AMS 2020: Panels on 3D Printing Materials and Applications for Dental Industry

At our recent Additive Manufacturing Strategies 2020 in Boston, co-hosted by SmarTech Analysis, many different topics were discussed in keynotes and panels, such as binder jetting, medical 3D printing, and different materials. Dental 3D printing was also a major topic of discussion at the event, and I attended three panels that focused on additive manufacturing for dental applications.

The first, “Into the dental and oral surgery office,” had three panelists: Dr.-Ing. Roland Mayerhofer, the Product Line Manager for Coherent/OR Laser; CEO Manager of Oral 3D Martina Ferracane; and Mayra Vasques, PhD, a dental prosthesis fellow at the University of São Paulo in Brazil.

Dr. Mayerhofer went first, and provided a quick overview of Coherent’s laser powder bed fusion (L-PBF) systems, and the dental applications for which they can be used.

The versatile CREATOR is the company’s open system, and can print with multiple materials, such as brass, cobalt chromium, steel, and Inconel.

“As long as it works, you can put any powder in you want,” Dr. Mayerhofer said about the 3D printer.

He explained said that the CREATOR setup is “typical but can be as big as a stand-up fridge, not the American double-size.”

You can take a look at the rest of the printer specs above, along with a few features that will be added to the new system that’s coming in 2021, such as two powder hoppers and a build platform.

“Then you can take them out, put fresh hoppers in, and keep going,” Dr. Mayerhofer said.

He stated that the dental field is likely one of the first major adopters of metal additive manufacturing, as the technology offers 100% personalization and can fabricate small, complex parts out of existing materials, like titanium alloys…all perfect features for the dental industry.

Dr. Mayerhofer then discussed Coherent’s digital dental workflow, which can get from scanning to a completed 3D printed part in 12 steps. Some of these steps include designing the CAD file and preparing it for 3D printing in the company’s APP software suite.

Later process steps are annealing, and then sandblasting, support removal, polishing, ceramic coating – added manually – and voila, you have a finished product.

The Dental Cockpit is Coherent’s latest addition. The CAM software makes it easy to load and print parts, which means that the digital dental workflow as a whole is much less complex. There’s one click to select the file, another to choose the materials and properties, and then a final click to generate the G-code.

Dr. Mayerhofer said that Coherent’s whole dental workflow, 3D printing on the CREATOR include, takes just one work day to fabricate a completed bridge in the dental lab.

After the cast skeleton is scanned, the dental lab begins preparing the CAD data at 8 am. Then the print job has to be prepared in Dental Cockpit, and 3D printing typically begins in the morning.

Once the parts are removed from the print bed, post processing is completed, and then a porcelain coating is added before the product is subjected to heat treatment and polishing. The completed bridge is then ready to go by 4 pm.

Dr. Mayerhofer noted that a dental lab’s ROI on the CREATOR 3D printing system is less than a year…typically about six months, in fact.

Then it was Ferracane’s turn to explain how her company, Oral 3D, makes 3D printing simple for dentists, even as it’s occurring at the industrial level.

“Our solution makes it extremely simple for dentists to bring 3D printing to their practice,” she said.

She presented a brief overview of the US dental market, noting that some of the major applications for 3D printing in the field include aligners, crowns, surgical guides, and soft tissue models, which dentists use to test procedures ahead of time.

“Usually today, the way most of these models are done is through intraoral scanning,” she explained.

Ferracane said that SLA technology makes it much easier to make these soft tissue models. But, even so, they can still only be used for testing purposes most of the time.

3D printed models of hard tissue – bone – are also fabricated, but she said that they’re not used often, as it’s difficult for dentists to come up with STL files of just the hard tissue.

She pulled up a slide that had the world “PROBLEM” across the top. The image appears to be scan data of bone, which looks pretty hard to read.

“It’s not easy for dentists to make this into something printable by cleaning up the images,” Ferracane explained. “So they can pay to outsource it to labs to clean it up. But our 3D printing software automatically does this. Just drag the CT scan, and we’ll take care of changing it from DICOM to STL. With one click, we can then convert STL to G-code.”

She said that while it’s obviously good to fabricate dental applications this way using Oral 3D’s printer, it will work with whatever system you’re already using.

These 3D printed models serve a variety of purposes – they can improve communication with patients, help in treatment planning, and even “broaden learning.” Ferracane mentioned that the company has partnerships with NYU and Harvard for this last.

Other applications include bone blocks, made-to-measure titanium membranes, and maxillofacial surgery. Additionally, she stated that Oral 3D recently began collaborating with dental surgeons, who use the company’s 3D printed dental models for planning and patient communication.

She finished by stating that the company believes FDM printing can “be a good value add for dentists.”

Vasques finished things by sharing her research into how things look, dental 3D printing-wise, from the point of view of clinicians.

“It’s common for most to be scared of using 3D printing,” she explained. “They think it’s plug and play, and it’s not.”

For her research, she divided users into two separate groups – high level experience (seniors), and innovation (early adopters and students).

“We are trying to figure out how these people understand the technology,” she said.

High level users expect accuracy, efficiency, high quality technology, and high-performance materials for the purposes of chairside 3D printing. Vasques said that these users “don’t want to wait 2-3 hours to make products by hand.”

“In university, we’re trying to establish protocols and research to help these people have the results they are expecting.

“We’re trying to solve problems, like mouthguards for sports.”

Vasques said that last year, she and her team published three articles about dental 3D printing topics, such as 3D printed occlusal devices and post-processing. She launched INNOV3D the same year, in order to help train professors in using dental 3D printing.

“We have an online training platform, educational materials, and 3D lab,” she stated.

Once she finished and sat back down, Davide Sher, the panel’s moderator, asked the other two panelists how they would address the challenges that Vasques listed, and how they would make dentists understand more about dental 3D printing.

Ferracane answered that most dentists aren’t buying 3D printers today, because they’re initially taught that the systems are really easy to use when they’re not. Once they run into issues with SLA technology, they get frustrated and just start outsourcing the work instead.

“Then they’re really dissatisfied, because they’re complicated and not just plug and play. We need to help them understand that they can bring the technology back to their office.”

Sher noted that dentists don’t really have the time to learn about the more advanced types, and so asked if the companies directed their technology to users in dental labs; Dr. Mayerhofer said yes.

After a short break, the next session, “Dental lab experiences with 3D printing,” began. While Les Kalman, an Assistant Professor for Restorative Dentistry at Western University’s Schulich School of Medicine, was unable to make AMS 2020, Arfona founder and CEO Justin Marks and Sam Wainwright, Dental Product Manager for Formlabs, were both ready to go.

Marks went first, explaining that Arfona, founded in 2017 by dental technicians and 3D printing enthusiasts on “the core belief that thermoplastic dental materials should not be substituted for inferior photopolymers,” has been working to “bring 3D printing into the world of dentistry.” The company’s flagship product is its 3D printed flexible nylon dentures.

He pulled up a slide that cited research stating that 36 million Americans are completely edentulous, meaning without teeth, and that 178 million are partially edentulous. But even so, Marks said that there’s an “astronomical” number of people who are still not wearing dentures.

“Most people don’t think about this until it happens to you or someone you know,” he said about missing a tooth. “It’s not always that easy or cheap to fix this with implants.”

According to a survey, only 8% of dentures are digitally fabricated, which means most are still made by hand using analog methods.

Marks said that even though 3D printing is “becoming more of a buzzword” in the dental industry, most of the materials “have largely stayed the same,” and based on the same technologies and principles. Extrusion-based AM is not used often in dentistry, and powder bed fusion (PBF) is mostly limited to metals, not polymers.

Marks went through a brief history of 3D printing in dentistry. Ubiquitous applications include impression trays, digital models, and resin patterns for casting, while digital dentures are currently happening and things like clear aligners, temporary and long-term crowns and bridges, and multimaterial printing are in development for use in the future.

He said that the ubiquitous ones have one thing in common – they’re used once and then thrown away.

“We’re still not doing much with crowns and bridges,” Marks said. “Clear aligners are the holy grail, and direct printing of the aligner is still a ways off, though all companies are probably working on it.”

Aronfa’s dental 3D printer is the r.Pod, which is a modified version of a Makerbot clone. The dual extrusion filament system is optimized for all of the company’s thermoplastic materials.

Then it was Wainwright’s turn to talk about dental 3D printing at Formlabs. He agreed with Marks that “FDM and thermoplastics have an incredible place” in the dental industry.

When the company was founded in 2012, its goal was to make professional-scale 3D printing accessible and affordable for everyone. Now Formlabs employs over 500 people at its multiple locations around the world, and has sold more than 50,000 3D printers.

Wainwright explained that the Form 3B desktop printer, optimized for biocompatible materials, has many dental-specific features, materials, and software, in addition to automated washing and post-curing systems “to help tie in end-to-end dental workflows.”

In addition, Formlabs offers dental materials, and launched its dental service plan (DSP) along with the Form 3B in 2019. Because there are high demands, the 3D printing process is complex, and the DSP offers support.

“We are committed to 3D printing for dental,” Wainwright stated. “We have over 20 people in the dental business unit. But we have the resources of a 500 person-plus company.”

While most are made overseas, Formlabs Dental is now developing photopolymers in my home state, since the company acquired its main material supplier, Ohio-based Spectra Photopolymers, last year. Formlabs’ biocompatible Surgical Guide Resin is the company’s first material made in an ISO-certified facility.

“It’s exciting to have intimate control over design aspects,” Wainwright said.

The image above is an example of the Surgical Guide material. Wainright explained that the light touch supports are very easy to remove, which means that there isn’t a lot of time wasted in post-processing.

He said that 36% of dental labs in the US use 3D printing technology, which makes them very “cutting edge.”

“There’s a ton of market opportunity for dental to go digital,” he said. “We have 30% of this market – we’re the biggest player in dental laboratories and will continue to grow, but compared to Invisalign, it’s not really that much.”

So far, Formlabs has 3D printed more than 10,000,000 parts for the dental industry. Wainwright predicts that in ten years or less, “everything in dental will be 3D printed.”

He reiterated to the room that Formlabs has “a whole host of materials” for dental applications, four of which are solely for fabricating models, which are “really critical to dentists.” As dental offices adopt intraoral scanning technology, it’s helpful to take the scan data and turn it into something physical. Wainwright mentioned that Formlabs’ Grey Resin can achieve fast, accurate prints, and that it’s good for thermoforming as well.

The company’s Draft material is “accurate enough to create models in less than 20 minutes,” which makes it perfect for creating retainers on the same day as a patient’s appointment. Model Resin is good for accurately restoring dental models, while the biocompatible Dental LT Clear Resin can be used to print occlusal splints in addition to models.

Formlabs’ Digital Dentures solution comes in multiple shades to match a patient’s teeth, and a full set can be 3D printed for less than $10, which Wainwright says is “really a game-changer.”

“We want to make treatments easier, better, and faster,” he said in conclusion.

“3D printing is still very early in dental, this is just the beginning. The materials will just keep getting better, it’s an exciting place to be.”

Then it was time to eat lunch and chat with other attendees…or, as I did, inhale food and then find a spot in the hallway near an outlet and get a little work done.

After the lunch break, I sat in on my last panel at AMS 2020, “3D materials for dental applications.” It was a panel of one – Gabi Janssen, Business Development Manager and Global Leader, Healthcare Segment Additive Manufacturing, for DSM Additive Manufacturing. She presented on digitalization in healthcare and dentistry.

She tried to play a short movie about what the company does, but due to technical difficulties there was no sound, so she narrated instead, explaining that DSM is “a material company” that also does a lot with nutrition – a brand behind the brands.

The company also has a biomedical department, which helps deliver advanced healing solutions for AM applications, including bioceramics, collagen, polyethylenes, polyurethanes, and hydrophilic coating.

“What we have on the market is filaments,” Janssen said, pulling up a list of the dental materials DSM offers.

Several of the company’s products are geared toward the healthcare market, such as Somos BioClear for dental guides and anatomical models.

“So how do we develop a new material?” Janssen asked. “We’ve discussed 510(k) clearance materials, and you have to work all together. We look at the application, and determine what we need – printer, software, material – to fit what the end user needs.”

She pulled up a slide of the major market drivers in 3D dental printing – performance, mass customization, and time-saving.

“What kind of applications do we have in dentistry?” she asked.

To answer her own question, she showed a brief history of digital dentistry, starting with the first 3D printed part in 1983, moving on to DSM’s 3D printing resin in 1988, the beginning of aligner manufacturing in 1997 and medical modeling in 2000, and DSM’s dental materials passing USP VI in 2008. For 2020 and beyond, hopefully we’ll see the availability of direct aligner materials.

“I think there’s still a lot of data needed to show it’s good,” Janssen said about where the industry currently stands. “Reimbursement is difficult, we need this data to back it up.”

The topic of FDA clearance obviously came up a lot at AMS 2020. Janssen said that DSM has a resin that’s certified for use in dental bite guards, and a general purpose resin that isn’t certified but can be used to make FDA-cleared aligners.

“The end device needs the clearance,” she reminded the room.

She brought up how Materialise was the first company to receive FDA clearance for software about 3D printing anatomical models for diagnostic use. Materialise Mimics inPrint translates the data for the model to the 3D printer. Then, combined with a specific printer and material, it’s possible to fabricate “the model they actually want within a certain safety margin.”

“But, if you want to print medical models, just for patient communication, it does not need to be cleared, because it’s not a medical device,” she explained.

The slide above explains what makes a medical device controlled, i.e. needs clearance, while the below slide lists some very useful definitions, including biocompatibility and risk.

Janssen then brought up the “sometimes confusing standards,” such as ISO standards.

“Depending on what we do with the material, and how long it goes in the mouth, there are different risk associations,” she explained.

In terms of product classification, Class I is the least risky. But, the higher you go up in class, the more research is required to show that the 3D printable material won’t harm patients.

She said that the regulatory industry is changing to have more focus on software, with higher regulations for that software, because it “needs to be validated in combination with the material and equipment.” Additionally, there is more of a focus these days on understanding and managing risks, as well as reducing animal testing…always good news!

When choosing the proper filaments for your workflow, you should start by working with the dentist on treatment planning. Then, once the patient’s mouth has been scanned, you can create the design in the software. Then the build has to be prepared, which takes some patience and precision – you need to enter the optimal print parameters, and add supports if they’re needed. Then, after the print is complete, it needs to be removed from the bed, supports (if there are any) need to be taken off, and there may even be grinding and painting involved before the final quality check.

“Many process variables can impact the safety of the final end product,” Janssen noted. “So you need to understand the effect the material can have on patients.”

Finally, there are also plenty of steps to follow to ensure material safety in development, so it’s important to follow the instructions your supplier gives you.

Then it was time for some questions. One attendee asked why dentists aren’t all adopting AM, since some products, like mouthguards, look pretty easy to make in the back office.

“This may look easy, but it’s actually not,” Janssen explained.

She went on to say that the product or device may not always “come out right the first time.” There are a lot of parameters to look at, and potentially tweak, in order to achieve the desired result. A lot of people can get frustrated if it doesn’t work right the first time.

“What we’re doing now – if you bring your design to us, we’ll do the tweaking for you, as our software has all of the maximum and minimum numbers needed for parameters,” she said.

3D printing thought leader and author John Hornick offered his take on the question, as he has some experience with the matter. He explained that most dental offices are private, though many dentists are consolidating their practices into larger ones, “and their appetite for spending money on these machines may go up.” But, SmarTech doesn’t think the average dentist will spend that much for larger, more expensive 3D printers. That’s why some companies, like Arfona, are working on simpler material extrusion systems.

Another attendee said that it seems like 3D printing companies are just throwing technology at various markets and praying that it sticks. Dentists want to be dentists, and not spend their time dealing with issues like print parameters and melted filament.

“We, as technology providers, need to raise our game and make this work for these people,” Janssen stated.

I think that’s a great note on which to end my AMS 2020 coverage – we, the AM technology providers, need to show the rest of the world how 3D printing can work for their industries.

We hope to see you next winter for Additive Manufacturing Strategies 2021!

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

The post AMS 2020: Panels on 3D Printing Materials and Applications for Dental Industry appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Combining Over-3D Printing of Continuous Carbon Fiber Reinforced Composites with Stamp Forming Organo-sheet Substrates

Because continuous carbon fiber reinforced polymer composite materials have such high strength, stiffness, and fatigue resistance, in addition to noise suppression and impact energy absorption qualities, a lot of people are naturally interested in them for multiple applications. But, researchers need to look into ways to address related challenges, such as cost-effective processes to manufacture these materials.

U. Morales, A. Esnaola, M. Iragi, L. Aretxabaleta, and J. Aurrekoetxea with Mondragon Unibertsitatea published a paper, titled “Over-3D printing of continuous carbon fibre composites on organo-sheet substrates,” that looks at combining FFF 3D printing of continuous fiber reinforced composites with organo-sheet thermoplastic composites.

The abstract reads, “Fused Filament Fabrication (FFF), or 3D printing, of continuous fibre reinforced composites allows getting advanced materials (steered-fibres, dispersed stacking sequence laminates or functionally graded composites), as well as complex geometries (cellular structures or metamaterials). However, FFF presents several drawbacks, especially when large-projected area or high-fibre content composite parts are required. On the other side, stamp forming of organo-sheet thermoplastic composites is a cost-effective technology, but with severe geometric limitations. Combining both technologies, by over-3D printing on the organo-sheet, can be a promising approach to add the best of each of them. The effect of the organo-sheet temperature on the shear strength of the bonding interface is studied. The results show that strong bonding interface can be achieved when the correct substrate temperature is chosen. In fact, it is largely improved if the interface temperature is higher than the melting temperature of the substrate layer.”

Figure 1. Set up of the over-3D printing.

While stamp forming organo-sheet thermoplastic composites is a cost-effective method, it can’t produce complex geometries on its own, meaning that it requires assembling operations and parts to do so. You can combine stamp forming with over-injection molding, but then the final part’s mechanical properties will be limited. FFF 3D printing can achieve complex geometries and support advanced materials, but it isn’t perfect. So combining over-3D printing on the organo-sheet can offer the best of both worlds.

The team’s manufacturing process is three-fold:

  1. The flat organo-sheet is placed on the 3D printer bed and the complex features are over-printed
  2. The over-printed organo-sheet is picked up and fed to the infrared heating station
  3. The final shape is achieved by stamp forming once the optimum processing temperature is reached

“Establishing strong bonded interfaces between organo-sheet substrate and over-3D printed polymers is essential to the success of the proposed approach, and it is the motivation of this research, where the main objective is to establish the effects of the organo-sheet temperature on the shear strength of the bonding interface,” the researchers explained.

Figure 2. Geometry of the over-3D printed single lap test specimen (all dimensions in mm)

A standard polyamide 6 (PA6) was used for the infill material, while the printed composite material was a continuous carbon fiber reinforced polyamide 6 (CF-PA6); both came from Markforged. The company’s desktop Mark Two 3D printer was used to fabricate the over-3D printed specimen, the geometry of which consisted of a 2 x 30 x 90 mm3 organo-sheet substrate and a 4 x 15 x 45 mm3 prismatic over-3D printed part.

“To prevent delamination stress in the overprinted zone and assure a pure shear loading at the bonding interface, 2 mm of height tap has designed and glued to the specimen end. Therefore, it has been assumed that the first failure mode of the single lap specimen will occurred due to shearing at the bonding interface and that the tensile failure load of substrate is 10 time higher,” the researchers explained.

“An over-3D printed part has been manufactured layer by layer according to the printer parameter shown in the Table 3. The printed part is assembled by a stacking a sequence of 32 layers: the first 16 PA6 layers are placed to fill the gap of organo-sheet thickness (2 mm), the next two PA6 layers define an interface of 0.25 mm (flexible bed) and the last 14 CF-PA6 layers are devoted to withstand the test load. Therefore, printed carbon fibres are aligned with the loading direction (0º) and extrusion path of PA6 layers are driven in 0/90º direction.”

The team carried out quasi-static shear tests, studied failure modes by using an optical microscopy to analyze the over-printed fracture zones, and conducted differential scanning calorimetry (DSC) on the samples, which weighed between 5.5 and 6 mg.

After all of the experiments had been completed, the researchers felt that their work fully demonstrated a feasible new process that combined stamp forming of carbon fiber reinforced PA12 organo-sheet and over-3D printing of continuous carbon fiber reinforced PA6.

Figure 4. Interface pictures of three different over-3D printed samples; a) original over-3D printed interface, b) fracture surface of the sample with Ti 157.5 ºC and c) fracture surface of the sample with Ti 177.5 ºC.

“The substrate temperature, the only parameter that can be modified in the printer, is critical to get a strong bonding. Increasing the temperature increases the shear strength, and once the interface temperature exceeds the melting peak temperature of the substrate, the shear strength does not increase anymore. Therefore, it can be concluded that an optimum temperature can be found for balancing mechanical performances and cost-effectiveness of the process,” the researchers wrote. “Anyway, another processing parameter (printing temperature or pressure) or surface treatments (texturing or adding hot-melt) must be explored to improve even more the adhesion between the substrate and the over-3D printed features.”

Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

The post Combining Over-3D Printing of Continuous Carbon Fiber Reinforced Composites with Stamp Forming Organo-sheet Substrates appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

REGEMAT 3D Will Start Selling Biomaterials

One of the key players in the bioprinting field in Spain will be incorporating seven new biomaterials. In the coming months, REGEMAT 3D will launch a catalog of biomaterials that customers can buy and use along with their bioprinting systems. According to company officials, in recent years, advances in 3D bioprinting systems have become very important, as well as new biomaterials for regenerative medicine. The performance of the research groups with which they collaborate has produced results that were likely unheard of years ago. Still, they consider that these innovations in bioprinting systems must be accompanied by a progressive definition and characterization of the biomaterials being used. This year, one of REGEMAT 3D’s objective is to advance biomaterials for further research in the different applications derived from the 3D bioprinting sector, which is growing every year.

REGEMAT 3D bioprinting with new biomaterials

Each specific application requires different solutions and appropriate biomaterials to optimize processes. For instance, it is easy to understand that to regenerate skin components, hydrogels, cells and growth factors are different from those needed to regenerate muscle tissue, bone or cornea. So, it is essential to offer researchers and scientists different biomaterials to aid their work. REGEMAT is focusing on seven: thermoplastics, collagens, alginates, agaroses, gelatin methacryloyl (GelMA), nanocellulose, and different types of cell media compatible with the cells used. All of the biomaterials should be easy to print, handle and will allow researchers to tackle some of the challenges they face while working. 

The new biomaterials for 3D bioprinting will be available on the company’s web page (which they will relaunch shortly), as well as through their offices. REGEMAT 3D has agreements with several national and international partners for the manufacture of these products. The first ones to be sold commercially will be nanocellulose, collagen, and alginate.

REGEMAT 3D new biomaterials

The Granada, Spain-based biotech company has sold its machines to users in more than 25 countries. For years, the company has been working with research groups at the University of Granada in advanced therapies, participated in a joint project for the development of new therapies for cartilage regeneration, and has collaborated with the University Hospital of La Paz, where REGEMAT 3D’s founder coordinates the 3D Tissue Engineering and Printing Platform (PITI3D), which provides ingredients and processes to generate functional tissues. Since its origin, the startup has been focusing on regenerative medicine, developing custom hardware and software required and demanded by some of the major hospitals and research universities in the region. They develop their own bioprinting systems – the BIO V1 machines – and customize them for their users’ applications according to the requirements of each investigation.

Last January, a group of researchers led by the University of Granada and REGEMAT 3D, published an academic article on the development of a volume-by-volume 3D biofabrication process that divides the printed part into different volumes and injects the cells after each volume has been printed, once the temperature of the printed thermoplastic fibers has decreased. This helps overcome problems that arise when working in 3D bioprinting with thermoplastics at high temperatures: one of the biomaterials they will soon begin commercializing, with which the company is very familiar and has worked with for a long time. 

To continue developing new biomaterials and launching new products, the Spanish company, led by founder and CEO José Manuel Baena, has managed to raise 320,000 Euros in the midst of the latest financing round. REGEMAT 3D, along with its sister company Breca, are not only launching the new series of biomaterials, but they are also expanding their presence to Brazil, where the company has already started to market its products, and China, where they closed an agreement with Chinese distributor ApgBio, based in Shanghai, that’s responsible for introducing bioprinting equipment in the country for the regeneration of organs or tissues. Companies like REGEMAT 3D are gearing up to mass produce biomaterials, providing researchers with more options when it comes to bioprinting for regenerative medicine and advanced therapies, usually keeping in mind how patients bodies will react to the new materials, and whether they will be compatible. Spain, like many other European countries, is quickly catching up to the world of bioprinting, which today is led by US-based companies but shows promise in many developed countries.

[Images: REGEMAT 3D]

The post REGEMAT 3D Will Start Selling Biomaterials appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Anisoprint & Thought3D Collaborating to Solve Adhesion Issues in 3D printing

Luxembourg-based Anisoprint and Thought3D, headquartered in Malta, are partnering up in making 3D printing a better process overall for manufacturers around the world relying on strong parts. In line with the Anisoprint company’s mission to continue their ‘quest for superior materials to step up to the next level of production technologies,’ they are collaborating with Thought3D (manufacturer of Magigoo and Magigoo Pro 3D printing bed adhesives) to make thermoplastics easier to work with, resulting in more durable components.

“In many cases, to achieve stronger filament, 3D printing material manufacturers strengthen their filaments by adding to their polymer chopped-up carbon or glass fibers,” states the Thought3D team in their recent press release. “However, adding continuous non-chopped fiber makes 3D printed parts even stronger.”

No matter how sophisticated a 3D printer may be, if the materials fed into it are not high-quality—or the proper type of quality for the components required—there could be major challenges encountered during the fabrication process, such as sticking, peeling, and warping. These issues are often more common during the printing of complex geometries, which may exhibit many of these problems during the cooling process as materials suffer from adhesion issues in shrinking, contracting, and deforming due to stress inside the objects.

The Anisoprint Composer 3D printer instills strength in materials like conventional filaments with a combined extruder available for loading of two types of thermoplastics, and then a third for continuous carbon fibers. The Anisoprint team refers to this process as composite filament co-extrusion, instilling exponentially higher strength in engineering filaments like nylon and PC, as well as PLS, ABS, and PETG.

“Bad first layer adhesion is one of the most common issues that can ruin your whole print, not necessary at the very beginning,” says Fedor Antonov, co-founder and CEO of Anisoprint. “This is especially important for open materials system, where the customer can choose different types of thermoplastics to print with. Each one will require a special approach.”

“That’s why we’ve introduced several first layer settings in our slicer software Aura and that’s why we are in with Magigoo – we put the Magigoo sticks in every Composer box to make sure our customers will have a proper solution in hand to ensure good first layer adhesion.”

Many users rely on a bevy of DIY fixes for preventing materials from sticking, from the old standbys like hairspray, to glue, and other specialized solvents and substances. The Anisoprint Composer’s heated glass bed helps prevent lack of adhesion, but with Magigoo bed adhesion products, better strength is possible for PLA, ABS, PETG, PC, and nylon.

“Over the past four years we have become experts in first layer adhesion products,” says Andy Linnas, co-founder and business developer of Thought3D. “We are happy to work with Anisoprint as their glass bed and printer are a perfect match for our adhesives. I am sure that our aims align with those of Anisoprint – making 3D printing easy, accessible and affordable to even the most demanding printing applications.”

The 3D printing realm is awash in a variety of composites today as researchers, manufacturers, and materials scientists find themselves not quite happy with many filaments or powders ‘as is,’ thus enhancing them with other materials and properties for specific needs in functionality and production. This industry is one built on innovators, creators—and often, perfectionists. Companies like Anisoprint are known for their success in printing with composites, along with researchers, engineers, and other users around the world engaged in creating materials like nanocomposites, wood composites, and many different types of carbon enhancements.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

The Composer (Photo: Anisoprint)

[Source: Thought3D]

Istanbul: Thesis Student Explores Continuous Fiber Composites in FDM 3D Printing

Although polymers are still the most popular materials used in 3D printing today, many users find themselves limited due to issues with inferior strength and rigidity. Creating composites is a good way to solve these problems, allowing manufacturers to enjoy the benefits of existing plastics while reinforcing them for better performance. In ‘Modelling and path planning for additive manufacturing of continuous fiber composites,’ Suleman Asif, a thesis student at Sabanci University (Instanbul), examines how the addition of continuous fibers can improve fabrication processes with thermoplastic polymers, and add greater strength in mechanical properties.

FDM 3D printing is mainly explored here. Issues with FDM 3D printing and these materials, however, tend to be centered around a lack of strength and inferior surface finish, build times that take too long, and inconvenient post-processing. In previous studies, researchers have used short fibers to strengthen thermoplastics, along with carbon nanotubes and fiber composites. Iron and copper have been added to ABS, and the addition of graphene fibers have been noted to add conductivity. In most cases, tensile strength increased but there were issues with interfacial bonding and porosity.

The use of short fibers and nanofibers has been explored, but Asif explains that such additions are better for applications like aerospace or automotive. With the use of continuous fiber reinforced thermoplastic (CFRPT) composites, though, both ‘ingredients’ are extruded at the same time from one nozzle and show significant improvement and strengthening.

Schematic diagram of 3D printing process with continuous fiber composite

In a different study, researchers loaded both thermoplastic polymer and continuous fibers into the nozzles for FDM printing, with PLA and continuous fibers (some samples consisted of carbon fibers, and some with jute) added separately to another nozzle. While carbon did offer improvements in strength, the jute was not helpful due to ‘degradation of fiber matrix interactions.’ Other tests showed that PLA reinforced with modified carbon showed higher tensile and flexural strength values, demonstrating how powerful ‘preprocessing’ can be.

“Furthermore, a path control method was developed to print complex geometries including hollow-out aerofoil, a unidirectional flat part, and a circular part,” states Asif.

Previous methods also used ABS and carbon fibers, with two different nozzles and the carbon fibers contained in between the upper and bottom layers of the plastic.

“The process worked in such a way that after printing of lower layers of ABS, carbon fibers [were] thermally bonded using a heating pin before the upper layers of ABS were printed. In addition, some samples were also thermally bonded using a microwave to understand the difference between both methods,” said Asif.

In comparison to pure ABS, the results demonstrated significant strengthening in mechanical properties.

“In addition, it was observed that there was not much difference between the results obtained from test specimen thermally bonded by heating pin and microwave oven. So, it was concluded that microwave could be successfully used for thermal bonding between matrix and other fiber layers.”

Researchers also attempted to reinforce PLA with aramid fibers, showing ‘notable enhancement.’ Another test evaluated a raw material of commingled yarn, containing polypropylene (PP):

“A cutting device was also incorporated in the system, and a novel deposition strategy was developed. The results showed a remarkable increase in flexural modulus as compared to pure PP. However, the void presence in the samples was a major issue in the proposed technique.”

Overall, in reviewing the multitude of studies performed, Asif saw potential for improving mechanical strength, but realizes a need for control of the fiber position within the nozzle to reduce adhesion issues.

“The system also needs to be designed in such a way that the fiber lies directly in the center of the nozzle to ensure that the thermoplastic polymer is properly diffused into the fiber from all sides using a coaxial printing process in which more than one materials are extruded simultaneously through a nozzle along a common axis,” says Asif.

The researcher also began examining various path planning processes for acquiring point locations that guide the extruder in depositing materials for filling layers. Asif discovered that most suggested path planning was limiting as it only worked for specific complex structures—some of which would not be appropriate for fabrication of CFRTP composites. Asif suggests that as the algorithms stand currently, there would be problems due to:

  • Under-deposition (typically called underextrusion in FDM)
  • Over-deposition
  • Movement of the extruder to next layer after filling one layer

Coaxial CFRPT printing and composite structure with unit cell

“Hence, there is need of a continuous path planning method that can generate a deposition path without any under-deposition and over-deposition, and with better moving strategy from one layer to the next one,” concludes Asif.

“As a future work, a screw-based mechanism can be designed and developed for 3D printing of CFRTP composites. It would allow the continuous input of thermoplastic pallets and, therefore, parts with large dimensions can be printed. In addition, a topology optimization based algorithm can be developed to control the number of layers containing fibers to produce optimized lightweight parts depending upon specific load applications.”

3D printing offers an infinite amount of opportunity for designers and engineers around the world, immersed in creation—whether that is industrial, artistic, or completely scientific. There is an immense amount of energy centered around this technology that just continues to grow in popularity, and especially as users continue to refine the processes and materials. Composites are often used to strengthen existing methods and materials, whether in making structural parts for aerospace, regulating electrical composites, or studying conductivity and different techniques for fabrication. Find out more about the use of continuous fiber composites here.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Effect of nozzle diameter on the elastic modulus of continuous fiber composites

Implementation of the developed algorithm on a commercial printer (a) Complex concave geometry (b) Fidget spinner

[Source / Images: ‘Modelling and path planning for additive manufacturing of continuous fiber composites’]

Researchers Investigate Applicability of Using 3D Printing for Mass Production of Satellites

[Image: Tomsk Polytechnic University]

As the world works to find faster, more cost-effective ways to get to space, it’s necessary to test out innovative, modern technologies, such as 3D printing, rather than stick to the more conventional but expensive methods. Most current 3D printed thermoplastic satellites are developed as part of academic projects that have a low budget, such as the small Tomsk-TPU-120, and it’s very important to achieve fast, flexible, and automated serial production of reliable satellites for less money.

This is the subject of a paper, titled “Material Characterization of Additively Manufactured PA12 and Design of Multifunctional Satellite Structures,” that was written by a collaborative group of researchers from the the German Aerospace Center (DLR), the Fraunhofer Institute for Manufacturing Engineering and Automation (IPA), and the University of Stuttgart Institute of Space Systems (IRS).

Exploded view of the technology demonstrator with GPS receiver unit.

The abstract reads, “Increasing cost pressure on satellite builders and their suppliers push the motivation to open up for new designs and processes. This paper investigates the applicability of thermoplastic additive manufacturing for mass production of satellites. First, the potential of the cost-effective 3D-printing material Polyamide 12 for space structures is examined. Tests include mechanical and thermal-vacuum properties. In the second step, a multifunctional technology demonstrator is designed and a first qualification test is performed. This demonstrator integrates electronic and thermal management components and shows considerable volume savings. Additionally, the automatable processes used for manufacturing enable further cost reductions in series production.”

The researchers worked to demonstrate the potential of their multifunctional, inexpensive, 3D printed satellite, first by testing how usable PA 12 – an easily processed thermoplastic material – is for mass-produced aerospace applications like satellites, and then by designing and testing a multifunctional demonstrator, which is basically a “sandwich with a 3D-printed honeycomb core.”

“On the one hand, this makes so far unusable design space available,” the researchers said about their demonstrator’s structure. “On the other hand, it can be manufactured by highly automatable and flexible processes, for example by a combination of FFF printing and automated fiber placement (AFP). The demonstrator structure is used to show the possible solutions for integrating functions into the structure by 3D-printing. Furthermore, it demonstrates the potential of multifunctional structures for future satellites. To demonstrate the applied integration concepts, an additional shaker specimen is designed and tested.”

In order to test out both FDM and SLS 3D printing, the team used Stratasys’ carbon fiber-reinforced polymer Nylon 12CF and PA 2200 from EOS for their research, and performed mechanical, outgassing, and thermal vacuum tests on specimens produced in three different orientations in order to measure the Young’s Modulus and tensile strength. In regards to the thermal vacuum cycling test, the mechanical properties of the 3D printed specimens were slightly improved, though elongation at break decreased.

Tensile strength of SLS processed PA 12 and short carbon fiber reinforced FFF
processed PA 12.

“The SLS processed pure PA shows mechanical properties very similar to the manufacturer specifications. It also does not show significant anisotropy with respect to the printing orientation. The carbon fiber reinforced PA, on the other hand, shows a strong anisotropy,” the researchers explained. “Regarding the in plane and sideways specimens, tensile strength is drastically increased by the reinforcement. The standing specimens, on the other hand, show reduced strength. Similar behavior can be observed regarding the Young’s Modulus. Young’s Modulus of the reinforced material, however, is always above the pure PA. Furthermore, it can be noted, that the standard deviation off all tests is less than 5 %.”

Test component for vibration testing; (a) the
printed honeycomb core with integrated electronics; (b) test component mounted on the shaker.

The team concluded that the PA materials do show good potential for inexpensive space applications, though an elaborate test program will be necessary for a true qualification process.

A technology demonstrator, which includes 3D printed cable ducts that integrate coaxial cables and cable bundles, was used to verify both the functionality and feasibility of the 3D printed satellites’ function-integration for electronic, propulsion, and thermal management components, and the researchers determined that, at least in this project, an integration of propulsion components was not feasible.

The researchers produced and submitted a test component, complete with a gyroscope sensor, connector, ultrasonic embedded wire, and other planned functions, to vibration testing. The component was made with a PETG honeycomb core, in order to “ensure that results on the functionality of the concept are available before the optimization of the printing process for the PEI honeycomb core.”

After the vibration test, the team detected no visible damage or change to natural frequency, and could verify the electronic system’s total functionality.

“The technology demonstrator points out the capability of multifunctional sandwich structures for satellites. The concept makes so far unusable design space accessible and can generate considerable volume savings. A First successful vibration test confirms the design,” the team concluded. “A weight reduction, on the other hand, is unlikely since printed honeycomb is not lighter than standard aluminum honeycombs. However, the multifunctional structure offers further cost saving by an automated production suitable for mass production and reduced assembling costs.”

The researchers determined that several additional steps, such as a comprehensive cost analysis, are required in order to present a “holistic evaluation of the presented concept”

Co-authors of the paper are Simon Hümbert, Lukas Gleixner, Emanuel Arce, Patrick Springer, Michael Lengowski, and Isil Sakraker Özmen.

Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

US Army Characterized Continuous 3D Printed Carbon Fiber-Reinforced Thermoplastic Composite Parts

Geometry of Tensile Specimens.

A trio of researchers with the US Army Tank-Automotive Research Development, and Engineering Center (TARDEC) in Michigan recently published a study, titled “Characterization of Continuous Fiber-Reinforced Composite Materials Manufactured Via Fused Filament Fabrication,” that worked to characterize continuous carbon fiber-reinforced thermoplastic composite parts that were 3D printed on a Mark Two 3D printer.

The abstract reads, “The current work has focused on characterizing the tensile performance of continuous fiber reinforced specimens manufactured via Continuous Filament Fabrication (CFF). The specimens were tested in multiple orientations with and without continuous carbon fiber reinforcement. When comparing 0⁰ carbon fiber reinforced specimens to specimens without continuous reinforcement, the average yield strength, tensile strength, and elastic modulus increased by factors of 20X, 15X, and 240X, respectively. When comparing the results for specimens with 90⁰ oriented continuous reinforcement to the 0⁰ specimens, there was a 60% drop in yield strength, 62% drop in tensile strength, and 52% drop in elastic modulus. These results indicated that mechanical performance is reduced significantly when load is applied perpendicular to the fiber orientations. The adhesion between adjacent layers was tested by printed specimens standing vertically on the print bed. These specimens had the lowest strength of all specimens. The authors recommend follow on testing using rectangular specimens with bonded tabs per ASTM D3039-17 to reduced issues with fiber alignment that were encountered with the dog bone specimens.”

As most 3D printed parts are built from the bottom up, it’s not unusual for out-of-plane material properties to be weaker than in-plane ones. When in-plane printing occurs of continuous fibers, the completed parts can have increased stiffness and in-plane strength, but researchers don’t have a clear idea as to how continuous fiber reinforcements affect an as-manufactured part’s mechanical anisotropy.

“In order for design engineers to utilize continuous fiber-reinforced AM parts in structural applications, they will require the mechanical properties of these materials in three dimensions,” the researchers explained.

The researchers used the nylon-based thermoplastic Onyx by Markforged in their study, along with continuous carbon fiber tow coated with a binder material, and 3D printed several test specimens in order to gain a better understanding of how much of an influence the continuous carbon fiber reinforcement would be:

• Group 1: Onyx (in plane, Nylon/Carbon plastic): ID# 1-1, 1-2, 1-3
• Group 2: 0⁰ fibers (in-plane, aligned carbon fibers):: ID# 2-1, 2-2, 2-3
• Group 3: 90⁰ fibers (in-plane, perpendicular to carbon fibers): ID# 3-1, 3-2, 3-3
• Group 4: z direction (out-of plane, perpendicular to carbon fibers): ID# 4-1, 4-2, 4-3

To make analysis easier, the team only tested specimens with unidirectional fiber orientations. The pure Onyx specimens in the first group were 1.8 mm thick and used as a baseline, while the 0° specimens from Group 2 featured two 0.125 mm layers of Onyx on the roof and floor, along with two Onyx layers on the side walls; the rest was filled with carbon fiber that were “oriented longitudinally in the direction of pull for a tensile test.”

“Additional specimens 3-1, 3-2, and 3-3 were printed with fibers oriented perpendicular to the tensile pull direction. These specimens had the same thickness of Onyx on the roof, floor, and walls as the previous set of specimens,” the researchers explained. “It is noteworthy that for these specimens, since fibers were oriented perpendicular to the direction of tensile pull, the print head must turn corners within the gauge section, and therefore, the fiber orientation within the gauge section was not perfectly unidirectional.”

Schematic of specimens on print bed to show specimen placement and fiber orientation (where relevant).

The Group 4 specimens were 3D printed vertically, and were tested for adhesion evaluation between fiber-reinforced layers. Then, the researchers conducted Thermogravimetric Analysis (TGA) and Fourier Transform Infrared (FTIR) Analysis on the Onyx specimens in order to gain a better understanding of the material’s thermal characteristics; tensile testing was also conducted until total specimen failure.

“When comparing 0⁰ carbon fiber reinforced specimens to pure onyx specimens, the mechanical properties increased by orders of magnitude,” the researchers explained. “For example, the average yield strength, tensile strength, and elastic modulus increased by factors of 20X, 15X, and 240X, respectively. When comparing mechanical performance of the fiber-reinforced specimens to the Onyx material, the significant improvement in mechanical performance is consistent with traditional laminated composites, where unidirectional specimens have strength and stiffness orders of magnitude higher than a homogenous epoxy matrix material. When comparing the results for the 90⁰ specimens to the 0⁰ specimens, there was a 60% drop in yield strength, 62% drop in tensile strength, and 52% drop in elastic modulus. These results indicated that mechanical performance is reduced significantly when load is applied perpendicular to the fiber orientations. However, the relative drop in mechanical performance was not as significant as what is observed for many traditional unidirectional composites tested at 90⁰ orientation. The adhesion between adjacent layers was tested by printed specimens standing vertically on the print bed. These specimens had the lowest strength of all specimens.”

Detailed views of fracture surface of specimen 1-1, showing fiber breakage, fiber pullout, and matrix cracking.

The researchers determined that the materials used in this study have a high degree of mechanical anisotropy, and that others need to consider the 3D anisotropic mechanical properties when they are used in structural applications.

In addition, the team also determined that the traditional dog bone-shaped tensile bars they used for the study were not the best choice for specimens manufactured using CFF, mainly because of “the unique fiber placement process and local variations in fiber angle around the curved radii,” and recommend that other researchers use rectangular specimens with bonded tabs, per the ASTM D3039-17 Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials.

Co-authors of the paper are Robert J. Hart, PhD, Evan G. Patton, and Oleg Sapunkov.

Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

3D Printing News Briefs: September 14, 2018

We’re bringing you the latest 3D printing business news in today’s 3D Printing News Briefs, plus a little 3D printed art to round things out. FATHOM is partnering with SOLIDWORKS software reseller GoEngineer, while L’Oréal is working with INITIAL, a Prodways Group company. Kickstarter and Autodesk are releasing a new open source 3D printing test, and 3D LifePrints has renewed its collaboration with the Alder Hey Children’s Hospital. Fargo 3D Printing has formed a new spin-off business, a metal 3D printed parts bureau has purchased an EBAM system from Sciaky, and 3D Systems’ SLA technology is being used to deliver customized dental solutions. Finally, we take a look at some fun and creative 3D printed artwork.

FATHOM and GoEngineer Announce Strategic Partnership

SOLIDWORKS 3D CAD software and Stratasys 3D printer reseller GoEngineer has announced a new strategic agreement with 3D printing company FATHOM. GoEngineer has purchased FATHOM’s 3D printing equipment reseller business, so that FATHOM can focus solely on its digital manufacturing services. Thanks to the agreement, the two partners will be able to scale their respective businesses in different, but significant ways, leveraging their strengths in order to create a large product development ecosystem of hardware, software, engineering, design, manufacturing, and training solutions that customers can use to drive innovation.

Michelle Mihevc, the Co-founder and Principal at FATHOM, said, “It’s exciting for our industry because both FATHOM and GoEngineer are uniquely positioned to meet the ever-increasing demand for advanced tools and services that enhance and accelerate a company’s product development and production processes.”

L’Oréal and INITIAL Increasing Development of 3D Printed Thermoplastic Parts

The cosmetics industry has a constant challenge in quickly marketing new products to meet the many specific demands of customers. That’s why L’Oréal is teaming up with INITIAL, a Prodways Group subsidiary – the two are ramping up development of 3D printed thermoplastic parts. More specifically, INITIAL’s new solution, 3D Molding, uses 3D printing to make plastic injection molds for “final material” parts at less cost and in record time. Recently, L’Oréal needed 14 resin test molds, along with 20 injection molding test runs and several hundred molded parts. By using Prodways’ patented MOVINGLight 3D printing technology and PLASTCure Rigid 10500 resin, the company was able to achieve accurate 3D prints in just two weeks.

“We produce the 3D Printing mould and the final material parts are then directly injection-moulded,” said Yvon Gallet, INITIAL’s Chairman. “With our 3D printing and injection expertise, we were best placed to develop this unique solution. It is aimed at designers in the development phase and complements our traditional machining and injection solutions. It is an innovative alternative that meets the needs of manufacturers, like L’Oréal, that could benefit from this technological advance to reduce their time to market.”

Kickstarter and Autodesk Releasing Open Source 3D Printing Calibration Test

Prints of the test file from Cubibot and Robo printers.

The evidence speaks for itself – Kickstarter is a great place for 3D printing. The popular crowdfunding site requires that 3D printer creators demonstrate the functionality of their systems through various means, but it can be hard to compare the performance of different machines, because not everyone shows off the same test prints, like the 3D Benchy. So Kickstarter is working at Autodesk to address this lack of a common standard for assessing FDM 3D printer performance, and will soon be releasing a new open source 3D printer test for Kickstarter creators, developed by Autodesk research scientist Andreas Bastian.

“We believe this test procedure will support greater transparency in our community,” Zach Dunham wrote in a Kickstarter blog post. “We started with FDM printers because they’re the most common model on Kickstarter. Our goal over time is to expand this calibration test to other printing technologies like stereolithography. Though this test is optional for creators to share on their project pages, electing to do so opens a frank conversation about quality. And backers of any 3D printer project can share images of their own tests by posting them with the hashtag #FDMtest.”

Creators can download the single, consolidated STL file and instructions to test their 3D printers’ alignment, dimensional accuracy, and resolution on Github.

3D LifePrints and Alder Hey Children’s Hospital Renew Collaboration

The Alder Hey Children’s Hospital has signed a long-term collaboration agreement with 3D LifePrints, a UK-based medical 3D printing company and a founding member of the hospital’s Innovation Hub. The company has had an embedded 3D printing facility at the 1,000 square meter underground co-creation space since 2015, and was supported by the hospital for its first two years there, showcasing the impact of its work and establishing its unique 3D printed offerings. Under the agreement, the company will continue supplying the hospital with its specialized 3D printing services.

“I am really proud of this milestone in our ongoing partnership. Incubating a start-up company in a hospital, to the point where they have series A funding, a multi-year contract with the NHS and diffusion to other medical centres around the country is an enormous vindication of what the Innovation hub was set up for,” said Iain Hennessey, Clinical Director and a paediatric surgeon at Alder Hey. “I couldn’t be more pleased to see 3DLP help integrate this emerging technology into clinical practice.”

Fargo 3D Printing Forms 3D Printer Repair Business

North Dakota-based Fargo 3D Printing has formed a new business out of its 3D printer repair segment, called Fargo 3D Printer Repair. While its parent company continues to focus on multiple aspects of the industry, the five-person repair team at the new Fargo 3D Printer Repair can devote 100% of its time to providing 3D printer repair and service to individuals, schools, OEMs, and businesses. The new spin-off company currently provides production-scale warranty servicing, maintenance, and repair services for multiple OEM 3D printing companies across North America; service and repair requests can be made through an intuitive form on its website.

“We don’t sell any 3D printers ourselves, so we are able to remain brand impartial when recommending and performing 3D printer repairs,” said John Olhoft, the CEO of Fargo 3D Printer Repair, who started working in the original shop as a repair technician. “Original Equipment Manufacturers like that they can trust us to provide high quality repairs with a quick turnaround, and not push a competing brand on their customers.”

Sciaky Providing EBAM System to Metal 3D Printing Bureau

Metal 3D printing solutions provider Sciaky will provide one of its Electron Beam Additive Manufacturing (EBAM) systems to Michigan-based FAMAero (Future Additive Manufacturing in Aerospace), a privately-owned metal 3D printed parts bureau. According to Sciaky, this custom EBAM system will be the largest production metal 3D printer in the world, with a 146″ x 62″ 62″ nominal part envelope that will be able to produce metal parts over 12 feet in length. FAMAero will use the massive new EBAM system to provide metal 3D printing services to customers in the aerospace, defense, oil & gas, and sea exploration industries.

Don Doyle, President of FAMAero, said, “FAMAero is entering the market as the first private, dedicated parts bureau in North America for large-scale 3D printed metal parts. Our Factory as a Service concept, combined with Sciaky’s industry-leading EBAM® technology, will provide manufacturers a new avenue to significantly slash time and cost on the production of critical parts, while offering the largest build platform and selection of exotic metals to choose from in the 3D parts service market.”

Creating Customized Dental Solutions with 3D Systems’ SLA 3D Printing

In order to make over 320,000 invisible dental aligners in a single day, Align Technology uses SLA 3D printing from 3D Systems. The company’s technology allows Align to create the unique aligner forms so that they are customized to each individual patient’s dental data. So far, Align has treated nearly 6 million patients, but using 3D printing technology is helping the growth of its business accelerate.

“What makes Align’s mass customization so unique is not only are we producing millions of parts every month, but each one of these parts that we produce is unique,” said Srini Kaza, the Vice President of Advanced Technology for Align Technology. “And this is really, as far as I know, the only true example of mass production using 3D printing.”

Ben Fearnley Uses SLA 3D Printing to Bring Artwork to Life

Sculptmojis

SLA 3D printing isn’t just good for use in dental applications, however. Ben Fearnley, a designer, illustrator, and 3D artist based out of New York City, uses the technology to, as he told 3DPrint.com, “bring my work to life from the 3D world to the real world.”

One interesting piece of 3D printed art Fearnley creates is Good Vibes Only Typography – script style typography lettering sculptures modeled in Cinema 4D and 3D printed on his Form 2. But my personal favorite are his Sculptmojis, which look pretty much exactly how they sound. These pieces, which are a combination of traditional sculpture art forms and modern emojis, originally began as a digital art project, and have now been brought to amusing, quirky life through 3D printing. You can purchase Fearnley’s unique 3D printed artwork here.

Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

Colorado-Based AMIDE Alliance Focused on Workforce Development and Creating Sustainable 3D Printing Thermoplastics

It seems these days that Colorado is the place to be in the 3D printing industry. Home to the ADAPT Consortium and 3D Systems’ Littleton Healthcare Technology Center, along with Aleph Objects and its LulzBot 3D printers, the state has had its fair share of innovations in the medical and educational fields. We’ve got more news coming out of the Centennial State this week, as Vartega, which produces recycled carbon fiber from scrap material generated in aerospace, automotive, sporting goods, and wind energy manufacturing, and the Colorado Cleantech Industries Association (CCIA) have teamed up with several academic and industry partners to form an alliance centered around additive manufacturing and sustainable thermoplastics.

The Advanced Materials and Additive Manufacturing Infrastructure Development and Education (AMIDE) Alliance is the direct result of a $500,000 Advanced Industries Accelerator (AIA) Collaborative Infrastructure Grant from the Colorado Office of Economic Development and International Trade (OEDIT). The funding from this grant will support the development of at least three separate innovation centers in the state, which will focus on creating and applying 3D printing materials, like fiber-reinforced thermoplastics.

[Image: Vartega]

Katie Woslager, Senior Manager, Advanced Industries, Colorado OEDIT, said, “This was an extremely competitive grant cycle, but the review committee and the Economic Development Commission recognized the value that Vartega, CCIA, and the other project partners could bring to the state through this investment in an advanced materials and additive manufacturing ecosystem.”

Members of the AMIDE Alliance will be represented by a seven-person governance board that’s made up of academic and industry partners; CCIA will oversee the board’s establishment. Founding partners include Vartega, CCIA, Colorado State University (CSU) EWI, and The 3D Printing Store. Additional support for both the alliance and the grant proposal came from the following:

Colorado manufacturers AMP Industrial, the Crestridge Group, Oribi Manufacturing, and Steelhead Composites, which all currently have new products in development with advanced materials and manufacturing methods like 3D printed carbon fiber thermoplastics, also provided support.

“There was so much great work happening in Colorado around the adoption and acceleration of 3D printing, but we kept running into the same problems sourcing and developing new materials and identifying local expertise for these applications. As we recognized this gap in the supply chain and workforce, we were able to work with our customers and partners to put together a vision of what a vertically integrated supply chain would look like,” said Vartega CEO Andrew Maxey. “We’re excited to be part of the newly formed AMIDE Alliance to close this gap and increase innovation in this growing and important area of manufacturing.”

Vartega makes custom 3D printing and injection molding materials by combining its recycled carbon fiber with thermoplastics. By participating in the alliance, the company will be making capital equipment investments that will help to grow the state’s production of custom thermoplastic formulations.


The overall goal of the AMIDE Alliance, which will close a major gap in Colorado’s materials supply chain by providing critical development resources for AM thermoplastics, is to develop a materials development and testing ecosystem by investing in resources and equipment. The ecosystem will make it possible to increase advanced 3D printing materials development, as well as training the next generation of skilled manufacturing workers. The alliance will accomplish its goals by opening innovation centers in collaboration with CSU, the Colorado School of Mines, and Vartega.

“Advanced materials and additive manufacturing are impacting just about every industry right now,” said Shelly Curtiss, CCIA Executive Director. “We see a huge opportunity to leverage these new developments throughout the cleantech sector for the benefit of our members who are focused on renewables, energy efficiency, clean water, oil and gas, mining and transportation.”

The CCIA will administer the grand funds for the innovation centers, which will be home to programs for educating and training new students, technicians, and professionals. The centers will also have the necessary equipment to help mature new additive manufacturing technologies and materials. Additionally, EWI will support materials development by offering advanced nondestructive evaluation, modeling and inspection services to support the ongoing new materials development.

CSU’s innovation center will be at the university’s Composite Materials, Manufacture and Structures (CMMS) Laboratory, and will include the installation of a six-axis robotic system for the direct manufacture of continuous fiber-reinforced thermoplastic composites.

The center at the Colorado School of Mines, which will be home to an HP Jet Fusion 580 3D printer that will evaluate and characterize fiber-reinforced polymer powders being developed by project partners, will be located in the school’s Interdisciplinary Advanced Manufacturing Teaching Lab. The final innovation center, which will house extrusion equipment meant for developing fiber-reinforced thermoplastics for 3D printing applications, will be located at an unknown industry partner’s facility.

Another objective of the new AMIDE Alliance is workforce development, and Front Range Community College, Colorado School of Mines, IACMI, and ACMA will support these efforts by creating a curriculum centring around closing the skills gap for composites and 3D printing.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

[Source: CompositesWorld]