3D Printing News Briefs, August 5, 2020: Titan Robotics & Braskem, 3DPRINTUK

Today’s 3D Printing News Briefs is about materials and a 3D printed version of a real building. Titan Robotics and Braskem are partnering up to offer new solutions in 3D printed polypropylene, while 3DPRINTUK is expanding its materials and post-processing capabilities. Finally, the Coit Tower House in San Francisco now has a 3D printed miniature replica.

Titan Robotics & Braskem Announce Partnership

Braskem Polypropylene pellets for 3D printing

Production AM solutions provider Titan Robotics and petrochemical company Braskem have announced their strategic partnership, which has resulted in the launch of a new polypropylene (PP) resin that’s been optimized for 3D printing large-format production parts. The two companies spent over a year researching and developing the new material, which is the first commercially available grade of unfilled PP engineered specifically for 3D printing on Titan’s industrial Atlas 3D printers with pellet extrusion. The features of PP include chemical resistance, dimensional stability, impact strength, low density, recyclability, and thanks to this new partnership, Titan and Braskem will be able to offer improved industrial AM solutions.

“3D printing large parts using polypropylene resin has been a challenge for many years,” stated Rahul Kasat, Titan Robotics’ Chief Commercial Officer. “In collaboration with Braskem, a global leader in the polypropylene market, we have now solved that challenge. Our industrial customers will be able to print functional parts with this first of its kind polypropylene grade. We are also excited to continue to develop new polypropylene based solutions for our customers in collaboration with Braskem.”

Titan is also an authorized distributor of Braskem’s 3D printing pellet products.

3DPRINTUK Expanding Materials & Post-Processing

PEBA Dyed Close Up

SLS low volume production specialist 3DPRINTUK is branching out with its introduction of the flexible PrimePart 2301, a polyether block amide (PEBA) material with good chemical and water resistance, rubber-like characteristics not dissimilar to TPU, excellent detail resolution, and a higher melting point than most other resin-based elastomers. The material would be a good fit for batch production runs and rugged end-use applications, including handles, sports equipment, air ducts, and gaskets. Additionally, the company has invested in DyeMansion’s PowerShot S system, which uses a proprietary PolyShot Surfacing (PSS) process that allows 3DPRINTUK to offer a shot peening post-processing service that can improve the surface finish of 3D printed parts.

“At 3DPRINT UK we have honed and optimized the SLS 3D printing process over many years to achieve the best possible results off our machines for a wide range of relevant applications, that continue to grow in scope. However, the post processing of parts — from cleaning through to further optimised surface finishes — has always been a necessity for many of our clients. Expanding our post processing capabilities is a vital part of the business, and the DyeMansion PowerShot S system is an important next step in our expansion, enabling us to offer our many and varied clients the benefits of shot peened 3D printed parts from a single source,” said Nick Allen, the CEO and Founder of 3DPRINTUK.

3D Printed Coit Tower House

The 210′ tall Coit Tower was built in the early 1930s in San Francisco’s Telegraph Hill neighborhood as a way to beautify the city. The art deco tower, a recognizable sight on the city’s skyline, was added to the National Register of Historic Places in early 2008, and 12 years later, Yuriy Sklyar, the founder, CEO, and head of design & marketing at design studio Threefifty, has 3D printed a replica tower that stands over 7′ tall…a 1/20 scale. Utilizing a Creality CR10S5, a Replicator 2, and a MakerBot system, Sklyar, who has been utilizing 3D printing since 2013, called this unique project a “great opportunity to leave a lasting mark on the best city in the world – and its art community.” It took a month to create the base of the tower, as he had to redo a lot of it, eventually installing a heated silicone bed and heat enclosure to reduce the amount of warping. The next month was spent printing “the 4 giant sections of the fluted tower design.”

“Each one of these four sections, just like the real tower, consists of 4 sub-sections – I wanted to be very accurate with such details. At first these were limited in height by the 3rd party 3D printer, so only 2 sub-sections were supposed to be printed at a time, and then joined together with metal plates and nuts/bolts, but since I was now working on my own terms, I decided to reduce the amount of work for myself, and at the same time reduce the number of bolts/nuts/plates to just 4 sets, instead of 8,” Sklyar wrote.

“Each one of these sections takes about 3.5-4 days to print using a single 1.1mm shell @ 10% infill, which created for a surprisingly strong structure, since I instructed the infil to have a 45% overlap with inner and outer walls.”

You can check out his post for the very specific details of the project, but I’ll leave you with just a few – including all of the hardware used, the 3D printed Coit Tower weighs a total of 24 kg, and took over 7.5 km of ColorFabb’s nGen filament, SUNLU PETG and Gizmo Dorks PETG filament to print. Sklyar designed the whole thing from scratch, and the columns are joined by steel plates secured by bolts and in-printed nuts.

The post 3D Printing News Briefs, August 5, 2020: Titan Robotics & Braskem, 3DPRINTUK appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: June 27, 2019

In today’s 3D Printing News Briefs, we’re starting with a couple of stories from the recent Paris Air Show: TUSAS Engine Industries has invested in GE Additive technology, and ARMOR explained its AM materials partnership with Airbus. Moving on, Formlabs just hosted some live webinars, and PostProcess Technologies released a whitepaper on surface finishing metal 3D printed parts. Modix is sharing a lot of news, including four new 3D printer models, and finally, FormFutura has introduced sustainable packaging.

TEI Invests in GE Additive Technology

TUSAŞ Engine Industries, Inc. (TEI), founded in Turkey as a joint venture in 1985, has invested in GE Additive‘s direct metal laser melting (DMLM) technology. GE Additive announced at the recent Paris Air Show that TEI had purchased two of its M LINE factory systems and two M2 cusing machines. While the financial terms of the investment were not disclosed, the 3D printers will be installed at TEI’s Eskişehir headquarters, joining its current fleet of laser and Arcam EBM printers.

Professor Dr. Mahmut Faruk Akşit, President and CEO of TEI, said, “Today, we invest in TEI’s future by investing in additive manufacturing, ‘the future of manufacturing.’ Our longstanding partnership and collaboration with GE is now broadening with GE Additive’s machine portfolio.”

Armor and Airbus Partner Up for Aerospace 3D Printing

Air pipe prototype printed using the Kimya PLA HI (Photo: ProtoSpace Airbus)

Continuing with news from the Paris Air Show, ARMOR Group – a French multinational company – was also at the event, exhibiting its Kimya materials and a miniFactory printer, as well as its new aeronautics filament, PEI-9085. While there, ARMOR also met up with Airbus, which has frequently used 3D printing to create parts and prototypes, such as an air nozzle for the climate control system of its 330neo passenger cabin. The company has now requested ARMOR’s expertise in better qualifying its materials in order to standardize its own AM process.

“We have qualified the PLA-HI and PETG-S. We are currently testing more technical materials, such as the PETG Carbon before moving on to the PEI and PEEK. We have requested a specific preparation to make it easier to use them in our machines,” Marc Carré, who is responsible for innovation at Airbus ProtoSpace in Saint-Nazaire,

“We expect to be able to make prototypes quickly and of high quality in terms of tolerances, aesthetics and resistance.

“Thanks to ARMOR and its Kimya range and services, we have found a partner we can share our issues with and jointly find solutions. It is very important for us to be able to rely on a competent and responsive supplier.”

Webinars by Formlabs: Product Demo and Advanced Hybrid Workflows

Recently, Formlabs hosted a couple of informative webinars, and the first was a live product demonstration of its Form 3. 3D printing expert Faris Sheikh explained the technology behind the company’s Low Force Stereolithography (LFS) 3D printing, walked through the Form 3’s step-by-step-workflow, and participated in a live Q&A session with attendees. Speaking of workflows, Formlabs also held a webinar titled “Metal, Ceramic, and Silicone: Using 3D Printed Molds in Advanced Hybrid Workflows” that was led by Applications Engineering Lead Jennifer Milne.

“Hybrid workflows can help you reduce cost per part and scale to meet demand, while taking advantage of a wider range of materials in the production of end-use parts,” Formlabs wrote. “Tune in for some inspiration on new ways of working to advance your own process or to stay on top of trends and capabilities across the ever-growing range of printable materials.”

PostProcess Whitepaper on 3D Print Surface Finishing

PostProcess Technologies has released its new whitepaper, titled “Considerations for Optimizing Surface Finishing of 3D Printed Inconel 718.” The paper discusses a novel approach to help improve surface finish results by combining a patent-pending chemistry solution and software-driven automation. Using this new approach, PostProcess reports increased consistency and productivity, as well as decreased technician touch time. The whitepaper focuses on surface finishing 3D prints made with alloys and metals, but especially zeroes in on nickel superalloy Inconel 718, 3D printed with DMLS technology.

“With current surface finishing techniques used that are largely expensive, can require significant manual labor, or require the use of hazardous chemicals, this paper analyzes the benefits of a novel alternative method for post-printing the part’s surface,” PostProcess wrote. “Key considerations are reviewed including part density and hardness, corrosion (chemical) resistance, grain structure, as well as manufacturing factors including the impact of print technology and print orientation on the surface profile.”

You can download the new whitepaper here.

Modix Announces New 3D Printers, Reseller Program, and Executive

Israel-based Modix, which develops large-format 3D printers, has plenty of news to share – first, the company has come out with four new 3D printer models based on its modular design. The new models, which should be available as soon as Q3 2019, are the 1000 x 1000 x 600 mm Big-1000, the 600 x 600 x 1200 mm Big-120Z, the 1800 x 600 x 600 mm Big-180X, and the 400 x 400 x 600 mm Big-40. Additionally, the company has launched a reseller program, where resellers can offer Modix printers to current customers of smaller printers as the “best next 3D printer.” Finally, Modix has appointed 3D printing veteran John Van El as its new Chief Commercial Officer; he will help build up the company’s partner program.

“We are proud to have John with us,” said Modix CEO Shachar Gafni. “John brings aboard unique capabilities and experiences strengthening Modix’s current momentum on the path to become a global leader in the large scale 3D printing market.”

FormFutura Presents Recyclable Cardboard Packaging

Dutch filament supplier FormFutura wants to set an example for the rest of the industry by not only raising awareness about sustainability, but also by stepping up its own efforts. That’s why the company has moved completely to cardboard packaging – all of its filaments up to one kilogram will now be spooled onto fully recyclable cardboard spools, which will also come in cardboard boxes. All of FormFutura’s cardboard spools and boxes are manufactured in its home country of the Netherlands, which helps reduce its carbon footprint in terms of travel distance, and the material is also a natural drying agent, so it will better protect filament against humidity.

“Over the past couple of months we’ve been brainstorming a lot on how we can make FormFutura more sustainable and help renew our branding. As over this period we have received feedback from the market about helping to find a viable solution to the empty plastic spools, we started setting up a plan to reduce our carbon footprint through cardboard spools,” said Arnold Medenblik, the CEO of FormFutura. “But as we got to working on realizing rolling out cardboard spools, we’ve also expanded the scope of the project to include boxes and logistics.”

Because the company still has some warehoused stock on plastic spools, customers may receive both types of packaging during the transition.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

PostProcess Technologies Uses Hybrid DECI Duo Solution to Achieve Excellent Surface Finish for 3D Printed Shrouded Impellers

Exacting Surface Finishing of Complex 3D Printed Metal Geometries.

PostProcess Technologies, which expanded its channel partner coverage in North America this spring, is well known for its software and post-printing solutions. With its automated Hybrid DECI Duo solution, PostProcess helps its customers achieve excellent surface finish standards and replicable results for complex metal parts.

Recently, PostProcess demonstrated in a new case study how well its technology can help other companies. The subject was Ingersoll Rand, a $14 billion global industrial manufacturing company that specializes in compressed air technologies. The company uses 3D printing for its shrouded impellers, which improve the performance of a compressor package more than open impellers because there is no clearance between the stationary inlet and the impeller, so no slip losses occur as a result of compression gas recirculating in the space.

The design for shrouded impellers, which rotate 60,000 RPM, has very tight tolerances in order to meet aerodynamic testing. In addition, the blades need excellent surface finishing, and it takes months to build using conventional forms of manufacturing. So Ingersoll’s engineering team, needing to commercialize its shrouded impeller design, turned to 3D printing because of its complete design freedom; the technology also makes it possible to build the part as monolithic, so no welding is required. But, in order for 3D printed parts to meet performance thresholds, they do require outstanding surface finishes.

Ingersoll 3D prints its shrouded impellers out of titanium and nickel alloy, but they unfortunately come off the print bed at an Ra (roughness average) value that doesn’t meet the engineering team’s specifications. The team has tried everything from manual sanding and grinding tools to chemical etching, but the results were inconsistent and did not have the necessary, repeatable quality needed to produce end parts within the required specifications.

The company needed to find a replicable process that would provide them with the necessary surface finish for its shrouded impeller’s complex geometry, in order to, as PostProcess wrote in its case study, “drive a measurable increase in efficiency for its advanced air compressors.”

So, Ingersoll turned to PostProcess in hopes that the company could work with complex metal part geometries, like organic shapes and internal channels, and help achieve repeatable results and excellent surface finish standards for its shrouded impellers.

Automated DECI Duo for Post-Print Support Removal & Surface Finishing.

PostProcess delivered a “transformative outcome” for Ingersoll’s 3D printed titanium and nickel alloy parts, thanks to its patent-pending, automated Hybrid DECI Duo solution. The Hybrid DECI Duo – a single, multi-functioning, data-driven system – promises fast cycle times for even the most complex of parts Designed to optimize production floor space, the system also includes noise reducing features for a low dBa, an LED lighted chamber, and a manual mode for hands-on part finishing when needed.

The system also uses PostProcess’ proprietary AUTOMAT3D software, in order to optimize energy and exclusive chemistry, which includes detergents and suspended solids so the geometries maintain their fine-feature details while still receiving the desired surface finish.

“We have chosen the DECI Duo because of its repeatability, minimal setup, processing times, and cost of ownership. Photochemical machining, extrude honing, and micro polishing or micro machining all yield very good results when applied correctly, however extensive tooling and equipment costs, setup times, and required DOE’s prior to applying the surface finishing method to obtain a repeatable process have made the DECI Duo a better option,” said Ioannis Hatziprokopiou, Mechanical Engineer, New Product Development, Ingersoll Rand Compression Technologies and Services.

“In addition, some of aforementioned finishing techniques unevenly remove material inside the flow path of the impeller, whereas the DECI Duo uniformly treats the entire surface of the flow path. The final geometry of the flow path must remain as unaltered as possible after post-processing of any kind.”

3D printed shrouded impellers were
implemented on the last 3 stages of this 6 stage 6R3MSGEP+4/30 engineered air booster machine.

The PostProcess solution established operating settings that were in line with Ingersoll’s standards using benchmark parts. Then, the DECI Duo was able to consistently finish metal parts that were able to successfully pass exacting aerodynamic tests.

Ingersoll came to PostProcess with a need for high quality and requirements in consistency and repeatability. But, it’s also achieved additional advantages from working with the company, such as cost savings and ease of operation.

In addition, the DECI Duo also produced an average of 70-80% reduction in Ra for parts run for 20 minutes or less.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Images: PostProcess Technologies]

Ultrasonic Technology Improves Surface Finish of 3D Prints

Stair stepping is a common problem in 3D printing. This is when seam lines appear between layers and excess material is left as a residue on the print, negatively affecting its surface finish. For many applications, surface finish is an important component, so experts are always looking for ways to improve it. In a paper entitled “Improvement of Surface Finish by Multiple Piezoelectric Transducers in Fused Deposition Modeling,” a group of researchers apply ultrasound in an attempt to improve the surface finish of 3D prints.

Chemical post-processing, the researchers point out, is an effective way to improve surface finish, but it results in a slight change to the print, which may be unwanted. An alternative is the use of ultrasonic technology, which is often used in machining and improves both surface finish and fatigue strength. The piezoelectric components create ultrasonic vibration, which vibrate in a vertical direction and enhance surface finish in laser assisted machining. The researchers decided to apply the technology to 3D printing to see if a similar effect could be had.

In ultrasonic technology, a tool vibrates at a high frequency and pumps an abrasive slurry between the tool and the component to be finished. The process does not create a chemical reaction, and thus does not result in any chemical corrosion of the component. Mostly the technology has been used in subtractive manufacturing, but the researchers in this study thought it could be just as effective with FDM 3D printing.

The researchers used an UP Plus 2 3D printer to print several ABS samples.

“In order to assist the experiment, a common piezoelectric transducer performing in a horizontal wave or vibration mode was fixed and securely attached in contact with the hotbed of FDM machine,” the researchers state. “To guarantee the vibration will disseminate thoroughly, the piezoelectric transducer was attached to the whole surface. Most of the major challenge was the positioning of the piezoelectric transducer on the hotbed platform. The intention to assure that it mounted perfectly without making any contact or hitting 3D printer parts, while the 3D printer performing calibration and printing movement.”

The samples took the form of rectangles with four surfaces, but only one surface was focused on for the application of piezoelectricity. The researchers applied different numbers of piezos and found that with one piezo, the surface finish improved, and with four piezos it improved even more, but it was the highest quality with the application of two or three piezos, interestingly.

The research shows that the application of ultrasonic vibration can indeed reduce the staircase effect that is common in 3D printing, with the effects differing depending on the amount and position of piezoelectricity applied. The researchers believe that the technology could also be applied to different 3D printing methods such as SLA, SLS and Electron Beam Melting, and could have applications in industries such as automotive, consumer products, medicine, sports and more. Further research is recommended to study the consistency of surface finish by printing more complex parts with curved surfaces, for example, or with a different degree of angles. The researchers also recommend studying other materials such as PLA or composite materials.

Authors of the paper include A.S. Mohamed, S. Maidin, S.B. Mohamed, M.K. Muhamad, J.H.U. Wong and W.F.A. Romlee.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

 

3D Hubs Releases Second Edition of Digital Manufacturing Trends Report

Last quarter, 3D Hubs published its first Trends report to include Digital Manufacturing trends. The popular and long-running report still includes all of the latest information about 3D printing, but now also includes more insights on other digital manufacturing technologies, such as injection molding and CNC machining.

Today, 3D Hubs has released the second edition of this newly revamped report. The Digital Manufacturing Trends report for Q3/2018 is exclusively available for free download here.

“Spring has brought about a change to the data, with the end of the financial year and students ordering,” George Fisher-Willson, 3D Hubs’ Communications Manager, told 3DPrint.com.

Highest Rated Industrial Printers

In the Highest Rated Industrial Printers category, SLS still reigns supreme, accounting for six of the top ten 3D printer models, though one should note that only 3D printers with over 30 reviews per quarter are included in the breakdown. The top four are virtually unchanged from last quarter, with the Formiga P 100 still in first with a quality rating of 5. The iSLA-650 Pro was knocked down one slot to sixth place by the sPro 140, which received the same 4.93 rating as the EOSINT P 760 above it.

Most Used Industrial Printers

The HP Jet Fusion 3D 4200 is holding steady at first place in the Most Used Industrial Printers category…and with a record 30% more output, with an increase from 5,087 to over 6,550 prints.

“At #1 the HP machine created 6,551 prints, nearly triple that of #2 place Formiga P 110 which achieved a respectable 2,244,” 3D Hubs’ Digital Manufacturing Trends report states.

The large-format UnionTech Lite 600, up from 201 to 1,665 prints, most often used to create automotive molds and tooling, moves from its tenth place ranking last quarter to third this time around, knocking the sPro 230 down to fourth. The Objet30 Prime is also up a few places this time to round out the top five, though its number of prints only increased by 227.

Highest Rated Desktop Printers

In terms of Highest Rated Desktop Printers, only 3D printers with over 140 reviews in the quarter are included in the statistics for this quarter, which have the Zortrax M200 moving up from fifth place last quarter with a rating of 4.81 to first place this time around with a barely increased rate of 4.87.

The LulzBot Taz 5 makes a surprise entrance, and its 4.86 rating puts it at #2 on the list. Those reviews must have all been extremely positive, as #3 on the list, the Original Prusa i3 MK2, has the exact same rating with a total of 658 reviews. The Creality CR-10 is up from the tenth position to #4, and the Original Prusa i3 MK3 is up to #5 this quarter, with 349 reviews netting it a 4.83 rating.

The report notes, “The machines also took a large share of the reviews showing their popularity with service providers across the world.”

Most Used Desktop Printers

The battle rages on between the Form 2 and the Original Prusa i3 MK2 in the Most Used Desktop Printers category, with the Form 2 increasing its number of prints from 14,211 to 14,516 to jump back up to first. This gap may continue to grow, as Formlabs has released two new resins over the last few months. The FlashForge Creator Pro and the Original Prusa i3 MK2S both remain, respectively, in the #3 and 4 slots, though the latter has dropped its number of prints just a smidge, and the Prusa i3 MK3 has made the list this quarter, with a total of 6,345 prints.

According to the report, “Of the total 71,869 prints produced in the top 10, the Prusa machines have manufactured over 25,000 of the [sic], an impressive figure.”

Most Used Technologies

Not much change this quarter for the Most Used Technologies, as FDM 3D printing continues its first place ranking…even going up one percentage point while SLS dropped one.

“For the first time since the report began Metal Sintering double its share going to 2%, this could be potentially due to businesses putting in their high-end orders before the end of the financial year,” the report stated. “It could also be down the fact that Metal 3D printing is seeing further adoption by large multinationals as its ability to create complex geometries in metal cannot be beaten by traditional technologies.”

Most Used Materials

Last quarter, the Most Used Materials category adopted the generic term “Standard,” to denote that suppliers are listing materials to include all variants. Since then, the top ten has changed a little bit.

“Standard PLA has distanced itself further from ABS, at #1 with 33%, growing 3% since Q2’s report. ABS, although it maintains its #2 spot with 14%, has seen its number go the opposite way with a decrease of 3%,” the report explained. “This movement could be down to more new materials entering the market that challenge ABS’s position, which is relatively hard to print and not safe for non-ventilated spaces due to its fumes.”

Standard Resin is now in the #3 spot with 9% usage, while SLS Nylon appears for the first time at #4 with 8% usage. Standard PETG is hanging on to the #5 spot, though its reported usage has increased from 4% to 6%. Onyx, the proprietary material from Markforged that contains chopped Carbon Fiber, has entered the list for the first time at #9.

FDM Color Distribution

As for FDM Color Distribution, black is still in the #1 spot, with an increase of 5% of the market share – according to the report, nearly half of all of the 3D printed parts made on 3D Hubs are black. However, only the colors of submitted prints are reviewed for this report, so who’s to say that gray, up to #3 this quarter, isn’t used more often and those people just don’t submit their work?

Additionally, the spread of colors has dropped quite a bit, with Other down to 11% from 24%, which “is in line with the standardization of colors on 3D Hubs” explained last quarter. Transparent also makes it to the list for the first time, which 3D Hubs speculates could be due to the rising popularity of SLA and DLP 3D printing.

Top Print Cities

“The student peak in line with the end of the financial year has impacted the Top Print Cities and Top Print Countries,” Fisher-Wilson tells us. “Both the USA/UK and New York/London grew substantially, as the high concentration of universities in these cities bumped up their market share.”

Loughborough University, which 3D Hubs is familiar with, has also cracked the top ten for the first time in terms of Top Print Cities with its #9 placement. Following New York and London in the top two places, Amsterdam, Los Angeles, and San Francisco round out the rest of the top five.

The US and the UK continue to hold the top two spots for 3D printing usage in the Top Print Countries list, but the Netherlands has come up to knock Canada out of third place down to fifth, while Germany sits in fourth.

The report says, “India moves into the Top 10 for the first time, sharing the same percentage as Italy with 1.4% at #10. With the increases for the top two, countries like France have seen a substantial drop in market share moving from 3.4% to 2.5%. The trend continues that countries with a heavy population of students have seen market share increase.”

Most Used CNC Materials

In Most Used CNC Materials, affordable Aluminum 6061 is still hanging on to the lead, with over half of all 3D Hubs’ orders using the materials, though its usage has decreased a few percentage points. However, as Fisher-Wilson tells us, there was a shake-up in the category as previously predicted, with 19 new materials added this quarter.

“Stainless Steel 304 at #2 lost nearly half of its market share (11.6% to 6.8%) with Delrin at #3 and Mild Steel 1018 at #4 debuting with 5% each,” Fisher-Wilson told 3DPrint.com.

Aluminum 7075, with 4.8% usage, is #5 in this category.

There’s now more variety in Most Used Finishes at 3D Hubs, as it’s introduced some new materials, though the percentage of respondents leaving their parts as machined is down a bit from 77.6% to 70.8%. Bead blasting, at 7.5% in the #2, is still far behind, though the number three finish, anodized color, has increased its usage by nearly double.

What do you think of these results? Discuss this new trend report, and other 3D printing topics, at 3DPrintBoard.com, or share your thoughts in the Facebook comments below.