Polbionica Could Become the Next Success Story in Organ Bioprinting

Last year, a scientific team in Warsaw, Poland, bioprinted the world’s first prototype of a bionic pancreas with a vascular system. Led by clinical transplantation expert and inventor, Michał Wszoła, the specialists seek to introduce 3D bioprinting of the bionic pancreas to clinical practices worldwide in just over three years. The work, conducted at Polbionica, a spin-off company from the Foundation of Research and Science Development, will bring to market the research to 3D bioprint scaffolds using live pancreatic islands or insulin-producing cells to create a bionic pancreas, like the bioinks, bioreactor and the g-code files necessary to print bionic pancreas.

With more than 40 million people suffering from type I diabetes worldwide, this project holds a lot of promise. In Europe alone, seven million people are afflicted with the disease, with 700,000 of them undergoing serious complications.

The statistics alone offer a troubling overall pan of the disease. Even more so because, as Wszoła suggested in an interview with 3DPrint.com, hypoglycemia unawareness is a life-threatening complication that causes sudden death and is one of the major problems for type I diabetes; and the only method leading to a complete cure is a pancreas or pancreatic islet transplantation. But less than 200 pancreatic transplantations are carried out annually in Europe, which means that hundreds of people die while waiting for a transplant.

Polbionica is working to develop the key building blocks that support the development of the first bionic pancreas suitable for transplantation: bioink A for bioprinting bionic pancreas, bioink B for bioprinting vasculature, a novel bioreactor for growing organs, and a g-code file with specific bioprinting commands.

The company developed its own bioinks for this project and for bioprinting other organs of the body, while another bioink was used in 3D bioprinting of vessels with endothelial cells. Moreover, to carry out their research, they used Cellink‘s BioX bioprinter.

Bioreactor (Image: Polbionica)

According to Wszoła, the organ based on bioprinted 3D cell-laden bioinks, functional vessels, and pancreatic islets would restore the body’s ability to regulate blood sugar levels and revolutionize the treatment of diabetes.

For now, the scientific team has the ability to bioprint a living organ of 3x5x3.5 centimeters, which consists of more than 600,000 islets equivalent that are retrieved from the donor and considered to be the suitable amount to cure a person with diabetes.

“Our next step is to replace the pancreatic islets with stem cell-derived alpha and beta cells. With this approach, the patient would not have to wait for donor cells since the pluripotent stem cells being used are derived from their own tissues,” indicated Wszoła, who is also a transplant and general surgeon. “So far, studies on animals proved that the use of established products was safe.”

Scientists at work at the lab (Image: Polbionica)

“In order to reverse diabetes in humans, we need to have about one billion stem cells because efficacy to transform them into insulin-producing cells varies between 15% and 40%. I don’t believe that we will be able to solve the problem of brittle diabetes with transplantation of stem cell-derived islets (alpha and beta cells mixed into 3D organoids) alone,” he stated. “We should remember the lesson learned from pancreatic islet transplantation, whether we use original islets derived from a donor pancreas or produced from a patients’ stem cells, it will not solve the problem. In my opinion, we have to give those new islets a special nest, which involves an extracellular matrix through our bioinks and vessels with oxygen supply.”
Researchers at Polbionica have recently performed studies on mice proving that the bioprinted pancreatic petals using bioinks were well tolerated by the animals without any extended foreign body reaction to them. In April they will move onto studies with pigs and are planning studies with bigger animals together with Artur Kaminski, head of the Department of Transplantology and Central Tissue Bank at Warsaw Medical University.
“We expect clinical trials will be performed in Warsaw with the cooperation of our partners MediSpace Medical Centre and Warsaw Medical University. However, to begin this stage, we still have to overcome a few hurdles, like product stability, animal trials, approval from authorities as well as funding. If all that happens, just a few patients will be involved in the first stage of the clinical trial, mainly those who cannot receive any other treatment, and we have to remember that for the majority of people with diabetes, intensive insulin intake with CGM control is sufficient,” described Wszoła.
In 2012, diabetes expenses around the world accounted for 11% of the total health care expenditure. The Polish state needs close to one billion euros every year for diabetes. According to Wszoła, their potential competition, working on developing artificial pancreas is only offering a bridge treatment. Polbionica wants to go beyond that: their bionic pancreas could be a living organ that is a breakthrough in the treatment of type 1 diabetes.
He, along with his team hopes that their final product and know-how will solve problems related to the shortage of organs, postoperative complications and immunosuppression after transplantation, and above all, will be a chance to completely cure type 1 diabetes.
Moreover, the positive development of the organ production technology would significantly affect the general health of society, largely eliminating the problem of diseases associated with end-stage organ failure, reducing treatment costs, the need for social care, and professional absenteeism, while improving the quality of life of patients, and speeding up the process of introducing new drugs into the market.
“Bioprinting can have a great impact on the development of medicine, however, like every technology, it also has some limitations. We must remember that we are handling living cells, and the stress and other conditions which cells undergo during the bioprinting process has an influence on its function. Besides, we still have to work on better materials to build organs, materials that will keep cells together and allow them to function properly, materials with special strength, viscosity, and elascity,” claimed Wszoła.
The technology established by Polbionica even could let researchers bioprint vascularized organ models with cancer tumors to conduct research on the efficacy of newly implemented drugs. It may even revolutionize drug implementation routes and help diminish the need to perform animal studies.
“The field of drug testing can highly benefit from bioprinitng, with our technology we are now able to bioprint different pathologic models, such as pancreatic and liver cancers, melanomas, large bowel and breast cancer. We can also mimic microenvironments within tumors, print vessels and observe them in the lab when we add drugs and perform different analysis. In short, we can give a lot of answers and have an insight on drug development like never before.”

Polbionica is implementing the project as part of the Prevention Practises and Treatment of Civilization Diseases (STRATEGMED) program, funded by the Polish National Center for Research and Development. With experts in the fields of biotechnology, chemistry, mechatronics, bioprinting, and medicine, the team is moving forward quite rapidly in an area that to date has no cure, new technology can help patients reduce the burden of managing the condition, especially with regards to measuring their blood sugar levels and administering insulin, however, breakthroughs are not common. And although still in animal trials, the team is looking forward to the day when they will bioprint a bionic pancreas with living cells and tissues using their own bioinks.

The post Polbionica Could Become the Next Success Story in Organ Bioprinting appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Interview with Tamer Mohamed of Aspect Biosystems on Advancing Tissue Therapeutics

While attending The University of British Columbia (UBC), Tamer Mohamed, along with fellow graduate student Simon Beyer, began working at the Walus Laboratory on the development of a novel microfluidics-based bioprinting platform that could be used to fabricate human tissue constructs. One of the main reasons for their innovation was to potentially replace animal models in drug testing, which are costly, time-consuming and can have poor predictive accuracy. A few years went by and the two went on to win a MEMSCAP Design Award for their pioneering creation (the Lab-on-a-Printer Bioprinter) which would later become the basis for their startup, Aspect Biosystems. The UBC spinoff company was founded by Mohamed, Beyer, Konrad Walus (associate professor at UBC and head of the Walus Lab), and Sam Wadsworth, to turn their idea into a commercial product. The company quickly began providing pharmaceutical companies with high-efficacy tissue models that better mimic in vivo conditions, looking to improve the predictive accuracy of the front end drug discovery process. 3DPrint.com spoke to Mohamed to learn about his successful transition from graduate student to CEO of Aspect Biosystems.

Cofounders of Aspect Biosystems Tamer Mohamed and Simon Beyer at the Walus Lab when they were grad students

What was the inspiration behind Aspect Biosystems?

Aspect Biosystems was established with the vision of leveraging advancements in biology, microfluidics, and 3D printing to create technology-enabled therapeutics that will ultimately have a meaningful impact on patients. We are marrying our deep knowledge of human biology with cutting-edge 3D printing technology to create. Our story started almost a decade ago so we’ve spent years developing our foundational microfluidic bioprinting technology and are now applying our platform technology to create functional tissues, both internally through our proprietary programs, and with our partners around the world.

Can you tell me about the company’s growth model?

Platform technologies often have the advantage of flexibility, as they could allow you to pursue multiple applications. This also presents a challenge though, in that it is easy to become unfocused. At Aspect, we’ve built a strategy that allows us to both focus and diversify. Internally, we are advancing proprietary tissue programs in regenerative medicine. But we also recognize that to achieve our vision of enabling human tissues on demand, we can’t work alone. By providing access to our technology to partners around the world, we are able to create a network effect and tap into specific domain expertise. This allows our technology to be applied to a wide range of research purposes externally, without detracting resources or focus from our specific tissue programs internally. We collaborate with academia and industry on specific applications that allow us to fuel our growth and help generate revenue and a robust innovation pipeline.

How much has Aspect grown?

Aspect is the first and only company to leverage microfluidics to create functional tissue, and we are proud to pioneer this approach. Academically, we were one of the first groups in the world to print cells while at the UBC, so we see ourselves as pioneers in both bioprinting and platforms for creating tissue therapeutics. Five years ago, we had four full-time employees. Today we have a team of over 40 people focused on our mission and over 20 collaborations globally. We have attracted smart venture capital, partnered with some of the biggest names in our industry, and made major breakthroughs in applying our technology to create functional tissues. It is a great sign that, year-after-year, we continue to raise the bar. It is an even better sign that I believe the best is yet to come.

The Aspect Biosystem team celebrating Canada Day

What will the applications of this technology be in pharmaceutical research and drug trials?

I believe the opportunity with the highest value and best poised to make a significant impact on the pharmaceutical space is disease modeling. Using 3D bioprinting technology allows us to model diseases in a human-relevant system that would otherwise be difficult to study in animals or less sophisticated in vitro models. For example, working with GSK and Merck, we are leveraging our microfluidic 3D bioprinting platform to create physiologically-relevant 3D tissues containing patient-derived cells to assess the efficacy of anti-cancer drugs and to predict a patient’s response to treatment. This partnered program could unlock the discovery of novel therapeutic targets and the development of immuno-oncology therapeutics.

Would you tell us more about Aspect’s current and future work? 

Our current internal programs are focused on orthopedic and metabolic diseases. On the orthopedic side, we are leveraging our deep knowledge of musculoskeletal biology and biomaterials to create knee meniscal replacements. On the metabolic side, we are focused on liver tissue and creating a therapeutic tissue for Type 1 diabetes. Externally, our partners around the world are using our 3D bioprinting technology to advance research in the brain, lungs, heart, pancreas, and kidneys, just to name a few. By being both focused internally and diversified externally, we are building a robust pipeline for the future. Our end goal is to enable the creation of human tissues on demand, and we know that we can’t do it alone. Our network of academic researchers and industry partners are key to making our vision a reality.

How fast is the technology moving towards a future with lab-made functional organs?

Tamer Mohamed

We are focused on identifying specific diseases or biological malfunction inside the body and rationally designing advanced tissue therapeutics that address these areas of unmet medical need. So, while we may not actually be making something that looks exactly like an organ, we are recreating the biological function that has been lost or damaged to address the problem. For example, someone with Type 1 diabetes has a pancreas that is unable to perform the vital function of creating insulin. We don’t necessarily need to engineer something for them that looks exactly like a pancreas – instead, we are creating an implantable therapeutic tissue that replaces function that has been lost. In this case, that function is sensing glucose levels in the blood and biologically releasing insulin in response. This is an example of one of our internal programs – a bioengineered pancreatic tissue therapeutic that restores a critical function that been lost due to an autoimmune disease.

Is Canada a great place to develop a bioprinting company? 

Canada has a long and rich history in the field of regenerative medicine, going back to the discovery of stem cells in the 1960s. As a country, we have an opportunity to be a global leader in the field. At Aspect, we are proud to be part of these efforts. We are in ongoing discussions with different government groups as to how we can play a role in helping to lead the charge and the government has been embracing that. We have seen significant federal and provincial support for innovation and public/private partnerships, which definitely help stimulate growth in the field.

How disruptive is the technology you created?

By combining microfluidics with 3D printing, we are disrupting tissue engineering. We are able to programmatically process multiple cells and biologically-relevant materials in high-throughput to rationally design and produce functional tissues. We are constantly integrating new microfluidic processing units within our printhead technology and leveraging continuous advancements in the “lab-on-a-chip” space. With our microfluidic technology, we are generating a large amount of data. By using this data and machine learning, we are improving the quality and automation of the biomanufacturing process.

Ultimately, bioprinting is only as good as our understanding of biology – and our understanding of biology is growing wider and deeper. We are combining state-of-the-art stem cell science with our microfluidic 3D printing technology to create tissue therapeutics. For example, we are combining insulin-secreting cells derived from human embryonic stem cells (hESCs) with our printing technology to create therapeutic tissues for patients with Type 1 diabetes.

[Images: Aspect Biosystems and Tamer Mohamed]

The post Interview with Tamer Mohamed of Aspect Biosystems on Advancing Tissue Therapeutics appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.