Open Source DIY Telescope Prime Features Raspberry Pi and 3D Printed Parts

PiKon telescope

While the majority of us are not astronauts, there is a tool that can be used in your home to make you feel like you’re just a little bit closer to the stars – the telescope. Five years ago, a group of UK researchers from the University of Sheffield, including physicist Mark Wrigley, were inspired by NASA’s Juno spacecraft to create their own DIY telescope, the PiKon, using 3D printing and a Raspberry Pi. Now, a pair of Polish scientists have followed in their footsteps with their own parametric, open source, DIY telescope with 3D printed parts.

Aleksy Chwedczuk and Jakub Bochiński wanted to help popularize astronomy by making their own semi-professional, yet affordable, telescope model for at-home use, for which people can then download the files and create on their own. Chwedczuk and Bochiński call their creation the Telescope Prime, and created the first prototype in just eight hours. The initial prototype was then used to take pictures of the moon, and the final version was finished in less than three months.

The look from the inside of the Telescope Prime

Polish 3D printing company Sygnis New Technologies offered to help the scientists create their DIY telescope by sharing their equipment.

“As Sygnis New Technologies, we are proud to say that we have participated in the Telescope Prime project by adjusting 3D models of parts of the telescope and printing them for the science duo,” Marek Kamiński, the Head of Social Media for Sygnis New Technologies, told 3DPrint.com.

Telescopes have been helping people observe outer space since the 17th century, though at that time it was reserved only for the elite citizens who could purchase the equipment. But even though there is much more variety available today, it’s still not something that is widely available – the device has many complex, interacting elements. That’s why Chwedczuk and Bochiński wanted to use 3D printing to help create a more affordable, open source version.

In a piece by Sygnis, the two scientists said, “We wanted to initiate the development of an open-project telescope that could be easily modified and expanded…

“At the same time, it should be a digital telescope – adapted to our 21st century online lifestyle, where the habit of sharing one’s experiences on the Internet is the new norm.”


The telescope model, which all together costs less than $400 to put together, is made of three main parts: the 20 cm diameter parabolic mirror (with a recommended focal length of 1 m), a Raspberry Pi microcomputer with a camera and touch display, and 3D printed parts that are used to fix the camera and the mirror. To help keep costs down, “readily available materials,” like wood, screws, and a paper tube, are used to build the Telescope Prime.

Aleksy Chwedczuk with the first prototype of the telescope

In a further effort to keep the telescope fabrication as inexpensive as possible, it does not have lenses. Light is focused in a single spot, and stops on the mirror. A boarding tube makes up the body of the device, and plywood parts are then added. The telescope can use its build-in camera to take images of the night sky, and transmit them online in real-time using the touchscreen of a computer, projector, or tablet. Additionally, you can easily increase and reduce the size of the telescope – just enter the mirror’s size into the program, and all of its dimensions will be automatically converted.

“The creators had to take into account the realities of the 21st century, modern issues of the popularization of astronomy, also among the youngest amateurs of the starry sky, as well as the availability of materials for the construction of the telescope,” Sygnis wrote. “Telescope Prime is an innovative idea that reflects the needs and possibilities of an astronomer enthusiast of the second decade of the 21st century.”

The open source models for the telescope parts, which are available for download on the Telescope Prime website, were prepared in advance for 3D printing, so they didn’t need any corrections later. These elements were 3D printed on FlashForge 3D printers out of Orbi-Tech PLA material, and it took a total of 156 hours of printing to create the 17 telescope parts.

The final version of the Telescope Prime

Kamiński told 3DPrint.com that the two scientists are currently “promoting the project on Polish universities, schools and science institutes.” This makes sense, as the Telescope Prime website explains that the project was “initiated and fully carried out” on the grounds of the Akademeia High School in Warsaw.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Source/Images: Sygnis New Technologies]

The post Open Source DIY Telescope Prime Features Raspberry Pi and 3D Printed Parts appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: August 14, 2018

We’re taking care of business first in today’s 3D Printing News Briefs, followed by a story about 3D printed glasses and then moving on into the aerospace sector. 3YOURMIND is sharing a preview of its upcoming virtual AM Summit, and Rize published a new case study. TriPro 3D Technology introduced a new 3D printer, and a doctor at the Beijing Tongren Hospital is hoping to correct patients’ vision with 3D printed glasses. Launcher completed another test for its 3D printed rocket engine, a 3D modeler put a lot of work into creating a 3D printed NASA helmet, and engineers at NASA’s Ames Research Center created a 3D printable model of its flying telescope.

3YOURMIND Presenting Virtual AM Summit

German startup 3YOURMIND, which provides industrial 3D printing software solutions, is presenting a free virtual conference called the AM Summit later this month for people who want to learn more about industrial 3D printing. Beginning at 10 am Central European Time on August 28, the AM Summit will feature five speakers from multiple industries, who will be discussing topics like how to make data 3D printable, the future of 3D printing materials, and how to identify great AM business cases.

The AM Summit’s website states, “Learn how to get started with 3D design, identify your first successful business cases, and how to optimize workflows like leading companies around the world do. Participate in the digital conference online from your desk and chat in real time with the audience and the experts”

Rize Presents Customer Case Study

Boston-based 3D printing company Rize just released a new customer case study about New Hudson Facades (NHF), which designs, engineers, manufactures, and installs custom glass and aluminum façades on skyscrapers, that explains how the company adopted 3D printing in its Pennsylvania office, which already contained automated assembly lines, material handling and inspection equipment, and robotic glazing equipment. NHF’s engineering manager Andrew Black was already familiar with 3D printing and thought that the company could increase product quality and production and decrease costs by incorporating the technology into its daily operations. When asking Cimquest, a Rize reseller, for a recommendation, Black specified that the AM solution the company needed had to be safe, fast, easy to learn and use, and able to fabricate strong functional parts, like clamping fixtures and check gauges. Cimquest then suggested the Rize One.

“I put Rize One right next to my desk, so I can use it all the time. It’s so easy, anyone can use it,” Black said.

“We’re finding creative new uses every day for our Rize 3D printer.”

NHF is now enjoying a 15% increase in production speed and $200,000 cost savings per year on fixtures.

TriPro Introduces Industrial 3D Printer

China-based TriPro Technology Co., Ltd. specializes in lasers and CNC machines but has also made the leap to 3D printing. Now, the company is introducing its latest 3D printer, the ProMaker 700, for industrial applications. It’s easy to print with materials like ABS, PLA, PETG, and nylon on the ProMaker 700, which features a 460 x 430 x 740 mm build volume. The 3D printer can maintain a constant temperature of about 60°C, thanks to its full enclosure; this is necessary when working with materials like ABS so they don’t warp at the edges due to rapid cooling. With a 50 micron resolution on X and Y and a 100 micron on Z, the ProMaker 700 is also perfect for batch manufacturing.

“We highly recommend this machine for designing, for manufacturing, prototyping, importance of functional and parts manufacturing,” said Achilles from TriPro.

3D Printed Glasses for Correcting Vision

Dr. Song Hongxin with a pair of 3D printed glasses at Beijing Tongren Hospital. [Image: Beijing News]

At the Beijing Tongren Hospital in China, Dr. Song Hongxin is working to create customized 3D printed glasses with a free-form surface to help people with deformed corneas correct their vision. Free-form surface lenses, which can fit differently shaped corneas, can help with the symptoms of an eye disorder called keratoconus, which can result in symptoms like astigmatism, blurred vision, and nearsightedness.

Dr. Song, who was inspired by the adaptive optical system of NASA, explained, “Normal corneas have a smooth and convex surface, while their (keratoconus patients’) corneas are bumpy with many irregular concaves.”

While traditionally made glasses aren’t always customizable, and can be expensive when they are, 3D printing allows physicians to customize glasses more accurately to fit a patient’s cornea.

Launcher Completes Hot-Fire Test

Launcher, a space startup, is making metal 3D printed components for rocket engines, like a combustion chamber made using nickel-chromium alloy Inconel 718. The startup relies on EOS technology for its 3D printing needs, and recently completed another hot-fire test of its E-1 3D printed chamber rocket engine, which is being used to help Launcher validate the design of the 3D printed combustion chamber and internal cooling channels before the technology is applied to its much larger E-2.

During the 30 second test, Launcher achieved its highest “performance and temperature mix ratio for LOX/RP-1” and reached a combustion temperature of about 6,000°F, which is over twice the melting point temperature of its 3D printed Inconel 718 combustion chamber.

3D Printed NASA Helmet

Designer, animator, special effects creator, and maker Adam Savage, formerly of Mythbusters and currently of Tested, was excited to introduce a video on the site recently about a new member of the Tested family – 3D modeler and prop maker Darrell Maloney, also known as The Broken Nerd.

“Darrell came to my attention last year because he’s ludicrously prolific and incredibly facile at 3D printing and model making and ambitious in his scope,” Savage said in the new video.

“In our ongoing collaboration, Darrell will continue to deliver some videos for Tested.com, including this one, in which I commissioned Darrell to make a space helmet for me.”

It’s not just any space helmet either – Savage is working to replicate the orange Advanced Crew Escape Suit (ACES), also called a pumpkin suit. This full pressure suit was worn by Space Shuttle crews after STS-65, and Darrell adapted a high-fidelity model that Savage purchased in order to make the helmet 3D printable. It took over 100 hours of 3D printing to create the helmet – you can check out the full process in the video below.

3D Printable SOFIA Flying Telescope Model

A 3D printed model of the Stratospheric Observatory for Infrared Astronomy (SOFIA) is displayed beneath a photo of the real thing.
[Image: NASA/SOFIA]

Engineers at the Ames Research Center have made a 3D printable eight-piece model of NASA’s flying telescope SOFIA, which stands for Stratospheric Observatory for Infrared Astronomy. The SOFIA telescope was built into a modified Boeing 747 wide-body jetliner, and flies at altitudes of up to 45,000 feet in order to observe the objects that fill our universe, like black holes, comets, and stars, from the stratosphere. The 3D printable SOFIA model, which includes a mini version of the real SOFIA’s 106″ reflecting telescope, was built to a scale of 1/200, making it just under a foot long.

The digital files to 3D print your own SOFIA model are free to download.

“SOFIA flies higher than commercial jetliners to get above 99 percent of the water vapor in Earth’s atmosphere, which blocks infrared light from reaching the ground. This is why SOFIA is capable of making observations that are impossible for even the largest and highest ground-based telescopes,” NASA officials said.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.