Arevo Announces New Aqua 2 Carbon Fiber 3D Printer, $25M in Series B Funding

Due to its stiffness, high strength-to-weight ratio, and the fact that it demonstrates anisotropic properties, carbon fiber has been used as a less expensive replacement material for metals such as titanium for decades, and has many applications in industrial sectors like aerospace and automotive. As you may know, Silicon Valley technology startup Arevo has long focused on continuous carbon fiber composites printing. Back in 2015, the company, which counts the CIA’s venture capital arm In-Q-Tel as an investor, developed a laser-based method for 3D printing carbon fiber with a multi-axis robotic arm. This technology, paired with quality design software, allows Arevo, and its customers, to automate the design and printing of large, complex, continuous CFRP composite parts.

“High speed automation removes human errors in traditional composites manufacturing,” the Arevo site states. “Our patented technology uses lasers to manufacture high quality composite parts at scale.”

Now, the California company is announcing its newest innovation: the Aqua 2 3D printing system. Arevo states in a press release that the new Aqua 2 is the first high-speed 3D printer in the world for large continuous carbon fiber composite structures. Additionally, it said that the Aqua 2 printer is of higher quality, can achieve rapid, on-demand fabrication of custom composite parts up to one cubic meter in size, and can also print four times faster than the 3D printer that came before it.

But its new Aqua 2 3D printer isn’t the only good news Arevo is sharing—the company also announced that it has closed its Series B financing round after raising an additional $25 million, bringing the total amount raised to $60 million.

Leaders of this round were GGV Capital and Defy Partners, and additional support came from Alabaster, previous investor Khosla Ventures, and more.

“We are excited to have Defy and GGVC on board to bring not only capital but a vast amount of strategic experience,” Arevo’s co-founder and chairman Hemant Bheda stated. “The strong interests in the company despite tough market conditions really reaffirm our vision.”

Aqua 2 Printer Head

Additionally, Defy has appointed serial entrepreneur and investor Brian Shin to join the board of directors at the startup, which also includes Bheda, Khosla’s Bruce Armstrong, and Arevo’s CEO Sonny Vu.

“Arevo is a compelling opportunity for us as it combines our three main investment foci: consumer internet, enterprise, and smart tech. We see fantastic potential in this market, and have backed Sonny before at Misfit,” said Hans Tung, a Managing Partner at GGVC. “Arevo is led by an experienced team with solid technological foundation and 3D printing manufacturing know-how at scale – to offer breakthrough products at competitive prices.”

Arevo has been historically well-funded over the years, and recently launched a crowdfunding campaign on Indiegogo to sell its first direct-to-consumer products: the Superstrata bicycle and e-bike. The startup has used its technology to create bicycle frames before, but claims that its Superstrata products will be the first real custom 3D printed unibody carbon fiber bikes. This campaign has been so popular that within three minutes of launching, the goal of $100,000 had already been reached, and now it’s close to raising $4 million.

“Arevo’s new platform enables fabrication of high strength, low weight carbon fiber parts, currently not possible with today’s standard techniques. We are thrilled to be working with the team to help scale up this incredibly impactful technology,” said Trae Vassallo, founding partner at Defy.

Carbon fiber-reinforced thermoplastic bracket

(Source/Images: Arevo)

The post Arevo Announces New Aqua 2 Carbon Fiber 3D Printer, $25M in Series B Funding appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Equispheres Secures $30 Million in New Funding Round

Canadian materials science company Equispheres, which specializes in aluminum alloy powder for 3D printing, announced this week that it had secured a Series B investment, along with a new $30 million (CDN) investment round.

The funding round, at an undisclosed valuation, was led by HG Ventures, which is the corporate venture arm of The Heritage Group. Sustainable Development Technology Canada (SDTC), a government-created foundation to advance clean technology innovation that’s supported the company in the past, and BDC, the only bank in Canada devoted exclusively to entrepreneurs, also participated in the funding round, along with some undisclosed contributors.

Lead funding partner HG Ventures, which invests in and partners with companies working in sustainable technology and advanced materials, contributed $10 million in equity investment to this round of funding, while SDTC added an $8 million grant, which was first announced back in January. BDC contributed $5 million in subordinated financing, and the round was completed with $7 million in undisclosed funding.

Equipsheres’ Doug Brouse informed us that Jonathan Schalliol, VC and Director of HG Ventures, “mentioned on LinkedIn” that the company is a new investor in the additive manufacturing space, and it’s always great to bring new companies into this industry that are excited to be here.

“We are extremely excited to have HG Ventures as a partner, their extraordinary combination of research capability and venture capital experience made them an ideal partner to understand both the technical and market potential of our product across the transportation industry,” stated Kevin Nicholds, President and CEO of Equispheres, in a press release. “We are also grateful to have the support of the Canadian government, enabling us to leverage investor financing to achieve our objective of providing a high-quality product at volume levels the marketplace demands.”

Extreme magnification of Equispheres’ aluminum alloy powders for AM.

This isn’t the first time Equisheres has received major funding for its work in unique metal AM powders. The high performance, mono-sized metal powders it develops can help print parts that are up to 30% stronger and lighter than ones fabricated with other powders. In the last year alone, the company has released two important reports about testing results of its specialty materials, including how it performed in aerospace-ready AM quality tests. With this latest funding, Equispheres can continue testing its powders, and plans to scale up the production capacity, along with investing in research and development partnerships.

Equispheres will be using the funds to focus on several important areas, including creating high quality jobs and hiring and developing new talent, and improving reactors for lower cost and higher volume powder production. In addition, the company will ramp up its R&D projects with new and existing strategic partners, as well as work on creating application support services for the aviation, automotive, defense, and space industries in order to expedite advanced manufacturing opportunities that its metal powders make possible.

Equispheres stated in its press release that “more significant developments are expected on the horizon,” so we should stay tuned to hear what’s coming next.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post Equispheres Secures $30 Million in New Funding Round appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Voxel8 Announces Series B Funding Round to Advance Its Multi-Material Digital Fabrication

Massachusetts-based Voxel8 was co-founded in 2014 by an interdisciplinary team of scientists and engineers from Harvard University, led by Dr. Jennifer Lewis. The company is working to develop digital manufacturing systems that will change up how we design, manufacture, and sell footwear and athletic apparel around the world.

Not long ago, the company introduced its multi-material ActiveLab Digital Fabrication System, which allows for the product development, wear testing, and production runs of high-performance athletic shoe uppers, in addition to other textiles. It’s designer-friendly, enabling automation and customization with zero tooling costs. The system uses ActiveMix extrusion technology to build 3D structures and thick films with variable cross sections directly on to textiles.

The 600 kg printer, with a 600 x 430 mm build platform, allows users to digitally design and fabricate shoe uppers, and is transforming how we develop and manufacture footwear and athletic apparel today. The system offers shorter manufacturing reorder lead times, significantly reduced design cycle times, and much lower costs for freight, labor, tariffs, and tooling. This gives customers the ability to design shoes, and other textile products, that include structural features and complex designs with little extra cost – affording them the opportunity to set up manufacturing facilities that are located closer to major end-user markets, like Europe and North America, and respond much faster to consumer demand.

Voxel8 seems to be doing pretty well for itself, and has just announced a Series B investment funding round, which was led by DSM Venturing – the venture investment arm of Royal DSM.

“Voxel8 is an excellent addition to our portfolio. Its multi-materials digital manufacturing platform is poised to dramatically impact the footwear and the sports apparel markets, strategic to DSM,” stated Pieter Wolters, Managing Director for DSM Venturing.

Additional participants in this round of Series B funding include HP Tech Ventures, as well as ARCH Venture Partners and Braemar Energy Ventures – two of Voxel8’s existing investors.

“Voxel8 is uniquely differentiated as a leader in multi-material digital manufacturing, which we believe will meaningfully expand the realm of possibilities for digitally manufacturing a wide range of products. Within the athletic footwear market alone, over 2.5 billion pairs of athletic shoes are manufactured globally each year,” said Jiong Ma, Braemar Energy Ventures. “Voxel8 is well-poised to capture substantial market share in athletic shoe upper manufacturing and, more broadly, medical and smart textiles.”

The company will use the funding to continue advancing its multi-material digital manufacturing.

“Our digital manufacturing systems are revolutionizing how footwear and athletic apparel is designed, manufactured, and sold to consumers across the globe,” said Travis Busbee, the CEO and co-founder of Voxel8. “We are excited to work with this team of world-class and experienced investors. Their global reach, expertise, and funding will accelerate the rapid adoption of Voxel8’s technology for high-volume production of athletic footwear and apparel.”

What do you think about this news? Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Images: Voxel8]

The post Voxel8 Announces Series B Funding Round to Advance Its Multi-Material Digital Fabrication appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: April 12, 2019

We’ve got news about a contest to start off today’s 3D Printing News Briefs, followed by some business news and 3D printed jewelry. Weerg has announced the second edition of its “3D Printing Project Award” contest. Moving on, Bastian Solutions worked with Fast Radius to create a robotic materials handler using HP 3D printing, while Fast Radius announced that it has closed a round of Series B funding. Finally, an SLM 3D printer is being used by a person you might recognize to fabricate unique metal rings.

2nd Edition of Weerg’s 3D Printing Project Award Contest

3D printing and CNC machining platform Weerg, based in Gardigiano, Italy, just announced the second edition of its “3D Printing Project Award” contest, which promotes creativity, experimentation culture, and innovation in design manufacturing. The company, which offers the largest Italian installation of HP’s MJF 4210 3D printers, invites designers and developers to create “an iconic object completely printed in 3D” for the chance to win a €500 Weerg coupon, and an interesting social media opportunity – star as the protagonist in a professional video that will highlight his/her designer skills, which Weerg will promote.

“After the success we obtained last edition, we decided to put to test once more our recently doubled and enhanced production department, and to give visibility to the most creative talent in 3D Printing. The Weerg Award was created to stimulate the potential and the desire to innovate of tomorrow’s designers who are starting to come face to face with the opportunities offered by additive manufacturing,” said Weerg’s founder Matteo Rigamonti. “In addition, it will allow us to maximize the performance of HP printers by creating very original and sophisticated items.”

You have until this Sunday, April 14th to submit your entry by posting it directly to Weerg’s Facebook and Instagram pages. The winner will be announced on Monday.

New Robot Warehouse Picker Features 3D Printed Parts

Indianapolis-based Bastian Solutions, a Toyota Advanced Logistics company, has launched its Shuttle System: an efficient, flexible robotic materials handler with dexterity to spare. 45% of the final build-of-material (BOM) on the system’s robotic arm were 3D printed with HP and Carbon 3D printers. The durable polymer joints of the robotic picker were made with HP’s Multi Jet Fusion (MJF) technology, while its fingers and gripper were 3D printed out of unique materials, like EPU 40, using Carbon’s Digital Light Synthesis (DLS) technology. The company displayed its new Shuttle System this week at ProMat 2019 in Chicago.

“We envisioned that additively manufacturing specific parts would make the Bastian Solutions Shuttle System the most efficient and agile robotic picker available on the market. The additive manufacturing process will enable us to customize each robot picker to fit a customer’s particular warehouse environment,” said Ron Daggett, the Vice President of Technology and R&D, Bastian Solutions.

These parts were 3D printed at the Chicago headquarters of industrial-grade additive manufacturing facility Fast Radius.

Fast Radius Raised $48 Million in Series B Funding

Speaking of Fast Radius, the company recently announced that it had raised $48 million in a Series B funding round, which it will use to continue expanding its production-grade AM platform through application engineering, sales teams, and software development. Its software platform, the Fast Radius Operating System (FROS), supports customers across the entire lifecycle of a product, helping them conduct engineering and economic evaluations, find potential applications, and 3D print industrial-grade parts at scale. The funding round was led by the company’s previous collaborator UPS, and Drive Capital was also a strong participant; other participants include previous investors Jump Capital, Skydeck, and Hyde Park Venture Partners.

Pat McCusker, the COO at Fast Radius, said, “This additional funding will allow us to further expand our partnerships with leading global companies across aerospace, consumer, industrial, medical, and automotive verticals.”

Bam Margera 3D Printing Jewelry with SLM Technology

And now for something totally different…Bam Margera, a professional skateboarder, stunt performer, filmmaker, musician, and TV personality who rose to fame as one of the main members of MTV’s reality show Jackass from the early aughts, is now designing jewelry, which he 3D prints on an SLM Solutions 125 system that he purchased. He is selling the unique metal rings and pendants on his official BamMerch website.

According to the website, “BamMerch is Bam Margera´s new lifestyle brand offering various jewelry and apparel, our store launched in December 2016.

“All items are crafted in Estonia, using combination of high-tech metal 3D printing and hand crafting to create extremely unique and detailed jewelry.”

All of the jewelry is 3D printed in-house out of sterling silver, and then carefully polished in ten stages. Some of the pieces, like the pretty Margeras Pendant with three intertwined hearts, are available for as little as $17, with prices ranging all the way up to $149 for the Skull Ring v2. Margera also offers a range of bundles. Check out the video below to see the 3D printing process for some of Margera’s rings, but be warned – if you go searching for more information about his 3D printed jewelry on Twitter or Instagram, there’s a lot of profanity and other NSFW content.

Discuss these stories, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

Digital Alloys Closes Series B Funding, Receives Patents for Novel Joule Printing Method

Located in Burlington, Massachusetts, 3D printing company Digital Alloys is bringing something brand new to the table. It’s called Joule Printing, and the company claims it will bring metal 3D printing into the mainstream. Although metal 3D printing is becoming more common as costs lower and technologies diversify, it still has its issues, including still-high production costs, slow printing speeds, complexity, and quality issues.

“Current methods take too long to be practical, or require the use of dangerous materials, specialized hardware, and multiple complex finishing steps involving shrink compensation software, chemical baths, and furnaces,” says Digital Alloys CEO Duncan McCallum. “Look past the hype around metal 3d printing, and you’ll find it’s rarely used in manufacturing.”

These challenges, says Digital Alloys, are circumvented by Joule Printing, a wire-feed additive manufacturing process that does not require any sort of metal powder. It works with any metal in wire form, and involves the tip of the wire being positioned in the desired printing location. The system then pushes current through the wire and into the print bed. The current melts the wire using joule heating, also known as resistance heating, which is the same method that heats a toaster coil. The process continues as the print head moves across the bed, laying down beads of metal which are fused together to form fully dense metal parts.

The positioning and melting of the wire occur in a single step, which lowers cost, saves time and increases repeatability. Joule heating, according to Digital Alloys, is the most efficient way to convert electrical energy into heat. Because the wire melts from within, there is no need to wait for the heat to move to where it’s needed. Melting occurs instantly at the desired location, which will allow Digital Alloys’ system to print at 5-10 kg per hour at very low power.

“Joule Printing™ provides precise closed-loop control of melting at the voxel level,” continues McCallum. “Since the wire is held in a precision motion system, we know exactly where the melt is deposited. Unlike a direct energy deposition system, there is no dripping or splashing. We use the precision wire feed system to measure and control how much metal goes into the melt pool. The electric circuit provides measurement and control of how much energy is applied to the melt. This combination of tightly controllable process parameters allows the system to deliver consistently dense (99.5%+) isotropic parts that are stronger than castings. In addition, the process data for every voxel is saved for post analysis. In combination with our machine learning technology, this provides the capability for non-destructive QA of printed parts.”

Digital Alloys was formed last year as a spin-out from NVBOTS, and today announced that it has completed its Series B financing, supported by:

“Our investment in Digital Alloys will help Boeing produce metal structural aerospace parts faster and at higher volume than ever before,” said Brian Schettler, managing director of Boeing HorizonX Ventures. “By investing in companies with emerging additive manufacturing technologies, we aim to strengthen Boeing’s expertise and help accelerate the design and manufacture of 3D-printed parts to transform production systems and products.”

Digital Alloys was also awarded its first two patents on Joule Printing. The technology is capable of 3D printing with multiple metals in one part, and offers higher resolution than other wire-based 3D printing technologies, according to the company.

3DPrint.com spoke with Duncan McCallum the CEO of DigitalAlloys about their technology,

Duncan said that, “the application area for our technology, if we slice the market, is for parts sized between a baseball and a beach ball. Our costs per machine hour are much lower than alternative technologies. We’re manufacturing parts at one Kilogram per hour at the moment. We are aiming for 5 to 10 Kilios of parts per hour in the future.” 

This means that Digital Alloys is already a sea change faster than current generation metal 3D printing speeds. By staying away from crowns and small implants, the traditional stomping ground of powder bed fusion and focusing on larger less expensive parts they may find and exploit their own market. He said that, “Powder Bed Fusion is too slow and the powder too expensive. Wire DED type technologies are fine for large parts but too sloppy for fine ones. We see ourselves as in between these technologies.” That is a wide application area to be in and may make them cost-effective and usable for automotive and larger aerospace parts. In terms of costs there are also significant advantages. Digital Alloys claims that next to no post processing has to be done with their technology but they can make near net shape 99.5% dense parts without post processing. So without destressing, debinding and other costly steps the time to part will be much faster. The cost per part will also be significantly lower as well. 

Duncan stated that, “Our process does not require HIP or other post processing techniques this significantly lowers cost as well. Our wire feedstock is also much less expensive than other 3D printing materials. Overal we have significant cost advantages over existing technologies. We are aiming to produce parts 25% cheaper than conventional manufacturing if we look at buy to fly ratios. Especially in materials that are difficult to cut such as tool steels we aim to be significantly cheaper than conventional manufacturing. By exactly feeding in a material and knowing precisely at which Voxel that material is we can heat it quicker. It forms a circuit and that’s how we can feed in the material precisely into the melt pool and control the melt pool. By doing this we have good control over microstructures and the final part. Joule is simply the most efficient way to heat and its fast as well.” This is quite the claim. If Digital Alloys can deliver on reliability and repeatability then they may have a very exciting manufacturing technology on their hands. Want to try it out? Before launching their machine the company will be acting as a service. If you’re curious as to what geometries are possible and what the pricing is you can contact them to find out more. They already will produce parts for a dozen clients by the end of the year. 

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images: Digital Alloys]