The Future Of Aerospace 3D Printing

Innovations in the aerospace industry have been seeing huge strives when it comes to 3D printing. Aerospace companies and organizations from around the globe are using 3D printing for both prototyping and end-use parts. These applications have been ramping up for years — and now we’re looking ahead to the future of 3D printing in aerospace.

Aerospace
3D Printing Today

Aerospace is a unique fit for 3D printing, offering a prime application area for many of the benefits of additive manufacturing technologies. Among these benefits are:

  • Part consolidation
  • Lightweighting
  • Complex geometries (“freedom of design”)
  • Rapid prototyping
  • Low-volume production
  • Digital inventory

Leveraging these benefits is proving
transformative for aerospace manufacturing as today’s aircraft, rockets, and
other commercial, private, and military aerospace builds are increasingly able
to perform better than ever before. Fewer, lighter parts mean fewer assembly
points that could be a potential weakness as well as a lighter weight
structure, enhancing fuel efficiency and load capabilities.

Aerospace has long been a ‘city on a hill’ for
additive manufacturing, offering highly visible proof points of the
technology’s high-flying potential to very literally fly high.

Like in the automotive industry, many
aerospace entities have been using 3D printing internally for years, if not
decades. Also like the automotive industry, though, many companies have seen
the technology as a competitive advantage best kept somewhat under wraps. This
has perhaps benefited these companies’ bottom lines — but it has limited the
visibility of these applications.

The GE fuel nozzle — which famously reduced from approximately 20 welded pieces into one 3D printed (and 25% lighter weight) piece — was among one of the highest-profile individual applications to be publicly shared. Such use cases are only ramping up; between 2015 and 2018, for example, GE 3D printed 30,000 of those fuel nozzles. Still, though, these examples are often heard over and over again because many other specific use cases are still seen as proprietary ‘secret sauce’ and not public knowledge.

The cat’s out of the bag by now, though, and
it’s almost an assumption that any aerospace company is in some way utilizing
3D printing in its operations.

From SpaceX and NASA to Boeing and Airbus,
this is certainly the case. These companies are among the highest-profile in
aerospace to share at least some look into their 3D printing usage.
Applications range from visible cabin components in passenger airplanes to
made-in-space tools on the International Space Station, with both mission
critical and aesthetic uses well represented.

The secrecy of ‘secret sauce’ is slowly
changing, too, as in addition to broadening adoption of 3D printing, space
exploration is becoming privatized.

Organizations like SpaceX certainly have their fair share of trade secrets but are also open about their use of 3D printing in applications from spacecraft to personalized astronaut helmets. 3D printing is often coming into play as well to not only make components of rocket engines, but also in new uses such as at Rocket Crafters for their fuel grains.

Smaller, private companies working in the
space industry are celebrating the technologies they use to gain traction in
technological advance and out-of-this-world achievements. By highlighting
instead of hiding the tech helping them to accelerate toward their own
liftoffs, these new entities are contributing directly to a shift in the
conversation around aerospace technologies.

Aerospace
3D Printing Tomorrow

When we look ahead, we can see an even brighter
future for an aerospace industry making more and better use of additive
manufacturing opportunities.

While certainly the technologies will improve,
providing natural points of improvement even from those areas already
leveraging additive manufacturing, the largest single point of future impact
for aerospace overall will simply be wider spread adoption.

While the 3D printing industry has
historically been excellent at internally sharing the benefits of the
technology (like those bulleted above), a sticking point has been in
externalizing this message. Aerospace becoming a more open industry with these
new private entities on the rise, and with more participants discussing the
advanced technologies they put to use every day, will see industrial additive manufacturing
gaining more attention, and more traction, overall.

If the GE fuel nozzle made anyone do a
double-take, the next innovations to come — or even those already accomplished
and not yet publicized — are sure to be fully head-turning.

Further parts consolidation, lightweighting,
and other means of taking advantage of the freedoms that DfAM (design for
additive manufacturing) enables have the potential to see massive advances in
aircraft and spacecraft manufacture.

By optimizing every part of an aircraft,
completely rethinking and redesigning the whole, a manufacturer might see
unprecedented capabilities emerge. In an industry where every ounce of
structural weight matters and lessening any possible point of failure is a
must, industrial 3D printing is an obvious fit.

The technology will only continue to make headway into the aerospace industry going forward, and with that larger general footprint will come more significant discrete advances. The future of aerospace and 3D printing is a relationship that will be ever more tightly intertwined.

learn more

The post The Future Of Aerospace 3D Printing appeared first on Shapeways Blog.

Tuskegee set to help develop NASA’s Artemis lunar lander using 3D printing

NASA’s ambitious Artemis program will see two astronauts returning to the surface of the moon for the first time since Apollo 17 touched down in December of 1972. To achieve this by 2024, the U.S. space agency has commissioned three private aerospace companies to design and manufacture human landing systems (HLS) for the mission. SpaceX, […]

Techshot’s Bioprinter Successfully Fabricates Human Menisci in Space

Current Bioprinting in space could become a pathway that guides future decisions for biofabrication on Earth as well as in orbit. Astronauts have already used two bioprinters on the International Space Station (ISS), experimenting with human bone tissue and even heart tissue. Interest in creating these machines arose as Earth’s gravity was making printing functional organ-like structures quite challenging, making the space environment a feasible alternative. Techshot, a commercial space company, chose to develop a BioFabrication Facility (BFF) that has been mounted inside the ISS U.S. National Laboratory and is being used by astronauts on board since last summer. This week the company announced that the space-based 3D bioprinter was used to successfully manufacture human knee cartilage test prints in space.

Techshot’s BFF, which aims to print organ-like tissues that could one day lead to 3D printing human organs in space for transplants, was used to successfully manufacture test prints of a partial human meniscus aboard the ISS last month. The meniscus pattern was manufactured for the company’s customer: the 4D Bioprinting, Biofabrication, and Biomanufacturing (4D Bio3) program, which is based at the Uniformed Services University of the Health Sciences (USU). The program is a collaboration between the university and The Geneva Foundation, a non-profit organization that advances military medical research.

BioFabrication Facility Patch (Image: Techshot)

Manufacturing human tissue in the microgravity conditions of space could ultimately aid in the race to manufacture hearts and other organs using a 3D bioprinter. Although the actual fabrication of functional organs that could finally replace the shortage of donor organs to help patients in need of a transplant could be a decade away – if not more – the team at Techshot was optimistic around this project since research in space might illuminate a lot of the work done on Earth.

In the last six months, astronauts, like NASA’s flight engineer Christina Koch, have tested the ability of the BFF to print cells. Using adult human cells (such as stem or pluripotent cells) and adult tissue-derived proteins as its bioink, the BFF is able to create viable tissue.

Astronaut Jessica Meir is using the BFF at the International Space Station (Image: Techshot)

According to the ISS U.S. National Lab, although researchers have had some success with 3D printing of bones and cartilage on Earth, the manufacturing of soft human tissue (such as blood vessels and muscle) has been difficult. What they claim occurs is that, on Earth, when attempting to print with soft, easily flowing biomaterials, tissues collapse under their own weight, resulting in little more than a puddle; but if these same materials are produced in the microgravity environment of space, the 3D printed structures will keep their shapes.

A meniscus, which is a crescent-shaped disc of soft cartilage that sits between the femur and the tibia, acts as a significant cushion or shock absorber, yet when the meniscus tears, the cushioning effect functions poorly, leading to arthritis and knee pain. Meniscal injuries are one of the most commonly treated orthopedic injuries and have a much higher incidence in military service members and sports players.

Early in March, Techshot sent equipment and samples supporting plant, heart and cartilage research for three of its customers to the ISS on SpaceX mission CRS-20. Astronauts on-board the station used the BFF to manufacture human knee menisci as a test of the materials and the processes required to print a meniscus in space. According to Techshot, the first experiment for 4D Bio3 aboard the ISS U.S. National Laboratory served as a test of the materials and the processes required to print a meniscus in space. Astronaut Andrew Morgan, a medical doctor and graduate of USU loaded biomaterials into BFF, while Techshot engineers uploaded a customer-provided design file to the printer from the company’s Payload Operations Control Center (POCC) located in Greenville, Indiana, from which the devices in space are controlled. The success of the print was evaluated via real-time video from inside the unit.

“Some of our criteria for mission success, such as the ability to work with customer-specified print materials and customer-supplied design files, were met before we even launched back on March 6,” said Techshot Senior Scientist Carlos Chang. “But commanding BFF to print from here at Techshot, and watching it all literally come together in real-time, provided the confirmation we needed that we’re on the right track.”

Founded more than 30 years ago, Techshot operates its own commercial research equipment in space and serves as the manager of NASA-owned ISS payloads – such as the Advanced Plant Habitat and two materials-science research furnaces. The company provides its catalog of equipment and services for a fee to those with their own independent research programs – serving as a one-stop resource for organizations seeking access to space. And launched to the station in July 2019 aboard SpaceX CRS-18, the BFF has been tested since. Techshot has even suggested that biomaterials for a second meniscus print, which will be returned to Earth for more extensive testing, will launch on a later SpaceX mission.

As astronauts stationed at the ISS U.S. National Lab continue to advance work with Techshot’s 3D bioprinter and microgravity research, we can expect to hear more about the cutting edge science that is being done that aims to improve patient care. The technology offers a unique opportunity to support bioprinting structures and construct tissues, providing an ideal scenario that will enable remarkable changes to move forth the medicine of the future.

The post Techshot’s Bioprinter Successfully Fabricates Human Menisci in Space appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing for Interplanetary Colonization with SpaceX

How to reduce the epic adventure of SpaceX into just a few paragraphs. One might think that focusing on 3D printing might do it, but not really, the company has headlined many news outlets with 3D printing innovations. It’s all a big part of Elon Musk’s long resume full of exceptional inventions often referencing something that has appeared in fiction, like electric autonomous cars, traveling to space, developing artificial intelligence and even trying to augment human brain’s capabilities. Musk’s plans get even bigger as the years go by, he even teased about making his own Iron Man suit when he was at a meeting with Secretary of Defense Ash Carter at the Pentagon in 2016, saying “Something about a flying metal suit…” on his Twitter account.

The billionaire and serial inventor has revolutionized the future of spaceflight, space colonization, as well as the economy of low Earth orbit and beyond. Last May, Air Force General Terrence O’Shaughnessy even said that Elon Musk’s SpaceX may have completely changed the ability to sense threats against America using satellite clusters in space. The exact expression was: “Holy smokes. Talk about being able to move the ball”. Yep, he actually said that about the launch of 60 small satellites by SpaceX at one time.

The company, which was founded in 2002, designs, manufactures and launches advanced rockets and spacecraft, with the ultimate goal of making interplanetary human life possible. The South African born businessman has publicly talked about venturing to Mars for over a decade, with plans of building a greenhouse on the Red Planet and, more ambitiously, establishing a colony.

The total journey time from Earth to Mars takes between 150 to 300 days depending on many factors, like the speed of the launch, the alignment of Earth and Mars, and how much fuel you’re willing and able to burn to get there. However, the scientists and engineers behind SpaceX are making the tour de force seem closer with every rocket launch, 3D printed engine, and orbit shuttle in development. Perhaps it all sounds too optimistic as the years go by and SpaceX has had a few setbacks along the way, but the continuous flow of NASA contracts are pushing the company into some serious research and development of some out of this world initiatives (literally of course), especially in 3D printing.

Dragon arrives at the International Space Station (ISS)

The truth is that whether it’s building bases with lunar dust or Mars sand; 3D printing CubeSats; taking bioprinters to space or actually sending the first crewed missions to the Red Planet with 3D printing capabilities on board, this new space race will be building the next generation of customizable products for use in orbit and Earth, with SpaceX leading the way.

Morgan Stanley estimates that the global space industry could generate revenue of more than $1 trillion by 2040, up from $350 billion, and SpaceX could be one of the biggest players of the industry. SpaceX along with competitors Blue OriginSlingshot Aerospace, Rocket Lab and Relativity Space, have raised billions of dollars to create new rockets for launch to orbit.

“Through 3D printing, robust and high-performing engine parts can be created at a fraction of the cost and time of traditional manufacturing methods,” said Musk, Chief Designer and CEO of SpaceX, back in 2014 during the announcement of the completed testing of the SuperDraco thruster, an engine that will power the Dragon V2 spacecraft’s launch escape system and enable the vehicle to land propulsively on Earth or another planet with pinpoint accuracy, and turned out to be the first fully printed rocket engine to ever see flight.

Rocket with 60 Starlink satellites being launched from Cape Canaveral Air Force Station in Florida.

“SpaceX is pushing the boundaries of what additive manufacturing can do in the 21st century, ultimately making our vehicles more efficient, reliable and robust than ever before,” Musk suggested.

High-performing rocket parts can be created using 3D printing and offer improvements over traditional manufacturing methods. SpaceX is pushing the boundaries of what additive manufacturing can do hoping to make the Falcon 9 rocket and Dragon spacecraft more reliable, robust and efficient than ever before.

In 2014, SpaceX launched its Falcon 9 rocket with a 3D printed Main Oxidizer Valve (MOV) body in one of the nine Merlin 1D engines. According to the company, the mission marked the first time SpaceX had ever flown a 3D printed part, with the valve operating successfully with high-pressure liquid oxygen, under cryogenic temperatures and high vibration.

SpaceX’s Merlin engines during the launch of the Arabsat-6A satellite mission (Credit: SpaceX)

SpaceX claimed that compared with a traditionally cast part, a printed valve body has superior strength, ductility, and fracture resistance, with lower variability in materials properties. The MOV body was printed in less than two days, compared with a typical castings cycle measured in months. The valve’s extensive test program – including a rigorous series of engine firings, component-level qualification testing and materials testing – has since qualified the printed MOV body to fly interchangeably with cast parts on all Falcon 9 flights going forward.

SuperDraco engines

Another great example of how the company has been experimenting with 3D printing came with SpaceX’s SuperDraco thrusters, which were 100% 3D printed. The engine powered the Dragon spacecraft’s launch escape system and enabled the vehicle to land propulsively on Earth (and potentially on another planet in the future) with pinpoint accuracy. It was manufactured using state-of-the-art direct metal laser sintering (DMLS, Powder bed fusion), and the chamber was regeneratively cooled and printed in Inconel, a high-performance superalloy that offers both high strength and toughness for increased reliability.

SpaceX has been focusing on getting humans to Mars, which means they are building their reusable launch system, the Starship spacecraft. It will be powered by the Raptor engine, which is the highest thrust to weight engine ever made, as well as one of the first to go by methane and designed to be reused 1,000 times. According to SpaceX, the manufacturing process includes quite a few 3D printed parts allowing to reduce costs and making the production of lighter parts possible. The printed components include propellant valves, turbopump parts and parts of the injector system.

Elon Musk at SpaceX getting ready to fire the new Raptor rocket engine (Credit: Elon Musk via Twitter)

Some of the main challenges facing the company go from making light spaceships to efficient engines and even perfecting propulsive landing. In this regard, 3D Printing allows for a great reduction of production costs and enhances the thrust to weight ratio of the engines since it enables the production of lighter parts not possible through traditional methods. Another additional advantage of 3D printing engine components is the speed at which the design changes can be implemented, making the teams move faster through the iterations to achieve the desired output and in a shorter time span, compared to the weeks, or even months, it could take otherwise.

For many years, SpaceX has been evaluating the benefits of 3D printing and perfecting the techniques necessary to develop flight hardware, achieving some major successes along the way and even cooperating with other companies to take 3D printing system capabilities to orbit. With the additive manufacturing industry coming such a long way in the past decade, we can expect the company to continue working with the technology in achieving some of the incredible results it has up to now and continue to enlighten us with their vision of going to space. Keeping our faith that perhaps, in the future, we could all be part of the travel adventure of a lifetime, one that SpaceX began exploring 17 years ago.

[Images: SpaceX]

The post 3D Printing for Interplanetary Colonization with SpaceX appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Sliced: PyroGenesis, Under Armour, Onshape, Apollo 11

This week’s edition of Sliced, the 3D Printing Industry news digest, features a 3D printed celebration of the first moon landing, virtual clothes shopping, and the launch of an AM Network Map.  This roundup also includes stories from Knust-Godwin, Torus Group, SPIE, Open Bionics, Geomiq, Onshape, Wikifactory, ETH Zurich, 3DEO, AlphaSTAR, PyroGenesis, Hermeus and more. […]

NASA grants millions to 3D printing projects helping 2024 Moon landing

American space agency NASA has just secured funding for approximately 18 early-stage 3D printing projects developing technologies to help on its next mission to the Moon. As part of the agency’s 2019 Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) seed programs, the projects are among 363 proposals that have collectively received over $43 million […]

Relativity Space to launch 3D printed rockets from Cape Canaveral Air Force Station

Relativity Space, a Californian aerospace startup, has signed a contract with the U.S. Air Force to operate its own launch facility on one of their sites. The agreement permits the company to test its 3D printed rockets at the Cape Canaveral Air Force Station in Florida. The company plans the first launch of its Terran […]

Launcher succesfully test-fires EOS 3D printed copper rocket engine

Founded in 2017, Launcher is using 3D printing to develop a liquid oxygen (LOX)/kerosene rocket to transport satellites into low-Earth orbit. Now, with the successful test firing of a 3D printed copper alloy E-1 engine, the company is one step further on its 10-year journey to provide low-cost solutions for entrepreneurs seeking commercial satellite launch. […]

Australia science agency report identifies additive manufacturing as key for Space 2.0

Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO) has set out a strategy for, “unlocking future growth opportunities for Australia.” The newly published report joins the earlier CSIRO’s Advanced Manufacturing Roadmap in highlighting the importance of additive manufacturing for the development of the space sector. Australia hopes to benefit from the growing Space industry, enabled […]