3D Printing Webinar and Virtual Event Roundup, August 2, 2020

It’s another busy week in the 3D printing industry that’s packed full of webinars and virtual events, ranging in topics from medical materials and flexible electronics to polypropylene and market costs. There are four on Tuesday, August 4th, two on Wednesday, August 5th, and the week will end with the last KEX webinar on Thursday, August 6th.

ASTM’s AM General Personnel Certificate Program

Last week, the ASTM International Additive Manufacturing Center of Excellence (AM CoE) training course all about additive manufacturing safety.  Now, the AM CoE is starting its AM General Personnel Certificate course, which will begin August 4th and run through the 27th. One of its key focus areas is promoting AM adoption, and helping to fill the knowledge gap with training for the future AM workforce is a major way that the AM CoE is doing this. The online course is made up of eight modules covering all the general concepts of the AM process chain, and attendees will learn important technical knowledge that will allow them to earn a General AM Certificate after completing a multiple-choice exam.

“This course will feature 17 experts across the field of additive manufacturing to provide a comprehensive course covering all of the general concepts of the AM process chain to its attendees. The course will occur over the month of August consisting of two modules per week for four weeks. More information can be found in the course flyer.”

Online registration will open soon. This is not a free course—you can learn about the fees here.

Nexa3D & Henkel: Medical Materials Webinar

Nasal swabs

Recently, SLA 3D printer manufacturer Nexa3D and functional additive materials supplier Henkel announced that they were partnering up to commercialize the polypropylene-like xMED412, a durable, high-impact material that can be used to 3D print biocompatible medical and wearable devices; in fact, it’s already been cleared to print nasal swabs. Now, the two are holding a virtual leadership forum on “Advances and Breakthroughs in 3D Printed Medical Equipment and Device Materials,” like xMED412. Topics to be discussed will include new possibilities for 3D printing medical equipment and devices, the benefits of using AM to fabricate these products, and the advantages additive manufacturing has over medical materials made with traditional manufacturing. Panelists will engage with attendees after the discussion in a live Q&A session.

“3D printing has introduced all kinds of new possibilities for developing stronger and lightweighted equipment but we’ve only scratched the surface of what’s possible. These past few months have driven the industry to new realms of creativity with the need to quickly deliver medical supplies, devices and materials. With new lightweight, sturdy materials designed to withstand impact, moisture and vibration, access to lower cost medical equipment is becoming more widely available thanks to 3D printing.”

Register here for the 45-minute virtual forum, which will take place on Tuesday, August 4th, at 1:30 pm EST.

SOLIDWORKS Design Solution Demonstration

Also on August 4th, at 11 am EST, Dassault Systèmes will be holding a brief demonstration of its 3DEXPERIENCE SOLIDWORKS design solution. This demonstration of the platform’s capabilities will last just 22 minutes, and will teach attendees how to collaborate and stay connected to data while creating new designs with SOLIDWORKS when connected to the 3DEXPERIENCE platform, exploring the latest tools available on the platform, and design a model using both parametric (3D Creator) and Sub-D modeling (3D Sculptor) tools with the help of complementary workflows.

“SOLIDWORKS is the design tool that has been trusted by engineers and designers around the world for decades. Part of the 3DEXPERIENCE WORKS portfolio, SOLIDWORKS is now connected to the 3DEXPERIENCE platform with cloud-based tools that enable everyone involved in product development to collaborate on real-time data. Doing so enables you to efficiently gain the insight needed to create revolutionary new products.”

You can register for the demonstration here.

NextFlex Innovation Days

The last August 4th event in this week’s roundup is NextFlex Innovation Days, the flagship showcase event for the consortium of academic institutions, companies, non-profits, and local and federal governments that make up NextFlex and are working to advance US manufacturing of flexible hybrid electronics (FHE). The event will run through Thursday, August 6th, and will include panel discussions on how FHEs are continuing to transform the world, including a panel featuring a special guest speaker from the US Senate. FHE innovations that will be highlighted during the event include a wearable biometrics monitor from Stretch Med, Inc., flexible skin-like sensors from Georgia Tech, a flexible UV sensor out of the NASA Ames Research Center, miniaturized gas sensors that GE Research integrated into wearables and drone formats, and Brewer Science’s integrated FHE solutions in a brewery application.

“This multi-day virtual event will feature over 50 customer, partner and member company presentations online available at no cost. If you watch live, you’ll have the chance to interact with presenters and flexible hybrid electronic (FHE) experts from the comfort of home via webinars and virtual labs, or you can watch video demonstrations at your availability.”

Register for NextFlex Innovation Days here.

Additive America & HP AM Webinar

HP is currently sponsoring a webinar series highlighting business in the AM industry that worked to transition their production processes in order to help fill the supply chain gap that’s been caused by the COVID-19 pandemic. This week’s episode, which will take place at 1:30 pm EST on Wednesday, August 5th, will feature a discussion with Additive America on “the lasting impact of COVID-19 on additive manufacturing.”

“Listen in on conversations with our customers to learn how they have adapted to the change in business climate, whether it be a shift in production workflow to address supply chain gaps, enabling a faster product development cycle to support changing customers’ needs, or bridge production.”

You can register for this webinar here.

Prodways, BASF, & Peridot Talk Polypropylene

Also on August 5th, Prodways, BASF, and full-service product development company Peridot Inc. will be holding a free webinar together called “Rethink Additive Manufacturing with Polypropylene.” Led by Lee Barbiasz from Prodways, Jeremy Vos from BASF, and Peridot owner Dave Hockemeyer, the webinar will focus on how PP 1200, a tough, chemically resistant, low density polypropylene enabled by BASF for selective laser sintering (SLS) 3D printing, is being used to bridge the gap between additive manufacturing and injection molding, as well as growing opportunities and applications in short run manufacturing. Hockemeyer was an early adopter of the material, and will share a variety of use cases for PP 1200. There will also be a chance for attendees to ask questions about the material.

“3D Printing with Polypropylene is here! After more than three decades, 3D printing technology has evolved the ability to 3D print polypropylene material. Polypropylene enables scalability in manufacturing, reduces barriers to entry in 3D printing and reduces manufacturing costs by 25-50%!”

You can register for the webinar, held on Wednesday, August 5th, from 1-1:45 pm EST, here.

KEX Knowledge Exchange on Market, Costs & Innovation

The last entry in this week’s roundup will take place on Thursday, August 6th. KEX Knowledge Exchange AG, a former spinoff of Fraunhofer IPT, held webinars in July about powder bed fusion technology and post-processing, and the last in its series will be an online seminar on Market, Costs & Innovation. Sebastian Pfestorf from KEX and Lea Eilert, the project and technology manager for the ACAM Aachen Center for Additive Manufacturing, will be the speakers for this webinar.

“In this online seminar, you will learn:

  • Current AM market and industrial trends

  • What markets the technology has penetrated the most and why

  • How to go about implementing AM, including risks and uncertainties

You can register for the hour-long webinar here. It will take place on Thursday, August 6th, at 8 am EST.

Will you attend any of these events and webinars, or have news to share about future ones? Let us know! 

The post 3D Printing Webinar and Virtual Event Roundup, August 2, 2020 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs, July 18, 2020: DOMO & RPD, AMPM2021, Alloyed

In today’s 3D Printing News Briefs, DOMO Chemicals and RPD have announced a partnership related to a Sinterline initiative. The 2021 AMPM event is calling for technical papers related to metal additive manufacturing. Finally, Alloyed has won a prestigious award.

DOMO Chemicals and RPD Partnering

DOMO’s Sinterline PA6 powders combined with RPD’s SLS printer, modified and upgraded by LSS, enable OEMs to step up their 3D printed parts performance. (Photo courtesy of RPD)

Polyamide solutions provider DOMO Chemicals and Rapid Product Development GmbH (RPD), a specialist in prototyping and serial production of complex parts and assemblies, have formed a strategic partnership for the purposes of speeding up the growth of plastic materials for selective laser sintering (SLS) 3D printing. The collaboration will merge the continuing development of DOMO’s Sinterline Technyl PA6 SLS powder materials with a package of support services for SLS technology, benefiting from RPD’s expertise in application development and the SLS process. Sinterline PA6 powders are an oft-used nylon in the industry, especially by demanding markets like automotive.

“Sinterline® has pioneered the use of high-performance PA6 in 3D printing, and allows us to leverage the same polymer base that has proven so successful in many existing injection molding applications. Backed by the joint application development services of our companies, even highly stressed automotive components can now be successfully 3D printed in PA6 to near-series and fully functional quality standards,” stated Wolfgang Kraschitzer, General Manager and Plastics Processing Leader at RPD.

AMPM Conference Seeking Papers and Posters

The Additive Manufacturing with Powder Metallurgy Conference (AMPM2021) will be held in Orlando, Florida from June 20-23, 2021. While this may seem far in the future, the event’s program committee is looking ahead, and has issued a call for technical papers and posters that are focused on new developments in the metal additive manufacturing market. Stuart Jackson, Renishaw, Inc., and Sunder Atre, University of Louisville, the technical program co-chairman, are asking for abstracts that cover any aspect of metal AM, such as sintering, materials, applications, particulate production, post-build operations, and more.

“As the only annual additive manufacturing/3D printing conference focused on metal, the AMPM conferences provide the latest R&D in this thriving technology. The continued growth of the metal AM industry relies on technology transfer of the latest research and development, a pivotal function of AMPM2021,” said James P. Adams, Executive Director and CEO of the Metal Powder Industries Federation.

The submission deadline for abstracts is November 13, 2020, and must be submitted to the co-located PowderMet2021: International Conference on Powder Metallurgy & Particulate Materials.

Alloyed Wins IOP Business Award

Alloys By Design (ABD)

UK company Alloyed, formerly OxMet Technologies, has won a prestigious award from the Institute of Physics (IOP), the learned society and professional body for physics. The IOP is committed to working with business based in physics, and its Business Awards recognize the contributions made by physicists in industry. Alloyed has won the IOP Business Start-up Award, which OxMet submitted for consideration before merging with Betatype to form Alloyed, and recognizes the team’s hard work in developing its digital platform Alloys By Design (ABD). This platform is helping to set new metal material development standards, including the commercialization of Alloyed’s ABD-850AM and ABD-900AM alloys for additive manufacturing.

“Everything we do in every bit of our business rests on the foundations provided by physics, and we’re delighted that the judges believe we have made a contribution to the field,” Alloyed CEO Michael Holmes said about winning the IOP Business award.

The post 3D Printing News Briefs, July 18, 2020: DOMO & RPD, AMPM2021, Alloyed appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Rice Researchers 3D Print with Lasers and Sugar to Build Complex Vascular Networks

A team of researchers from Rice University has uncovered a promising strategy to generate vascular networks, one of the most daunting structures in the human body. Using powdered sugar and selective laser sintering, the researchers were able to build large structures from complex, branching, and intricate sugar networks that dissolve to create pathways for blood in lab-grown tissue.

This is the team’s latest effort to build complex vascular networks for engineered tissues to show that they could keep densely packed cells alive for two weeks. The findings of their study—published in the Nature Biomedical Engineering journal—prove that developing new technologies and materials to mimic and recapitulate the complex hierarchical networks of vessels gets them closer to providing oxygen and nutrients to a sufficient number of cells to get a meaningful long-term therapeutic function.

“One of the biggest hurdles to engineering clinically relevant tissues is packing a large tissue structure with hundreds of millions of living cells,” said study lead author Ian Kinstlinger, a bioengineering graduate student at Rice’s Brown School of Engineering. “Delivering enough oxygen and nutrients to all the cells across that large volume of tissue becomes a monumental challenge. Nature solved this problem through the evolution of complex vascular networks, which weave through our tissues and organs in patterns reminiscent of tree limbs. The vessels simultaneously become smaller in thickness but greater in number as they branch away from a central trunk, allowing oxygen and nutrients to be efficiently delivered to cells throughout the body.”

Overcoming the complications of 3D printing vascularization has remained a critical challenge in tissue engineering for decades, as only a handful of 3D printing processes have come close to mimic the in vivo conditions needed to generate blood vessels. Without them, the future of bioprinted organs and tissues for transplantation will remain elusive. Many organs have uniquely intricate vessels, like the kidney, which is highly vascularized and normally receives a fifth of the cardiac output, or the liver, in charge of receiving over 30% of the blood flow from the heart. By far, kidney transplantation is the most common type of organ transplantation worldwide, followed by transplants of the liver, making it crucial for regenerative medicine experts to tackle vascularization.

Ian Kinstlinger with a blood vessel template he 3D printed from powdered sugar (Credit: Jeff Fitlow/Rice University)

In the last few years, extrusion-based 3D printing techniques have been developed for vascular tissue engineering, however, the authors of this study considered that the method presented certain challenges, which led them to use a customized open-source, modified laser cutter to 3D print the sugar templates in the lab of study co-author Jordan Miller, an assistant professor of bioengineering at Rice.

Miller began work on the laser-sintering approach shortly after joining Rice in 2013. The 3D printing process fuses minute grains of powder into solid 3D objects, making possible some complex and detailed structures. In contrast to more common extrusion 3D printing, where melted strands of material are deposited through a nozzle, laser sintering works by gently melting and fusing small regions in a packed bed of dry powder. According to Miller, “both extrusion and laser sintering build 3D shapes one 2D layer at a time, but the laser method enables the generation of structures that would otherwise be prone to collapse if extruded.”

“There are certain architectures—such as overhanging structures, branched networks and multivascular networks—which you really can’t do well with extrusion printing,” said Miller, who demonstrated the concept of sugar templating with a 3D extrusion printer during his postdoctoral studies at the University of Pennsylvania. “Selective laser sintering gives us far more control in all three dimensions, allowing us to easily access complex topologies while still preserving the utility of the sugar material.”

Assistant professor of bioengineering at Rice University, Jordan Miller (Credit: Jeff Fitlow/Rice University)

Generating new 3D printing processes and biomaterials for vascularization is among the top priorities for the researchers at Miller’s Bioengineering Lab at Rice. The lab has a rich history of using sugar to construct vascular network templates. Miller has described in the past how sugar is biocompatible with the human body, structurally strong, and overall, a great material that could be 3D printed in the shape of blood vessel networks. His original inspiration for the project was an intricate dessert, even going as far as suggesting that “the 3D printing process we developed here is like making a very precise creme brulee.”

To make tissues, Kinstlinger chose a special blend of sugars to print the templates and then filled the volume around the printed sugar network with a mixture of cells in a liquid gel. Within minutes, the gel became semisolid and the sugar dissolved and flushed away to leave an open passageway for nutrients and oxygen. Clearly, sugar was a great choice for the team, providing an opportunity to create blood vessel templates because it is durable when dry, and it rapidly dissolves in water without damaging nearby cells.

A sample of blood vessel templates that Rice University bioengineers 3D printed using a special blend of powdered sugars. (Credit: B. Martin/Rice University)

In order to create the treelike vascular architectures in the study, the researchers developed a computational algorithm in collaboration with Nervous System, a design studio that uses computer simulation to make unique art, jewelry, and housewares that are inspired by patterns found in nature. After creating tissues patterned with these computationally generated vascular architectures, the team demonstrated the seeding of endothelial cells inside the channels and focused on studying the survival and function of cells grown in the surrounding tissue, which included rodent liver cells called hepatocytes.

The hepatocyte experiments were conducted in collaboration with the University of Washington (UW)’s bioengineer and study co-author Kelly Stevens, whose research group specializes in studying these delicate cells, which are notoriously difficult to maintain outside the body.

“This method could be used with a much wider range of material cocktails than many other bioprinting technologies. This makes it incredibly versatile,” explained Stevens, an assistant professor of bioengineering in the UW College of Engineering, assistant professor of pathology in the UW School of Medicine and an investigator at the UW Medicine Institute for Stem Cell and Regenerative Medicine.

The results from the study allowed the team to continue their work towards creating translationally relevant engineered tissue. Using sugar as a special ingredient and selective laser sintering techniques could help advance the field towards mimicking the function of vascular networks in the body, to finally deliver enough oxygen and nutrients to all the cells across a large volume of tissue.

Miller considered that along with the team they were able to prove that “perfusion through 3D vascular networks allows us to sustain these large liverlike tissues. While there are still long-standing challenges associated with maintaining hepatocyte function, the ability to both generate large volumes of tissue and sustain the cells in those volumes for sufficient time to assess their function is an exciting step forward.”

The post Rice Researchers 3D Print with Lasers and Sugar to Build Complex Vascular Networks appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

The State of 3D Printing at Continental Automotive

Other organizations like NASA have also been using 3D printing technology for prototypes and functional parts—long before the rest of the world had an inkling about the impacts that would be made decades later in nearly every major industrial application. The Continental Automotive division serves as a good example of the long evolution of 3D printing and additive manufacturing within industries like automotive.

Selective Laser Melting (SLM) is used to print steel and aluminum. (Image credit: Claus Dick)

With a market cap of roughly $18.5 billion, Continental is a German multinational auto parts maker that manufactures such products as electronics; safety, powertrain and chassis parts; brake systems, tires, and more. Its customers run the gamut of car, truck and bus companies, including Volkswagen, Ford, Volvo, BMW, Toyota, Honda, Porsche and others.

As with every automaker, the firm has been using AM for design and prototyping purposes for some time, but it is now taking the technology to the next level. Just last year, the German-headquartered company opened the competence center for additive design (ADaM) at its Karben site. Five different 3D printing techniques are currently being used at ADaM:

  • Selective laser melting (SLM)
  • Selective laser sintering (SLS)
  • Stereolithography (SLA)
  • Digital light processing (DLP)
  • Fused deposition modeling (FDM)

“Practically at every location there are at least smaller additive systems, but this abundance and variety of systems is only available in Karben,” said Frauke Berger, site manager at Continental Automotive, in a recent interview.

Site manager Frauke Berger presents a printed component made of plastic. (Image credit: Claus Dick)

As the automotive and engineering divisions of the company, founded in 1871, work together closely, they are able to put the advantages of 3D printing into action using both plastic and metal materials.

For Continental, this means enjoying savings on the bottom line, more efficient manufacturing processes, ease in designing and making changes without waiting on a third party, and, most importantly for many industrial users, the ability to fabricate more complex geometries previously impossible with traditional techniques.

“A major advantage of additive manufacturing is that parts can be designed differently, and projects are therefore approached in a constructively different way,” said Berger.

Previously, the Continental team was able to create a more durable brake caliper:

“Usually such patterns come from sand casting. It takes about 14 weeks. The printed part was finished in less than a week,” explained Stefan Kammann, head of the Additive Design and Manufacturing business segment. “In principle, all weldable metals such as aluminum, stainless steel and tool steel, titanium or, to a limited extent, copper can be printed.”

Plastics are usually printed at Continental via selective laser sintering (SLS), as the team finds it to be the fastest route, as well as the most similar to ‘series technology.’ Materials such as PA12, as well as PA6, are often employed, along with polypropylene for parts like brake fluid containers.

As 3D printing and AM processes have continued to make impacts around the world and progress due to user’s needs, that growth has been seen at Continental, too, as software, hardware, and materials have been further refined. Orders for parts that may have previously involved up to 40 hours of production time now may take as little as 60 minutes.

“In the past we knocked the supports off the lattice platform with a hammer and chisel and had to be careful not to tear out any piece of the model, the material was so firm,” says Kammann. “The process is extremely precise, and we achieve good surfaces with it.”

With Selective Laser Sintering (SLS), support structures are no longer required. (Image credit: Continental)

DLP printing also allows for the option of 3D printing several parts at once, along with using a selection of materials, like ABS, PLA, TPU, and other plastics.

“For this purpose, a filament, i.e. a rolled plastic, is pressed through a hot nozzle and applied in sausages in a manner comparable to a CNC-controlled hot glue gun,” said Kammann. “You need an infrastructure and other technologies to process, combine, and instill the parts properly.”

Next year, the Continental team is planning to complete a large order for a manufacturer in need of 9,500 parts—all of which will be 3D printed.

Stefan Kammann explains how the rolled plastic is pressed through a hot nozzle. (Image credit: Claus Dick)

Industrial users continue to enjoy the positive impacts of 3D printing and AM processes in a wide variety of other applications too such as aerospace, dental and medical, construction, and far more.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

The Continental Competence Center for Additive Design and Manufacturing (Adam) in Karben houses various systems for 3D printing. (Image credit: Claus Dick)

[Source / Images: Automotive IT]

The post The State of 3D Printing at Continental Automotive appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

CRP Technology Makes 3D Printed PocketQube Satellite Deployer for Alba Orbital

First there were the smallsats, and the CubeSats. Now there’s something even smaller to launch into orbit – PocketQubes, a satellite with off-the-shelf electronic components that can fit into your pocket. One eighth the volume of a CubeSat, these tiny space research satellites are 5 cm cubed, with a mass of 250 grams, and while they were only conceived of about ten years ago, interest in them is growing quickly, as it’s becoming more expensive to launch CubeSats into low Earth orbit.

Two years ago, the first PocketQube Standard was issued, and one of the contributors is Scottish high-tech SME Alba Orbital. The company supports this satellite class, as it builds its own PocketQube platforms and provides global companies, space agencies, and universities parts and launches.

Alba Orbital needed to improve the access and manufacturability, and reduce the weight, of its PocketQube satellite deployer, the AlbaPod 2.0, along with adding some new safety features, and is partnering with CRP Technology on the project. The Italian 3D printing company has used its patented Windform TOP-LINE composite materials for aerospace applications in the past, so it was more than up to the task.

3D printed AlbaPod 2.0 on vibration table going through pre-flight certification.

First, CRP analyzed the 2D and 3D files for the deployer, so it could best advise Alba Orbital on which material to use with its Selective Laser Sintering (SLS) process. The high-performance Windform XT 2.0 carbon composite material was chosen, thanks to its increased tensile strength, elongation at break, and tensile modulus.

“As the product needed to withstand a launch to space while containing several satellites, the pod needed to withstand high vibrations, and in the worst scenario, contain any satellite that breaks free internally,” said the Alba Orbital team. “Windform ® XT 2.0’s toughness and strength make it a perfect candidate for this use case.”

3D printed AlbaPods 2.0 in Windform XT 2.0.

Weight reduction is another important design goal for aerospace parts, and the material needs to be flight-approved due to strict degassing rules in space. Windform XT 2.0 has already been approved by major launch providers, making it an easy choice for the launcher.

“Windform® XT 2.0 is a non-outgassing, lightweight fibre reinforced polyamide plastic very similar to Nylon. The material combined with the manufacturing technique allowed us the option to design parts that can not be manufactured with traditional techniques, with thin sections and extremely complex geometry’s, and these parts can be manufactured and delivered in a fraction of the time for a traditional supply chain,” Alba Orbital said.

Fully loaded 3D printed AlbaPod 2.0 for flight – rear cover removed for inspection.

Once Alba Orbital sent the final STP file, CRP Technology quickly created the lightweight AlbaPod v2, a 3D printed deployer for PocketQube-compatible satellites, flight-proven 6P (up to six satellites) and weighing 60% less than the AlbaPod v1.

“The most innovative aspect of the project was the sheer number of components we switched over to Windform ® XT 2.0, not only was the shell redesigned in the material, but also the moving ejection mechanism and door assembly,” Alba Orbital notes.

The 3D printed AlbaPod v2 PocketQube deployer complies with Alba Orbital’s standards, and after performing many tests on the device, Alba Orbital says it has passed the control criteria.

3D printed AlbaPod 2.0 vibration testing.

“This is critical,” they said about the part’s mechanical performance. “Not only does the full assembly need to function correctly to facilitate the deployment of the satellites inside, but must also contain the satellites in the event of catastrophic failure of a payload during the launch as anything breaking free could fatally damage other payloads or the launch vehicle itself. This was tested thoroughly with free masses on vibration tables at extremely high loading and the shell held up phenomenally.

“Additionally weight is a major concern with anything going into space due to the costs associated, utilising Windform ® XT 2.0 allowed us to reduce the mass of a number of major components.”

Integrations began this fall, and six PocketQube satellites were launched into orbit by Alba Orbital in December on the 3D printed AlbaPod v2. The Alba Cluster 2 mission was in orbit for 100 days, and a launch via the 3D printed AlbaPod v2 for the Alba Cluster 3 mission is expected to occur later this year.

“3D printing allows us to rapidly improve design and customise/create bespoke launchers in the future for demanding payloads which may fall outside the Pocketqube standards or require special considerations,” Alba Orbital said.

“It will also allow the fast integration of new release mechanisms allowing us to switch manufacturers comparatively quickly and easily if problems with supply chain arise.”

The first of the two fully loaded AlbaPod 2.0 being attached to the kick stage of Rocket Labs Electron rockets for launch.

The AlbaPod v2 manufacturing experience will be presented this October 8th and 9th at the 4th Annual PocketQube Workshop 2020, held in the Glasgow University Union. The event brings together top innovators from the PocketQube community so they can explore the technology.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

(Images: Courtesy of Alba Orbital)

The post CRP Technology Makes 3D Printed PocketQube Satellite Deployer for Alba Orbital appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

POLYLINE Project: Developing Digital Production Line for 3D Printing Spare & Series Automotive Parts

Because 3D printing can ensure complex structures and geometry, mass production of individualized products seems closer than ever. But, since standards are somewhat lacking across process chains, and automated levels of handling and transport processes are low, it’s only possible to achieve horizontal and vertical AM integration in production lines on a limited basis. Additional obstacles include limited monitoring and a lack of transparency across the process chain, due to a non-continuous digital data chain at lots of interfaces. But the potential benefits of integrating AM into assembly and series production lines in the automotive industry are great, which is why the POLYLINE project was launched.

With 10.7 Mio. Euro in funding by the German Federal Ministry of Education and Research (BMBF), this “lighthouse project” is bringing together 15 industrial, science, and research partners from across Germany with the shared goal of creating a digital production line for 3D printed spare and series automotive parts.

The three-year project officially began at a kick-off meeting of the consortium partners this spring at the Krailling headquarters of industrial 3D printing provider EOS, which is leading the project. The other 14 partners are:

BMBF is funding POLYLINE as part of the “Photonics Research Germany – Light with a Future” program in order to set up AM as a solid alternative for series production. The resulting next-generation digital production line will 3D print plastic automotive parts in an aim to complement more traditional production techniques, like casting and machining, with high-throughput systems.

The project is looking to disrupt the digital and physical production line system, and is using an interesting approach to do so that, according to a press release, “takes a holistic view and implements all required processes.” To succeed, all of the quality criteria and central characteristic values from the CAD model to the printed part need to be recorded and documented, and individual production sub-processes, like the selective laser sintering, cooling, and post-processing, will be automated and added to the production line. For the first time, all technological elements of the SLS production chain will be linked as a result.

Schematic representation of a laser sintering production line

Per the application partner’s requirements, the production line will be realized with “a high degree of maturity,” and uses cases for POLYLINE will include large amounts of both serial and customized components.

Each partner will add its own contribution to the POLYLINE project. Beginning with the leader, the EOS P 500 system will have real-time monitoring and automated loading of exchange frames added to its features; the printer will also be embedded in an automatic powder handling system. Premium automotive manufacturer the BMW Group, already familiar with 3D printing, has a massive production network of 31 plants in 15 countries, and is creating a catalog of requirements for the project to make sure that the new line will meet automotive industry standards. Additionally, the demonstrator line will be set up near its Additive Manufacturing Campus, and cause-and-effect relationships will be jointly researched.

Iterations of a BMW Roof Bracket made with 3D printing. (Image: BMW Group)

Industrial process automation specialist Grenzebach will be responsible for material flow and transport between AM processes, as well as helping to develop automated hardware and software interfaces for these processes. 3YOURMIND is setting up a data-driven operating model, which will include “qualified digital parts inventories, orders processing, jobs and post-processing planning and execution, material management, and quality control,” while software solutions developer Additive Marking is focusing on quality management optimization and resource efficiency.

Post-processing specialist DyeMansion will develop a process for certified, UV-stable automotive colors, create Industry 4.0-ready solutions for cleaning and mechanical surface treatment with its PolyShot Surfacing (PSS) process, and contribute its Print-to-Product platform’s MES connectivity. Bernd Olschner GmbH will offer its customer-specific industrial cleaning solutions, Optris will make fast pyrometers and special thermal imaging cameras adapted for plastic SLS 3D printing, and air filter systems manufacturer Krumm-tec will work to upgrade the manual object unpacking process.

(Image: DyeMansion)

Along with other project partners, Paderborn University is “working on the horizontal process chain for the integration of additive manufacturing in a line process,” while the Fraunhofer Institute for Casting, Composite and Processing-Technology IGCV is developing a concept for POLYLINE production planning and control, which will be tested in a simulation study for scalability. The Fraunhofer Institute for Material Flow and Logistics IML will work on “the physical concatenation of process steps,” paying specific attention to flexibly linking the former manual upstream and downstream AM processes.

TU Dortmund University will help apply deep learning, and implicit geometric modeling, for data preparation and analysis, along with online monitoring and quality management, in order to achieve sustainable automation and efficiency for the project. The University of Augsburg’s Chair of Digital Manufacturing works to integrate AM processes into current production methods, and will apply its expertise in this area to the POLYLINE project, helping to develop strong vertical process chains. Finally, the University of Duisburg-Essen will focus on creating quality assurance for the material system, and its laser sintering process.

The consortium of the POLYLINE project (Image: EOS GmbH)

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post POLYLINE Project: Developing Digital Production Line for 3D Printing Spare & Series Automotive Parts appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Olaf Diegel’s Latest 3D Printed Guitar, the Xenomorph

“Here’s lookin’ at you, kid.” “Hasta la vista, baby.” “Life is like a box of chocolates.” “Game over, man, game over!” These are all memorable lines from iconic films, though some people may not recognize the last one. This is a line from one of my absolute favorite movies, the 1986 Aliens, and was uttered by Private Hudson, played by Bill Paxton, after (most of) the group narrowly escapes with their lives from a close encounter with the film’s titular creatures.

(Image: IMDB)

Needless to say, I was pretty excited about multi-talented Swedish design engineer Olaf Diegel’s latest 3D printed guitar: the Xenomorph, which is what “the Company” dubbed the fully-grown alien life form in the movie.

“Yes, this was a fun little project that really got the creative juices flowing,” Diegel told me in an email.

Formerly a professor at Lund University in Sweden, Diegel is now in charge of the Creative Design and Additive Manufacturing Lab at the University of Auckland in New Zealand, as well as a professor of additive manufacturing and product development. He is also a DfAM expert and loves completing creative 3D printed projects, like a tiny desktop distillery, a Skeletor microphone, a saxophone, and of course, guitars.

Olaf Diegel (Image: ODD Guitars)

Diegel also founded ODD Guitars, which focuses on making, according to the website, “personalisable, customisable guitars that explore the limits of 3D printing technologies and applications.” ODD uses Selective Laser Sintering (SLS) technology to make its guitars, and finishes the instruments with top quality off-the-shelf hardware.

ODD makes all kinds of guitars – there’s a Steampunk one, the Spider, American Grafitti, Beatlemania, and now the Xenomorph. I told Diegel how much I love the Alien franchise, and asked if he could tell me a little more about the making of his Alien-themed guitar.

“It started way back, about 3 years ago, when Fredrik Thordendal, from Swedish extreme metal band Meshuggah, suggested the idea of designing a biomechanical inspired guitar. And I also had a friend in the robotics field who had a lot of biomechanical tattoos, so those got me started on the guitar,” Diegel told me. “But other projects got in the way and I forgot about it until around 3 months ago, and picked the project up again, but that’s when it got morphed somewhere between a biomechanical and an Alien themed guitar which, indeed, were awesome movies…”

Diegel used mostly SOLIDWORKS, with “a bit of help from Meshmixer,” to sculpt some of the guitar’s more organic parts. He got some of the “rough details and proportions” for these parts from different Thingiverse models.

In response to a question from one of his LinkedIn followers, he said, “I did a very rough crude shape of the head and teeth, mainly trying to get the head carapace right in Solidworks and exported that as an STL, and then had to modify and massage the STL a whole heap in Meshmixer to make it look like the Alien.”

Then, he put it all together in Materialise Magics so he could merge all of the individual STL files into a single file. The body of the Xenomorph guitar was 3D printed in white nylon by i.materialise in Belgium, and its neck is a high-quality Warmoth maple neck, with a rosewood Fretboard, and a machined maple inner core that joins it to the bridge. The hardware includes Seymour Duncan hot-rodded humbuckers, a Schaller bridge and guitar strap locks, and Gotoh tuners, all in black for a good Alien vibe.

Diegel received the guitar back from Belgium right before Christmas, so he took advantage of the holidays to begin priming, sanding, and painting it.

“When I got to the colour, I started it off with ‘Hammerite’ paint, to give it almost the ‘worn’ grey metallic look of the spaceships in the Alien movies. But I then thought it needed a bit more colour to highlight the Alien bits, so took it to Ron Van Dam, the NZ airbrush artist who does the ‘fancy’ paint jobs on most of my guitars. He did an awesome job at giving it just the touch of colour it needed, as well as the glistening clearcoat that mimics the sliminess of the Alien Xenomorph,” Diegel told me.

He’s tried it out, and the 3D printed Xenomorph guitar “plays and sounds awesome.”

“This is guitar number 80, and I have one of each design in my collection, so have sold somewhere around 66 of them, so this is also makes a nice example of using 3D printing for low-volume high-value production,” Diegel said.

Other LinkedIn comments on his original post provide Diegel with some ideas for his next guitar. Harry Potter was one option, but I agree with the second one – a 3D printed Predator guitar, so the two can battle it out.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Images: Olaf Diegel, ODD Guitars, unless otherwise noted]

The post Olaf Diegel’s Latest 3D Printed Guitar, the Xenomorph appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Carl Deckard Passes Away

It is with sadness that we learned this weekend that Carl Deckard has passed away. Carl was a true industry pioneer in 3D printing. Starting under UT professor Bob Beaman, Carl Deckard was part of an innovative UT team that was developing manufacturing technologies. He reportedly was watching an episode of Star Trek the original series when he thought of how the Star Trek team was able to visualize the transporter. “Beam me up Scottie” was an important element of the science fiction show. It turned out that the transporter special effect was created by arranging colored loose sand so that it resembled the objects being materialized by the transporter. This knowledge triggered an idea in Carl’s head, “what if just like the transporter special effect in Star Trek, he could also use sand to make up objects by arranging them just so?” This thought lead to Carl inventing Selective Laser Sintering as a Master’s Thesis project. He later commercialized the technology in 1987 through his firm DTM. After a few precarious year DTM sold its first machine to Sandia National Labs. DTM was very successful and brought the selective laser sintering technology to market across the globe.

Still today you can see twenty-year-old, low slung blue DTM machines dutifully building parts in service bureaus around the world. The trusty sinterstations are still in use so many years later and reliably spit out thousands of parts. SLS as a technology is special because of this quality. SLA, Stereolithography (and DLP) let us make millions of smooth highly detailed parts for molds and hearing aids. FDM (material extrusion) let us make rough but dimensionally accurate parts reliably. Where SLS really shines is in making ten thousand of something day after day. In applications such as surgical guides, prototyping, dental guides and spare parts SLS can make very detailed, tough parts in their tens and thousands. SLS is reliable and predictable which has made it a bedrock for our industry for decades. Especially in the service bureau world, SLS is the versatile technology that makes millions of different parts day in day out. When we think of mass customization for end use parts SLS is still the most promising technology and a significant part of our total output as an industry. We have Carl to thank for this.

An early SLS part made at UT.

In 2001 Carl sold DTM to 3D Systems. His path in innovation was not done then, however. Carl was a Professor at Clemson and later developed a four-stroke engine with just one moving part. In 2011 he returned to 3D printing with the Structured Polymers team. This team has developed breakthrough SLS materials over the past few years, some being acquired by Evonik. The team is now working on full color materials. Carl’s impact on 3D printing is so significant that it is permanent. His innovative idea that became his Thesis and later a firm, has influenced the development of our industry to such a fundamental degree that we can never extricate ourselves from his memory and influence, nor should we wish to.

The post Carl Deckard Passes Away appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

CRP Technology Used SLS 3D Printing and Windform XT 2.0 to Make Aircraft Model for Wind Tunnel Testing

The new AW609 wind tunnel model designed for Leonardo HD by Metaltech S.r.l. and 3D printed by CRP Technology

CRP Technology, part of the larger CRP Group, is well-known for its 3D printing applications in the automotive sector, but lest we forget that it is also accomplished in aerospace 3D printing, the company has come out with a new case study about its work creating a new 3D printed wind tunnel model (1:8.5 scale) of the Leonardo TiltRotor AW609 for the Leonardo Helicopter Division (Leonardo HD, formerly known as AgustaWestland).

According to the case study, CRP Technology was able to “highlight the perfect union” between its advanced SLS 3D printing technology and high-performance, composite Windform materials – particularly its Windform XT 2.0, a polyamide-based carbon fiber reinforced composite. Metaltech S.r.l. designed the model.

The goals of Leonardo HD’s project included:

  • design and manufacture an internal main structure out of aluminum alloy that can easily have new geometries added
  • complete the work in a very short timetable, but with an extremely high level of commonality and reliability
  • make components out of materials with high mechanical and aerodynamic characteristics

3D printed aircraft propeller spinners

These goals are why Leonardo HD was referred to CRP Technology – it would be able to meet these goals while 3D printing the external parts for the wind tunnel model, which was designed, manufactured, and assembled in order to complete a series of dedicated low-speed wind tunnel tests. Some of the parts that were 3D printed for the wind tunnel model include nose and cockpit components, fairings, external fuel tanks, rear fuselage, wings, and nacelles.

The level of detail that went into these 3D printed parts “is crucial to the applied loads to be sustainable,” as the wind’s aerodynamic loads in the tunnel are high. So load resistance was one of the more important project aspects, along with maintaining good dimensional tolerances, under load, of large components.

“It is important to remember that the performance of these components affects the final performance of the entire project, especially because the external fairings have to transfer the aerodynamic loads generated by the fuselage to the internal frame,” CRP Technology wrote in the case study.

3D printed tail fairing

The tests needed to cover the standard range of flight attitudes at Leonardo HD’s Michigan wind tunnel facility, in addition to Politecnico di Milano, and varying external geometries were changed during testing, so that technicians would be able to gain a better understanding of “aerodynamic phenomena.”

Today, the CAD-CAM approach is used to design models for wind tunnel testing, before an internal structural frame of aluminum and steel is milled and assembled. Then, 3D printing is used to obtain all external geometries. Because Leonardo HD used CRP Technology’s advanced 3D printing and Windform XT 2.0 material the project was completed much more quickly, with “excellent results and with high-performing mechanical and aerodynamic properties.”

CRP analyzed the dimensional designs that Leonardo HD had sent in order to make the best composite material recommendation: its Windform XT 2.0, with high heat deflection, increased tensile strength and modulus, superior stiffness, and excellent detail reproduction.

“The choice of the Windform XT 2.0 composite material was not casual, all the goals required by Leonardo HD were considered, such as the importance of a short realization time, good mechanical performances and also good dimensional characteristics,” CRP Technology wrote in the case study.

It was necessary to 3D print the single parts separately, as “some components were dimensionally superior to the construction volume of the 3D printing machines,” but CRP Technology was able to complete the project with no time delays. The company used CAD to evaluate the working volume’s functional measures in order to determine which parts to split, and to figure out how to maximize contact surface where structural adhesive would be added to the model.

3D printed aircraft nose and cockpit

It only took four days to 3D print the various parts of the components.

The case study noted, “Different confidential efficiencies, which are an integral part of CRP Technology’s specific know-how, allowed the reduction of the delivery lead time and allowed CRP to minimize the normal tolerances of this technology, and eradicate any potential problem of deformation or out of tolerance.”

The completed model underwent surface finishing, before it was assembled by Metaltech S.r.l. and mounted directly onto a rig assembly, so any small imperfections resulting from single components being put together could be optimized. Thanks to CRP Technology, this step was finished very quickly, and Leonardo HD was able to efficiently flatten the model’s surface and treat it with a special liquid to both prepare for painting and make the model waterproof.

Leonardo HD needed to review the behavior of the aircraft, and so completed a high-speed wind tunnel test campaign, which encompassed speeds Mach 0.2-Mach 0.6, on a new 1:6 scale model at NASA Ames Unitary Plan 11′ x 11′ transonic wind tunnel. The company called on CRP USA, based in North Carolina, to speed up the process, using its partner company’s SLS 3D printing and Windform XT 2.0 composite material to make the external fuselage and some additional components.

3D printed model installed in the 11’x 11’ test section at NASA Ames

While the architecture of the new 3D printed model, which spanned nearly 2 meters, is similar to the original AW609 version, some improvements were made so remote controls could be used for the wing flaperons and elevator surfaces. Additionally, by using four different 6-component strain gauge balances, all the loads were able to act on the complete model, the nacelle, the tail surfaces, and the wing alone.

The model was constructed in such a way as to be mounted in the transonic wind tunnel on a single strut straight sting support system.

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images: Leonardo HD]

Sintratec Unveiling the Modular Sintratec S2 Industrial SLS 3D Printer

Swiss 3D printer developer and manufacturer Sintratec, which has been busily adding resellers around the world in countries like France, Germany, and South Korea this year, is at formnext 2018 in Frankfurt this week, like most of the rest of the 3D printing industry. The company is presenting its new compact, industrial 3D printer – the Sintratec S2 – which, like its predecessors the Sintratec S1 and the Sintratec Kit, is based on SLS technology.

The modular system is interesting in terms of SLS technology in that it integrates, and semi-automates, the laser sintering, de-powdering, material preparation, and surface treatment processes. The end-to-end solution allows users to benefit from economic operation with decreased down times, precisely 3D printed objects with freedom of form, and no more annoying cleaning processes. This could reduce cost per part.

Not only is the new Sintratec S2 good for optimizing application designs of small- and medium-sized series production, but it’s also a great method for manufacturing prototypes. The smart system has a modular construction, with the build chamber located inside the Material Core Unit, but easy to remove from the Laser Sintering Station. The unit also comes with an integrated powder mixing function for convenient powder handling. To process different materials, users need only expand the Sintratec S2 with an additional Material Core Unit.

If SLS components require better surface qualities once off the print bed, the blast cabinet Sintratec Blasting Station can take care of it, while the Sintratec Polishing Station – a magnetic tumbler – helps to seal surface impurities and give the completed parts a smoother finish. In addition, the Sintratec Material Handling Station cleanly collects both used and excess 3D printing material sieves it for reprocessing.

The 3D printer’s Sintratec Laser Sintering Station comes with a cylindric printing area, made up of a new heating and ventilation concept, so it can receive consistent, homogeneous print results. It comes with an integrated 4K camera to control print jobs and evaluate each layer’s surface in real time, and its laser scanning system offers a faster print speed and enhanced process repeatability. The Sintratec S2 is fully operated through an intuitive touchscreen.

The Sintratec S2 allows users to focus on the applications of tomorrow, and tap potential for professional prototyping purposes. It is well-suited for developing more complex components, which can provide designers and engineers both economic and creative benefits.

Thanks to its modular design, users of the Sintratec S2 can expand their production capacity by adding specific modules, and achieve high-quality SLS prints. The company is now accepting purchase reservations for its new Sintratec S2 3D printer, and you can see it for yourself this week at formnext, which ends on Friday, at the Sintratec booth G79 in Hall 3.1. If you’re unable to make it to Frankfurt, you can also see the SLS system in action by watching the video below:

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Images provided by Sintratec]