce it, so end users can’t verify its authenticity, and if it was made with the right manufacturing media, device, and build file. In its filing, GE, which joined the Blockchain in Transport Alliance (BiTA) consortium in March, outlined a method for setting up a database that can validate, verify, and track the manufacturing process, by integrating blockchains into 3D printing.

“It would therefore be desirable to provide systems and methods for implementing a historical data record of an additive manufacturing process with verification and validation capabilities that may be integrated into additive manufacturing devices,” GE stated in the patent filing.

ExOne to Undergo Global Cost Realignment

3D printer and printed products provider ExOne has announced a global cost realignment program, in order to achieve positive earnings and cash flow in 2019. In addition to maximizing efficiency through aligning its capital resources, ExOne’s new program will be immediately reducing the company’s consulting projects and headcount – any initial employee reductions will take place principally in consulting and select personnel. The program, which has already begun, will focus first on global operations, with an emphasis on working capital initiatives, production overhead, and general and administrative spending. This program will continue over the next several quarters.

“With the essential goal of significantly improving our cash flows in 2019, we have conducted a review of our cost structure and working capital practices. We are evaluating each position and expense within our organization, with the desire to improve productivity. As a result, we made the difficult decision to eliminate certain positions within ExOne, reduce our spending on outside consultants and further rely on some of our recently instituted and more efficient processes,” explained S. Kent Rockwell, ExOne’s Chairman and CEO. “Additional cost analyses and changes to business practices to improve working capital utilization will be ongoing over the next several quarters and are expected to result in additional cost reductions and improved cash positions. All the while, we remain focused on our research and development goals and long-term revenue growth goals, which will not be impacted by these changes, as we continue to lead the market adoption of our binder jetting technology.”

Discuss these stories, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

 

3D Printing News Briefs: June 26, 2018

We have plenty of business, material, and 3D printer news to share with you in today’s 3D Printing News Briefs. 3D printing led to increased savings for GM over the last two years, which is now increasing its use of the technology as a result. ExOne is saying goodbye to one CEO and hello to another, while Polymaker announces a global distribution arrangement with Nexeo Solutions and CollPlant receives R&D project approval in Israel. The US Patent and Trademark Office will be hosting its annual Additive Manufacturing Partnership Meeting this week, and RP Platform has announced a rebrand and a new AI software platform. Finally, the UK’s National Centre for Additive Manufacturing has decided to add Digital Metal’s binder jetting technology to its portfolio.

GM Increasing Use of 3D Printing at Plants

Zane Meike, AM lead at GM’s Lansing Delta Township assembly plant, holds a common 3D printed tool used to align engine and transmission vehicle identification numbers. [Photo: Michael Wayland]

According to Dan Grieshaber, the Director of Global Manufacturing Integration for General Motors (GM), most of the company’s factories have 3D printers, which are used to build accessories and tools for workers. A $35,000 3D printer at GM’s Lansing Delta Township assembly plant has actually helped save the company over $300,000 over two years: it’s used to make multiple items, such as part hangers, socket covers, and ergonomic and safety tools. A common tool used to align engine and transmission vehicle identification numbers cost $3,000 to buy from a third party, but is less than $3 to 3D print at the factory. Realizing that these kinds of savings can add up quickly, GM is increasing the use of 3D printing – part of its new Manufacturing 4.0 processes – at its plants in order to help streamline operations.

“We’re quickly evolving, creating real value for the plant. This will become, as we progress, our footprint. We’ll have this in every one of our sites,” Grieshaber said.

Grieshaber also said that GM is working to standardize 3D printing, as well as share best practices across all of its global plants.

ExOne Welcomes New CEO

The ExOne Company, which provides 3D printers and 3D printed products, materials, and services to its industrial customers around the world, has announced that its CEO, James L. McCarley, is departing the company, effective immediately, to pursue other interests and opportunities; he will be assisting the company in transitioning his responsibilities to the new CEO. ExOne’s Board of Directors has also announced who the new CEO will be – S. Kent Rockwell, the company’s Executive Chairman, who has served in the position in previous years. Rockwell’s new title is effective immediately.

“On behalf of our Board and management team, I would like to thank Jim for his efforts and wish him all the best in his future endeavors,” said Rockwell.

Polymaker Makes Distribution Arrangement with Nexeo Solutions

Shanghai-based 3D printing material producer Polymaker has entered an arrangement with chemicals and plastics distributor Nexeo Solutions, Inc., also based in Shanghai. Nexeo will be a global distributor for three new materials in the Polymaker Industrial line, but plans to introduce more of its materials over the rest of the year. C515 is an advanced polycarbonate (PC) filament that has excellent toughness and a low warping effect, while C515FR is a flame retardant PC with high impact resistance. SU301 is a polyvinyl alcohol (PVA)-based polymer that’s water soluble and was developed as a support material for FFF 3D printers.

Paul Tayler, the Vice President of EMEA at Nexeo Solutions, said, “Expanding our portfolio to include industrial grade filaments from Polymaker Industrial gives our customers access to a wider range of filaments that solve new 3D printing challenges and meet the demands of manufacturers. Industrial customers benefit from Nexeo Solutions’ access to world leading plastic producers coupled with additive manufacturing technical expertise.”

CollPlant Receives R&D Project Approval

Two years ago, regenerative medicine company CollPlant received funding from Israel’s Ministry of Economy for its research in developing collagen-based bioinks for 3D printing tissues and organs. CollPlant, which uses its proprietary plant-based rhCollagen (recombinant human collagen) technology for tissue repair products, has now announced that the Israel Innovation Authority (IIA) has approved a grant to finance the continued development of its rhCollagen-based formulations intended for use as bioinks. Terms of the grant require CollPlant to pay royalties to the IIA on future sales of any technology that’s developed with the use of the funding, up to the full grant amount. The total project budget is roughly $1.2 million (NIS 4.2 million), and the IIA will finance 30%, subject to certain conditions.

“In addition to providing immediate non-dilutive funding, this grant from the Israel Innovation Authority represents an important validation of our BioInk technology and its market potential. With the recent opening of our new cGMP production facility in Rehovot, Israel, we are well positioned to meet growing demand for our BioInk and tissue repair products. We are grateful to the IIA for this recognition,” said CollPlant CEO Yehiel Tal.

Additive Manufacturing Partnership Meeting Hosted by US Patent and Trademark Office

For the last several years, the US Patent and Trademark Office (USPTO) has been hosting the Additive Manufacturing Partnership Meeting, and this year’s meeting takes place tomorrow, June 27th, from 1 to 5 PM at the USPTO headquarters inside the Madison Building in Alexandria, Virginia. The USPTO will be seeking opinions from various participants at the informal meeting, which is really a forum for individual 3D printing users and the USPTO to share ideas, insights, and personal experiences.

“We value our customers and the feedback provided from individual participants is important in our efforts to continuously improve the quality of our products and services,” the USPTO meeting site reads. “Your willing participation in this informal process is helpful in providing us with new insights and perspectives.”

Scheduled speakers at this year’s meeting are coming from CIMP-3D, HRL, Kansas State University, Lawrence Livermore Laboratories, and the NextManufacturing Center, and an RSVP is required to attend the AM Partnership Meeting.

RP Platform Launches New AI Software and Rebrand

London-based RP Platform, which provides customizable workflow automation software for industrial 3D printing, is launching a new software platform, which will use AI for the first time to automate 3D printing production. With customers in over 30 countries, the company is one of the top automation software providers for industrial 3D printing. In addition to its software launch, RP Platform has also announced that, as it continues to expand its software capabilities to target AM end part production, it is rebranding, and has changed its name to AMFG.

“We want to help companies make their 3D printing processes much smoother so that they can produce more parts with greater visibility and less effort. And we have more exciting releases to our software over the coming months that will further enhance our production automation capabilities,” said Keyvan Karimi, the CEO of AMFG.

“Ultimately, we’re creating a truly autonomous manufacturing process for industrial 3D printing. For us, this means taking manufacturing to a new era of production. The launch of our new software, as well as our company rebrand, fully reflects this vision going forward.”

NCAM Installing a Digital Metal 3D Printer

The National Centre for Additive Manufacturing (NCAM) in the UK, headquartered at the Manufacturing Technology Centre (MTC) in Coventry, has decided to add the unique binder jetting technology developed by Digital Metal to its large range of advanced manufacturing equipment, and will soon be installing one of its high-precision metal 3D printers – which are not available anywhere else in the UK. The 3D printer will be available for use by NCAM’s member companies, and other organizations, who are interested in testing the capabilities of Digital Metal’s proprietary binder jetting technology.

Dr. David Brackett, AM Technology Manager at the NCAM, explained, “The Digital Metal binder jetting technology falls into the category of ‘bind-and-sinter AM’, where a multi-stage process chain incorporating sintering is required to achieve full density. It’s a very fast technology that can create complicated and highly detailed designs, and there is potential for wider material choice than with AM processes that use melting. We are delighted to be able to offer this to the companies we work with.”

The Digital Metal 3D printer will be operational later this summer, and NCAM personnel are already training with it to ensure they can operate it efficiently and safely.

Discuss all of these stories, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below.