Investigating Properties of Virgin, Sieved, and Waste 316L Metallic Powder for SLM 3D Printing

We often see metal 3D printing used to make steel parts, so plenty of research is being done regarding the material properties. Researchers from VSB – Technical University of Ostrava in the Czech Republic published a paper, “Research of 316L Metallic Powder for Use in SLM 3D Printing,” about investigating Renishaw’s AISI 316L powder for use in Selective Laser Melting (SLM) technology.

“Understanding the SLM process is extremely challenging, not only because of the large number of thermal, mechanical and chemical phenomena that take place here, but also in terms of metallurgy. The presence of three states (solid, liquid, gaseous) complicates the ability to analyze and formulate a model formula for proper simulation and prediction of part performance when printed,” they explained. “Since the SLM process operates on a powder basis, this process is more complicated by another factor compared to the use of other bulk material. The properties of the used printing powder define to a large extent the quality of the finished part.”

Because the material can impact an SLM 3D printed part’s final properties, powder research should be done ahead of time for best results. Particle size, shape, flowability, morphology, and size distribution are key factors in making a homogeneous powder layer, and using gas atomization to produce spherical particles helps achieve high packing density; this can also be improved with small particles.

The researchers investigated three phases of metallic powder present in the SLM process – virgin powder (manufacturer-supplied), test powder that had been sieved 30 times, and waste powder “that had settled in the sieve and was no longer being processed and disposed of.” They used a non-magnetic austenitic stainless steel, alloyed with elements like nickel and chromium and containing a low percentage of carbon.

Scanning electron microscopy (SEM) was used to investigate the powder morphology, which “affects the application of metal powder by laser in terms of fluidity and packing density.” First, the shape of the powder particles was measured and evaluated, and then a visual quality evaluation was completed to look at the spherical quality and satellite (shape irregularity) content. The team found that many particles had satellites, but that this number increased in over-sized powder.

Fig. 1. SEM image of virgin powder 316L, magnification x180

“The measurement of virgin powder (Fig. 1) reveals that the production of powder by gas atomization is not perfect and the shape of some particles is not perfectly spherical,” the researchers wrote. “It is also possible to observe satellites (small particles glued to larger ones, Fig. 2), which are again a defect of the production method.”

Fig. 2. Satellite illustration, magnification x900

They found that the particle shape was “not always isometric,” and that cylindrical, elongated, and irregular shapes appeared alongside spherical particles in over-sized powders.

“Another interesting phenomenon was manifested in the sieved powder, where particles with a smoother and more spherical surface were observed than the original particles. This is most likely due to the melting and solidification process that is specific to AM,” they noted.

Fig. 3. Morphological defects – a) particle fusion; b) gas impurities; c) agglomeration – sintered particle;
d) dendritic particle structure; e) spherical particle; f) particles with a satellite

An optical method was used to measure powder porosity. The 316L powder was embedded in a resin, and was “1 mm layer abraded” post-curing before the particles were cut in half and polished with diamond paste. The images captured via microscope were loaded into analysis software, which determined that the total density of the powder was 99.785%.

“In general, pores must be closed from 3/4 of their circumference to be considered pores,” the team explained. “Particles that do not comply with this rule are automatically considered irregular particles.”

Fig. 4. An example of open pores that correspond to the rule (L), and pores that do not conform (R)

The researchers also measured the size of all individual pores and recorded which ones began at 5 µm, though they noted that due to potential image resolution issues, “pore sizes of about 5-8 μm should be taken with some uncertainty.”

Fig. 5. Pore size measurement of 316L metallic powder

A histogram showed that, in the metallic powder particles, the “15 µm pore size was most present,” and that the largest was 30 µm.

Table 3. Measured values of porosity of powder particles

Finally, they used an optical method to measure and examine grain size distribution of the virgin and sifted powder. Using 200x magnification, measurements were taken at five random locations, each of which had roughly 200 particles on which they performed static analysis. The results were processed with statistical software, which created cumulative curves to indicate how many particles were smaller or larger than a certain size.

“Of these, the quantiles d10, d50 and d90 were obtained, which express the cut-off limit within which the size falls to 10, 50, 90 % of the measured particles,” they wrote.

The average particle size only increases a little by repeatedly sieving the metallic powder, but because of irregular particles, agglomerated or molten particles larger than 45 μm, they fall through the mesh. Results show that <10 µm particles are reduced, while larger particles are increased, in the sift powder. But, the team notes that the powder is still usable.

“The sift powder showed an increase in particle volume and surface area while circularity decreased, indicating that virgin powder generally has a higher sphericity,” the team explained.

They found defects like agglomeration, gas impurities, and particulate fusions at all three stages, but since the powder is still usable, they concluded that SLM is both an economic and ecological technology. The researchers listed several measures to take in order to “achieve the best possible consolidation,” such as high purity, fine surface, low internal porosity, tight particle distribution, and as few surface pores and satellites as possible.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

The post Investigating Properties of Virgin, Sieved, and Waste 316L Metallic Powder for SLM 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Dyndrite debuts Additive Manufacturing Toolkit Build Processor, partners with Renishaw

Dyndrite Corporation, a Seattle-based software company, has introduced the Additive Manufacturing Toolkit (AMT) and accelerated production preparation build processor for 3D printing. AMT is based on the company’s Accelerated Computation Engine (ACE), a GPU-powered geometry kernel, and is capable of importing native CAD files for maximum quality of 3D printed output. It also features an integrated Python […]

Formnext 2019: Is anyone going to challenge the market status quo today?

There are only a few days left until the opening of the annual Formnext trade fair in Frankfurt. We all know well our stalwart exhibitors – they are often being highlighted on this portal and other online media. However, looking at the development of the technology today we realize that game-changers may appear from the most unexpected of areas.

Today we will take a look at Russian companies that will be exhibited in November this year, and also take a look behind the scenes. There surely is something interesting for us there.

While historically Russia has been successful in science and technology developments, we had no great chance to observe any hardware companies with significant IP that pose a challenge for their competitors. The additive manufacturing market was not an exception. Nevertheless, it seems like time is changing. Let’s dive into the technologies of three companies to check what is happening.

Company 1. Addsol. SLM Engineering Bureau.

This is the first time that this company, with strong engineering expertise, has been announced to be present at FORMNEXT. The company designs manufactures and supplies SLM machines for leading companies in space, shipping and oil industries in the local market.

The company’s devices are distinguished from typical market solutions due to the time-proven ability of printing with Ti Grade 9 titanium alloy as well as the practical thinness of the components. The product in the photo below is only 0.5 mm thick. 

“Our main know-how is the fusion of products with a non-Gaussian beam, which is the standard solution in the field of additive technologies,” Dmitry Grachev, AddSol CTO, told 3DPrint.com. “Due to this solution, the fusion of metal powder is carried out by a beam with a distribution according to the type of reverse Gauss, which increases the fusion area without overheating. This solution allows us to increase productivity by 20% in comparison with other 3D printers.”

In the European market, the company mainly intends to offer its engineering expertise, aims to find partners with non-trivial tasks among its customers. The company is located at the IS-02 stand in Hall 4, and you can book a comfortable time for a meeting at the exhibition here.

See below the specifications of the two main devices supplied by the company: AddSol 250 and Addsol S90.

You can find the company at stand A22, Hall 12.0

Company 2. Anisoprint. 

Founded in 2015, Anisoprint has developed a new technology of continuous carbon fiber 3D printing for the manufacturing of optimized composites. It’s very different to what the majority of the industry experts tend to call the next big thing in additive manufacturing — metal printing.

Isotropic parts obtained via standard metal printing will most likely never be able to surpass the qualities of traditional cast steel, while anisoprinted parts, on the contrary, are several times stronger, lighter and cheaper than their counterparts from metal or non-optimized composites:

At the moment, three products, all of them invented by Anisoprint team, implement the technology:

  • Composer, a composite desktop 3D printer;
  • reinforcing materials — preliminary impregnated carbon or basalt continuous fibers in the shape of reinforcing filament: Composite Carbon Fiber (CCF) and Composite Basalt Fiber (CBF);
  • Aura, free slicing software  

Ansioprint Composer

CCF and CBF reinforcing material

Aura software

One of the unique features of Anisoprint technology is the possibility to produce composite lattices that are the best structure for composites due to their anisotropy (unidirectionality). You can focus all the strength of composites in the desired direction where the load will be distributed using only the required amount of material that leads to reducing the weight, price and production time of the part. That’s why anisoprinted means optimal.

Four types of reinforcement by anisoprinting technology: anisogrid reinforced infill, rhombic reinforced infill, reinforced perimeters, solid infill

While the Anisoprint desktop 3D printer is just a first attempt to try anisoprinting, the technology has a great potential, first marks of which we’ve already seen. Out of plane reinforcement, curvilinear spatial trajectories without cutting or shape limitations — what is already possible for Anisoprint team and some of their clients who have ordered the custom robotic solution:

This year, Anisoprint, with their HQ recently moved to Luxembourg, promises to show something new and intriguing at Formnext. According to their website, it’s going to be a new solution that brings continuous fiber 3D printing to the industrial level. We shall see!

You could find this company at stand G58, hall 12.1

Company 3. PICASO 3D
Being a  spirit-driven engineering company, PICASO 3D presents a complete line of FFF industrial-grade printers with two extruders, niche high-grade plastics for industrial engineering and Polygon software.

This vendor would be mainly interesting for channel partners, first of all, due to a combination of superior products and exceptional margin for all the products.

 

Art figures with a high level of detail. Printed with PICASO X PRO.

 

 

 

 

 

 

 

 

 

Full-Sized sculptures of athletes in a sports museum in Sochi. Printed with PICASO Designer XL.

the Extruder, powered by JetSwitch technology, allows to create objects of unsurpassed quality by completely shutting off the feed of the second material without lowering the working temperature. A fully redesigned extruder is outstandingly resistant to blockages. This, along with the supply valve, ensures the fastest possible switching between the two materials and an increase in print quality, “ says Andrey Isupov, CEO of the company.

The company has prepared a distinct partnership program as well as an entertainment part at its stans. Come to Hall 12.1, booth E801 or schedule a meeting.

In today’s digest we showed you three of most interesting companies according to our opinion.

None of them are hyped.

Take into account, that their product:


MIGHT NOT LOOK PRETTY.

IT MIGHT LACK THE HYPE.

YET IT CAN CHANGE THE GAME QUICKLY.

WORLDWIDE.

So, we finally come back to our initial statement about innovations rising from unexpected areas.

This time this could be the motherland of talented engineers.

See you all at FORMNEXT!

Russian is Real.

The post Formnext 2019: Is anyone going to challenge the market status quo today? appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

University of Pittsburgh Develops Depowdering Machine for Metal Printing

The University of Pittsburgh has developed a depowdering solution for metal 3D printers that could significantly reduce the cost of 3D printed metal parts. Lead by Professor Albert To, a team of undergraduates has made a gyroscope-based depowdering machine. Professor To is the leader of the AMRL, or ANSYS Additive Manufacturing Research Laboratory, at Pitt and also runs the MOST AM lab, which is a cutting edge lab that develops 3D printing simulation tools. To’s ANSYS AMRL teams decided to attempt a much more hands-on project, however, with this depowdering machine, the Pitt Depowdering Machine.

Why is depowdering important?

Post-processing accounts from anywhere from 30 to 60% of the cost of a metal 3D printed part. Far from a machine driven push-button process metal printing technologies such as Powder Bed Fusion require a high degree of manual labor. Files have to be prepared by hand, support strategies have to be thought up builds have to be nested and material has to be loaded. Once the build is done the parts have to be depowdered. This usually involves a brush and vacuum cleaner. Then parts will also have to be destressed, sawed off, tumbled and may require EDM, CNC, precipitation hardening, shot peening etc. All the while a human operator will be carrying the parts around a factory. The actual 3D printing metal process is still rather artisan even though we’re promising the world that we will make millions of car parts cost-effectively. To bridge this gulf automation will be necessary. Additive Industries is including post-processing steps in the machine others are making lines of machines aimed to reduce the cost. The cool thing about adding automated conveying, destressing, EDM wire, and other systems to an existing line is that these add ons can be used to reduce costs in existing lines and be used with machines from several vendors. All of metal 3D printing’s promises and promise will have to be fulfilled through the nuts and bolts of improving and creating industrial processes. Automated post-processing is a key element of that so Pitt’s machine is very timely to say the least.

Pitt Depowdering Machine

To tells 3DPrint.com,

“The depowdering machine employs a gyroscope design that can rotate the AM build 360 degrees in two orthogonal directions. There is a vibrator that is attached to the build and vibrates the build at a high frequency so that the powders are loosened up and come out from the build as the gyroscope is rotating through different angles. There is a funnel below the gyroscope that is used to collect all the powders coming out from the build. The machine is equipped with two sieves at the bottom of the funnel to sieve the powders to the right size for re-use.”

Such a device has the power to reduce a lot of carrying around and operator time. The speed at which one could depowder a build varies enormously but as per the team’s data they should have a huge productivity increase in terms of time over existing users.

“Typically, we put an AM build on the machine for 15-30 minutes depending on the size of the parts,” To said.

That’s not all, however: the machine may also be more efficient than existing processes.

“In one test, the machine shook out 5 more grams of powders after the technician did his best to depowder manually with the aid of a vibrator.”

A vibrator in a metal 3D printing context is a rotary or tub vibrator or a vibratory finisher which is a machine where parts are mixed in with media and then vibrated to de-clog and remove powder.

If the Pitt machine performs like this in continuous operation the savings could be significant.

To says,  “We are still evaluating whether to commercialize the machine and talking to other people about it at the moment.”

We would strongly encourage them to commercialize this machine. Any in line device that could really reduce the costs of 3D printed parts would make many more metal 3D printing applications possible.

 

Participate in SmarTech’s Metal Additive Manufacturing Survey

Industry analyst firm SmarTech has launched a market survey of the metal additive manufacturing supplier market in advance of its May release of its industry-leading report on metal powder-based additive manufacturing.  The purpose of the survey is to add background information to the firm’s reporting and analysis as well as provide basis for content that will be made available to readers.

The survey is broken out into four segments to account for the issues particular to materials, machines, software and service bureaus.  The questions for each survey take approximately 10 minutes to complete depending on the depth the respondents which to offer. All respondents will receive a formatted and cleaned version of the data output.

SmarTech’s report on metal additive manufacturing with metal powders is the industry standard for research reports of this nature.  Packed with forecasts and analytical insights the report is purchased by a who’s who of industry leaders, contenders and up and coming firms.

For companies looking to participate:

Hardware Suppliers Survey

Software Suppliers Survey

Materials Suppliers Survey

Service Bureaus Survey

Participants who complete the survey also receive a free copy of our Research Note,

Growing Pains: Will the Metal Additive Manufacturing Hardware Market Rebound in 2019? By Scott Dunham, Vice President of Research, SmarTech Analysis

“To use a poorly thought-out metaphor, a dark storm cloud rolled across the metal additive growth party during 2018’s fourth quarter. The result was the first quarterly decline in hardware revenues the market has seen since 2016, when GE Additive shook up the market with billion-dollar acquisitions, leaving customers waiting to see how the market would shake out. From SmarTech’s advisory market tracking services, the metal additive hardware market grew year over year in revenues generated from machine sales during the first three quarters of 2018 but contracted about 9 percent versus the prior year in the fourth quarter –typically the industry’s most important sales quarter. As a result, industry growth in hardware for the calendar year was just under 10 percent –an amount that almost seems paltry compared to the prior five years, and an amount that is likely to cause some executives, board members, and shareholders to raise questions…

3DPrint.com is an equity holder in SmarTech.

Singapore: Researchers Study Effects of Spatter in Large-Scale SLM Printing

Ahmad Anwar, thesis student at Nanyang Technological University in Singapore, explores undesired byproducts of 3D printing in ‘Large scale selective laser melting : study of the effects and removal of spatter by the inert gas flow.’ The topic of spatter is usually considered in regard to imperfections, but here Anwar explores such issues in connection with fabrication on the larger scale too—a necessary method that results in hardware of increasing sizes so that larger parts can be made.

Large scale selective laser sintering can be restricted by powder weight, along with other features such as the number of lasers, and powder bed area. For successful SLM printing, Anwar states that the study of spatter particles is necessary. Spatter is notable due to its size and darker color, and effect on 3D printed layers—along with inducing porosity. The goal of the research study was to find out more about effects of spatter on the manufactured parts, analyze how they impacted mechanical properties, and simulate the activity of spatter in 3D printing during inert gas flow.

Anwar also studied ‘suitable ejection profiles,’ as well as what performance would be like without any inert gas flow at all. The researchers used an SLM Solutions 280 HK machine for their experiments and chose argon as the gas of choice for exploring spatter.”

“With respect to the spatter particles on the powder bed, the mass and size distributions were characterized,” states Anwar. “The Stokes (Suk) number was then used as a parameter to observe the gas flow effectiveness in the spatter transport, which accounts for particles suspended in the gas flow. Image processing was also applied in order to immediately characterize the spatter distribution on the powder bed.”

The researchers set up a camera to monitor spatter and then processed them for comparison with the mass distribution characteristics. As Anwar explains, spatter usually occurs during any SLM printing process as such particles are ejected and often accumulating near processing regions or the powder bed. The volume of spatter is also dependent on energy output like:

  • Laser power
  • Scanning speed
  • Layer thickness
  • Hatch spacing

Schematic of spatter ejection from melt pool and its transport by the inert gas flow (green arrows) in the -x direction.

Higher energy input resulted in larger spatter, increased scattering, and greater jetting height. As the researchers experimented with methods to reduce the spatter, they pumped gas into the chamber:

“For the SLM Solutions machines, argon gas is pumped in from the right to the left side (in the negative x direction). There are two reasons for the introduction of the inert gas; Firstly, oxidation of the molten powder needs to be minimized as much as possible. Hence, scanning only starts when oxygen content is below 0.05%. Secondly, during the scanning itself, the flow of gas aids in the removal of unwanted spatter as a result of the ionized metal vapor and plasma plume that exert recoil pressure on the melt pool,” stated Anwar.

The researchers collected 15 samples of spatter, with each one measured and evaluated after being scooped from a deposit area near the outlet.

“The reasons why we chose to collect the spatter at that area are: (i) it is not possible to collect the spatter directly on the powder bed as it is mixed with fresh powder; (ii) it is not possible either to collect the powder blown out of the outlet, as one cannot completely clean the powder collector (gas filter) between runs; (iii) on the contrary, the region near the outlet where the powder is collected in our experience could be cleaned up several times per run, resulting in reliable results; (iv) finally, it can be safely assumed that the quantity of the powder collected near the outlet is proportional to the total quantity blown out of the powder bed and that its composition is similar,” states the author.

SEM images of A: Fresh powder; B: spatter collected near the outlet observed;
C: Single particle of spatter. D: Sample EDS result of single spatter

Simulations were performed to analyze how gas crossflow contributes to moving spatter away from laser-scanned regions. Argon gas was not substantially impressive in removing spatter to the outlet. The researchers also found that increasing gas flow velocity did not reduce the number of particles in the powder bed.

“Interest in large scale AM processes have generated much research on the issues hindering the development of larger machines, and it is no exception for SLM,” concluded the author. “The prospects of manufacturing larger parts for the aerospace and automotive industries are deemed to be very attractive.

“The results reported from the experimental and simulation studies of the spatter particle distribution on the powder bed could prove to be significantly and scientifically beneficial for the development of an optimized inert gas flow system. In the future, such improvements made to remove spatter particles over a larger powder bed area would realize the possibility of producing larger SLM machines capable of fabricating even larger parts than current standards.”

Almost as soon as we realized the miraculous potential of 3D printing and the infinite choices for innovation before us, it was time to start critiquing and improving—and just as the technology is based on a layer by layer approach, its continued progress has been made with one improvement mounting on another. Flaws in 3D printing must be addressed, however, as many parts are relied on for strength and functionality. The study of spatter is important in trying to reduce or eliminate any defects. In other studies, researchers have studied ejecta and its role in causing imperfections, other types of spatter, and have even set up high-speed cameras to study 3D printing in situ. Find out more about the impact of spatter in large scale selective laser melting here.

[Source / Images: ‘Large scale selective laser melting : study of the effects and removal of spatter by the inert gas flow’]

Powder accumulation on left side of SLM Solutions 500 HL build chamber

Design Guidelines for Direct Metal Laser Sintering, Selective Laser Melting, Laser Powder Bed Fusion

Perchance I came across an excellent document on the design guidelines for  Direct Metal Laser Sintering, also called DMLS, Selective Laser Melting, SLM, Laser Powder Bed Fusion and referred to as metal 3D printing. This document was made by UK based design consultancy Crucible Design. Crucible Design was founded in 1990 by Hugh Raymond and Mike Ayre who for the past 28 years have been tackling tough, complex advanced engineering and design projects. Whether working on cost reduction projects or bringing completely new products to market Crucible Design has carefully built up its reputation over the decades. I was so impressed with Crucible’s design guidelines for metal printing document that I asked CEO Mike Ayre if we could republish it here. I also asked him how he came to make it.

The main reason behind my work with metal 3D printing was the SAVING project, which was run by a consortium in 2011 and 2012. The consortium consisted of Exeter University, ourselves, Plunkett Associates, Delcam, EOS and Simpleware. The point of the project was to find ways to use additive manufacturing to reduce energy use. As the processes themselves are so energy intensive, we soon concluded that the only way to achieve the objective was through the use of the parts, not their manufacture. This is where the airline buckle project came from – reducing the weight of the plane to minimise fuel wastage.

The main problem with metal 3D printing was the same as all design approaches to additive manufacture: early promoters pushed the idea that there were no design limitations, and we ‘were only limited by our imagination’. In fact, this proved to be completely wrong, with 3D printing just having different limitations to conventional methods. In terms of metal printing, the main one is the need to machine out the support structures that are required for any downward facing horizontal surface (the kind of thing that can be washed away using and FDM machine). This requires any efficient design to adopt almost medieval approaches to design, with pointed arches and sloping surfaces that can be built without supports.

Why did you make the guide?

The main reason for making the guide was to inform designers of some of the basic rules and encourage a more creative approach to the use of 3D metal printing and additive manufacture in general. It has been good to see that, since it was written, there is a lot more discussion about appropriate design methods for additive manufacture.

Now the guide was published in 2015 which is eons in 3D printing land. However, the same process limitations and design rules persist. I’ve made design guidelines and design rules documents before and was super impressed with how clear and concise this one was.  I think that this is a very valuable resource to people in metal printing today either to learn about designing for metal 3D printing or to use as a teaching aid to help others. If you’re in a design project with a customer then this is also super helpful in trying to let them see that “complexity is free only in dreams.” I am absolutely certain that these images will be spread far and wide, do please credit Crucible Design for their hard work, be mindful that these images are still their copyright and reach out to them should you need any 3D printing design services done. The images below are all Crucible’s the comments are mine.

Below we can see how DMLS works. A layer of metal powder around 40 micron in diameter and round but not too round is deposited on a build platform and spread out by a recoater. This may be a roller or a knife blade type of recoater. The laser fuses the powder that will make up your part leaving the other loose powder behind. To keep your part from ripping itself apart due to thermal stress supports are needed which will be removed later.

 

While the build plates below seem very full and indeed parts can be stacked efficiently often single parts are built at a time and parts are not stacked. This has to do with the fact that much of the industry is not yet optimized for production and worry that layer skips or recoater bumps and other errors will disrupt a week long build four days in. Note the high amount of manual labor required here. Every one of the bottom column steps will require a person lifting a few kilos at least to a new station or machine. Not shown here is the manual removal of loose powder. In addition to EDM CNC or tumbling (sometimes for a week or more) may be used as well. Depending on the needed Ra and finish of the part many steps will be required including quality control steps such as CT scanning the part to make sure that there are no internal tears or holes.

Parts built in such a way as to make it easy for the recoater to hit them with any force and its best to mitigate part strength in such a way that when that does happen your build doesn’t fail.

Overhanging surfaces in DMLS can be very rough indeed this may require a lot of post-processing. Occluded holes could trap material inside or require supports that can not be removed while large holes could cause parts to tear themselves asunder.

Another thing to consider below is, can the final part withstand the removal of the suports? 

Designing supports that are easy to remove saves a lot of labor. Often a staff member with a flex or circular saw will be cutting away supports. Making sure that this person could do this without damaging the part reduces time and the need to rebuild a part.

Below are some simple support strategies for DMLS. Often a person with decades of experience can do this in their head. While there are some tools that build supports, support strategies for parts still require a lot of experience and thought. Often it will take days for a build and post processing to complete. If you then after four days find out your part has failed then you have to do another iteration. When making completely new geometries several part failures are common. If you have a type of geometry understood (acetabular cups, teeth) then you can print millions of them in many variations.

 

DNA Biosensing with 3D Printing

Biosensor Structure

3D printing is useful in how it makes tools for us humans. Tools are the gateway to innovation within our world. 3D Printing helps different industries because of cost reductions and material waste. We are going to look into a specific industry application and how it is leveraging 3D printing technology.

A biosensor is an analytical device, used for the detection of a chemical substance, that combines a biological component with a physicochemical detector. The sensitive biological element, e.g. tissue, microorganisms, organelles, cell receptors, enzymes, antibodies, nucleic acids, etc., is a biologically derived material or biomimetic component that interacts, binds, or recognizes with the analyte under study.

How DNA Biosensors Work

We are particularly interested in DNA biosensors. DNA biosensors can theoretically be used for medical diagnostics, forensic science, agriculture, or even environmental clean-up efforts. No external monitoring is needed for DNA-based sensing devices. Typically these machines were very large and expensive devices that were only for research purposes. DNA biosensors are now becoming complicated mini-machines—consisting of sensing elements, micro lasers, and a signal generator.  This means that DIY construction of such a device will lead to better public health implications for makers. DNA biosensors function on the fact that two strands of DNA stick to each other through chemical attractive forces. Only an exact fit—that is, two strands that match up at every nucleotide position leads to a fluorescent signal that is then transmitted to a signal generator.

The field of biosensors has developed extensively and now has become one of the essential state of the art technologies in laboratory medicine. The idea of biosensors has revolutionized the concept of self-testing by the patient in many clinical conditions. Quick diagnosis and early prevention are critical for the control of disease status. Some commercial biosensors on the market include the following:

So why are 3D printers important in the field of biosensing? In terms of tool creation, it is vital for biotech companies and researchers to build new prototypes and mini machines for biosensing. In order to rapidly make advances within this type of technology, 3D printing is used to cut down costs, as well as iterate designs. This helps to streamline innovation and develop new methods to reduce the production of biosensors.

Researchers currently are working on the potential of adopting 3D printing technology for electrochemical DNA biosensing applications. Some groups have created helical-shaped stainless steel electrodes that are vital for biosensing. An electrode is an electrical conductor used to make contact with a nonmetallic part of a circuit (e.g. a semiconductor, an electrolyte, a vacuum or air). This connection is vital for signal processing and seeing whether or not DNA can be identified within a biosensor.

These can be designed and 3D printed through the use of a selective laser melting (SLM) method, which fuses a fine metal powder on a printing stage with a high intensity laser beam, in a layer-by-layer manner. SLM is also called Laser Powder Bed Fusion and is similar to DMLS or Direct Metal Laser Sintering while commonly being called metal 3D printing. It is important to use metal printing for a biosensor because specific chemical and electrical reactions occur with the use of different metal groups.

SLM method

The future of biotech is oriented towards how devices can be made quickly and cheaply. With 3D printing, a maker who is curious has a lot of tools and the ability to make devices efficiently. This leads to projects and innovations when one is open to iterating and experimenting. More importantly one should learn how to create their own devices. Health care as a whole is leaning toward preventative measures. It is important to have tools that can diagnose complications that we are not aware of. It also is important due to the fact that healthcare will be more expensive as time continues. For underdeveloped nations, having access to open source solutions to biotechnology projects can lead to better maintenance of their citizens and their general health.

The future of health is reliant on different technologies, and 3D printing is a very essential part of the equation. With 3D printing, we are able to create tools that were previously only accessible to industry experts. Now a common consumer with an interest can create medical tools such as a biosensor to assist them in their own general health. What will we as makers do to help that?

Wolfmet 3D 3D Prints 100% Tungsten Using SLM Showcases Its Products at TCT Birmingham 2018

Wolfmet 3D is the commercialization of 3D Printing methods developed at M&I Metals to 3D print tungsten. The company is a service bureau that makes tungsten 3D printed components for industry. Tungsten is not completely new to 3D printing with us having written about a study looking into the parameters of 3D printed tungsten and looking at Philips subsidiary Smit Rontgen 3D printing tungsten.

Now, Wolfmet 3D will try to conquer the world with this very special very dense material that for our industry is very exotic. To introduce their product the Wolfmet3D team is exhibiting at the TCT show in Birmingham and we interviewed them about 3D printing tungsten. Curious about them? Check them out at stand G41.

What is Wolfmet 3D?

Wolfmet 3D is the revolutionary additive manufacturing process whereby we produce 3D printed parts via SLM. It allows us to make parts which would either be impossible or not economical using traditional subtractive techniques.

What are the applications for 3D printed tungsten?

Extensive! It really is a very exciting time. Medical and industrial imaging in many ways are at the forefront of recent developments, but we are making new advances all the time in other areas too. To give just one example, we are in discussions with clients interested in tungsten’s heat resistant properties, which opens up another field of possible applications.

Tungsten is a very heavy metal. We almost always think about lightweighting things using 3D printing. But your material is used to make things heavier?

As you indicate, tungsten has a very high density (approx. 60% denser than lead). In the applications we have discovered so far for Wolfmet 3D, it is valued for its radiation attenuation properties, derived from the density, and also its heat resistance. The weight is really incidental.

What do you see as future applications for 3D printing tungsten?

Future opportunities are perhaps only limited by our own imagination, so our specialists work in partnership with leading research institutes and universities to ensure we are at the forefront of new developments across the globe.

How is tungsten used in vibration damping?

Tungsten’s high density enables it to act as a vibration weight in various dynamic applications.

Why does one want to 3D print a collimator?

The collimator’s function in an imaging system is to focus beams of radiation (gamma or x-ray) onto a detector and to filter out stray beams which might distort the signal. The detector’s software converts the signals into a 3D image of the subject. Until the arrival of Wolfmet 3D, most collimators were made from lead. Lead has several disadvantages – it is toxic and has to be handled with care and it is relatively soft. Most importantly, from the point of view of imaging systems, its density is much lower than that of tungsten. As a result, lead collimators are much less effective in screening out stray beams and, therefore, give inferior image quality.

What is the DEPICT system?

The DEPICT system was developed by a consortium which included Kromek and the University of Liverpool. Its function is to measure the amount of radioactivity issuing from a thyroid cancer patient during radiation therapy. This enables the medical staff to personalise the dosage of each treatment according to the patient’s physique and metabolism. The DEPICT team acknowledged early on that a tungsten collimator would give much more accurate readings than a lead one and we are very proud to have worked with them on this project.

Do you see many more applications in MRI or imaging generally?

Yes absolutely, Wolfmet 3D helps to make the innovations of our clients possible. Wolfmet tungsten has been shown to be MRI compatible in terms of its magnetic properties. This, together with the advantages that using tungsten can bring, makes it an exciting prospect for the future.

Are imaging apertures also a good application for your technology?

“In principle, yes, if the design is complex, as is increasingly the case.”

Isn’t shrinkage a huge problem with tungsten?

There is no shrinkage with the SLM technology which we use. I believe that this is not always the case with other Additive Manufacturing methods.

What kind of part properties can you get with this material?

The density is typically 94 – 96%. We have a continuous improvement programme designed to optimise the physical properties.

What kind of alloys are available?

At present we offer 100% tungsten components but as this is such a rapidly developing market, we are of course looking at other options. We have clients who are interested in developing other tungsten-based materials, but I’m afraid that I am also prevented from saying more due to our confidentiality agreements.

 

TU Delft Researchers Develop Heat Accumulation Detection Procedure for SLM 3D Printing

Selective Laser Melting (SLM), a powder-based 3D printing technique also known as Laser Beam Melting or Laser Powder Bed Fusion, has been used to process metal in a variety of sectors, such as automotive, medical, and aerospace. Because this AM method offers excellent freedom of form, it’s a perfect enabling technology for designs that are topology optimized; this means they have a complex layout, but still offer a superior performance. But, SLM 3D printers don’t always realize the dimensional accuracies that are necessary for very precise components.

Because of laser-induced heat, SLM 3D printed layers go through stages of rapid heating-cooling, which can cause inaccuracies, such as unwanted mechanical properties and poor surface finish. If certain design features, like thin sections and overhangs, that can cause local heat accumulation could be detected earlier in the design stage, this issue could be avoided more easily. To do this, next generation topology optimization (TO) methods need to be developed.

A group of researchers from TU Delft recently published a paper, titled “Towards Design for Precision Additive Manufacturing: A Simplified Approach for Detecting Heat Accumulation,” focused on a simper heat accumulation detection procedure – very important for creating a TO scheme that can account for thermal 3D printing aspects.

“In order to address thermal aspects of AM into a TO framework, an appropriate AM process model is required. This becomes problematic because a high fidelity AM process model is computationally very expensive and integrating it within a gradient-based TO framework becomes even more cumbersome,” the researchers explained in the paper. “Therefore, in this research, a physics based yet highly simplified approach is proposed in order to identify zones of heat accumulation in a given design. The computational gain offered by the simplification, makes it feasible to integrate the heat accumulation detection scheme within a TO framework.”

Definition of overlapping cells for heat accumulation detection.

In addition to being used in a TO process, the team’s new procedure can also be used to independently analyze 3D printing designs, manual design improvements, and even determine the best build orientation.

Equivalence of a 3D body (A) to a simplified body (B) with equal thermal capacitance
and conductance.

Two simplifications made in this research can be used to help lower the computational cost that’s associated with the thermal analysis of 3D printable designs. The first, “motivated by the fact that the local geometry of only few previously molten layers” can significantly effect the new layer’s initial cooling rate, is to perform thermal analysis in the vicinity of the 3D printed layer being deposited.

The second is to use a steady, rather than transient, state thermal response to predict heat accumulation.

“For this purpose, a physics based conceptual understanding is developed which enables estimation of spatially averaged transient thermal behavior of a local geometry just from its steady state response,” the researchers wrote.

A structure’s topology can influence its internal heat flow; as such, different geometrical features in an AM design can obstruct or facilitate heat flow during the 3D printing process differently.

The researchers explained, “In this work we explore the possibility to approximately quantify, and hence compare, different geometries from the viewpoint of heat accumulation. For this purpose, first the concepts of thermal conductance and time constants are studied.”

Time constant maps obtained by the heat accumulation scheme using the concept of
overlapping cells.

Thermal conductance, equivalent to the reciprocal of thermal resistance, is a structure’s measure to conduct heat, while the time constant of the transient thermal response is studied to quantify the heating/cooling rate. The team also divided the design in their experiment into overlapping cells, so as to increase the possibility of detecting the heat accumulation zones.

High time constants were recorded close to overhang surfaces, and so the researchers discovered that heat accumulation for design features depends a lot on the nearby local geometry, and that “purely geometric design guidelines of prescribing a limiting overhang value might become insufficient for preventing problems associated with local heat accumulation.”

“The computational advantage offered by the proposed method enables development of a physics based topology optimization method which would be beneficial for designing precision AM components,” the researchers concluded. “Next step for this research is to combine the developed method with density based topology optimization by penalizing design features which are prone to heat accumulation during each iteration.”

Co-authors of the paper are Rajit Ranjan, Can Ayas, Matthijs Langelaar, and Fred van Keulen. The team will publish an additional paper on their heat accumulation detection method’s integration within a TO framework.

Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.