Microsoft Community Pitch-Off: Turning Plastic Waste Into Educational Supplies with 3D Printing

People across the globe are harnessing the power of new technologies in a search for sustainable, low-cost, and localized solutions to life that will eventually deal with some of Earth’s most imminent problems, like pandemics, global warming, and plastics contamination. Particularly concerned about the future of sustainable education, three Arizona State University (ASU) students won $6,000 in startup funds for their new circular economy project through the Microsoft Community Impact Pitch-Off in late November. Hoping to meet the needs of underserved high school students in the Phoenix metro area, Brian Boyle, Matthew Burmeister and Andrew John De Los Santos (three master’s students from the School of Sustainability) created The Circular Classroom. It is an embodiment of their belief that technology could help transform hard-to-recycle plastic waste into low-cost 3D printed educational materials. Additionally, the project truly touches on all three pillars of sustainability: environmental, economic and social.

Graphic by The Circular Classroom team

According to the trio, the Circular Classroom aims to address a myriad of community needs in the Phoenix area, where many local high schools suffer from a lack of funding, which creates barriers to technology and learning opportunities. Meanwhile, schools and society at large are creating plastic waste streams that are not easily recyclable. For example, they were concerned with plastic bottle caps made out of polypropylene which does not biodegrade, meaning it would take hundreds of years for them to decompose in a landfill, and if not recycled, these caps can turn up in the water and pose a danger to marine life because of their small size. In the United States, 2.5 million plastic bottles are thrown away every hour, and each one of them has a cap on, which is another reason why this project is so important.

The winners of the challenge claim that now students will have the opportunity to be introduced to a circular economy model where they can produce 3D printing educational materials from what would otherwise be a plastic waste. In doing so, it generates an opportunity to increase high school graduation rates by keeping students engaged in classrooms, reduce the school budget on 3D printing filament by providing them with the technology to generate their own filament from plastic waste, and build capacity which can create pathways to employment or higher education by training students on Computer-Aided Design (CAD).

“Our excitement and motivation for The Circular Classroom stems from the opportunity to introduce a circular economy education model into local high schools,” said Boyle, who is pursuing a Masters degree on Sustainability Solutions at ASU. “We are unaware of schools currently providing this learning opportunity to students, yet feel that it is imperative to give exposure to the next generation and empower students by building capacity to address contemporary challenges surrounding waste. Furthermore, by prioritizing underserved high schools, we aim to provide technological aptitude and learning opportunities for students to persist in high school graduation and beyond.”

They have come up with a process that is fun and simple. First off, they need to collect bottle caps at schools, so they plan to begin by identifying a local high school to establish a partnership, select interested teachers, engage students, and then set up collection sites in the classrooms. Then the plastic waste is transformed into 3D printing filament, and finally, they can 3D print new designs for educational supplies using the new 3D printers that some local high schools have received through a grant.

Boyle, Burmeister and De Los Santos took home $1,000 in prize money and $5,000 in implementation funds to start putting their plan into action. They will use the funds to purchase technology that local high schools can use to shred plastic into plastic flakes and then extrude them into spools for their 3D printers (they are currently considering buying ReDeTec’s Protocycler+). Boyle estimates that with the funding and right high school partnership opportunities, they could implement and pilot for The Circular Classroom in up to two local schools. In addition to Microsoft, the team is partnering with GreenLight Solutions, an organization that will provide ASU student support for training teachers on how to use the shredder/grinder and 3D printer.

Two of the three team members receive the $6,000 check

The idea originally came from a video of a volunteer-based 3D printing operation using plastic bottle caps in Bali, Indonesia, and from one of the team member’s experiences attending public schools in the Phoenix metro area. Now it has led the three bright minds to become winners of the Microsoft Community Pitch-Off, an event co-sponsored by Microsoft and Net Impact (a nonprofit organization for students and professionals interested in using business skills in support of various social and environmental causes) that gives students the opportunity to propose a solution that addresses a problem in their local community. Both judges from Microsoft and the local community were in charge of evaluating the proposals.

Microsoft is on point with its environmental sustainability efforts and is committed to addressing important challenges for communities where their data centers operate, so through community partnerships, the multinational company creates shared value while also advancing social opportunity, enhancing economic growth, and supporting environmental sustainability. To enter the program, the students had to present their idea for how to best leverage Microsoft’s initiatives and local community priorities to address an important issue in their area.

The platform for this particular education model is based around 3D printing and resource recovery, giving a chance to Microsoft volunteers to provide their technical expertise to students. These volunteers could help mentor students on how to use the 3D CAD software necessary to 3D print. They can also take any collected bottle caps to donate as 3D printing feedstock at the schools. While non-profit Green Light Solutions has undergraduate and graduate consultants that could guide teachers on the operations of the shredder/grinder and 3D printer.

Students don’t only get the chance to explore their local area to assess local challenges or create strategies to address them, this opportunity also gives them a greater understanding of collaborations and local resources, as well as demonstrable experience in taking an idea and turning it into a fully developed project. How would you use 3D printing to help your local community?

[Image credit: ASU, Net Impact and Microsoft]

The post Microsoft Community Pitch-Off: Turning Plastic Waste Into Educational Supplies with 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing & the Circular Economy Part 3: Injection Molding

Injection Molding Diagram

As referred to in our previous article, injection molding refers to when plastic pellets are pressed into a mold cavity and under pressure and heat become a certain shape. Injection molding produces low scrap rates relative to other traditional manufacturing processes like CNC machining which cut away substantial percentages of an original plastic block or sheet. This however can be a negative relative to additive manufacturing processes like 3D printing that have even lower scrap rates. Overall this is a method that does not produce a lot of scrap through initial production. The downsides that are associated with injection molding include high costs in terms of startup, molding, and tooling. We will compare this manufacturing technique in terms of sustainability vs additive manufacturing.

Transportation waste is not as large of a concern when it comes to injection molding. It is important to have one’s material ready before they are to place it into an injection molding apparatus. The layout of one’s factory or fabrication environment is more critical towards this type of waste. Similar thoughts can be arrived at in terms of additive manufacturing. One typically must feed an additive manufacturing device with material, and transportation of materials is reliant upon the layout of one’s factory or fabrication environment.

Mold Cavitation

Inventory waste is something to keep in mind for this type of manufacturing. There is a high production rate that occurs with an injection molding system. This rate is reliant on two factors:

  1. Cycle time
  2. Mold Cavitation

Cycle time refers to how long it takes to complete a function, job, or task from start to finish. Cycle time is used in differentiating total duration of a process from its run time. Mold cavitation refers to the creation of an empty space that forms the basis of our molding process. So depending on the size of a mold, the cycle time shall vary. One can create a large amount of product fairly quickly with an injection mold system. This can lead to extra inventory than needed if organizations are freely creating objects for a 3rd party. This could be a case where a supplier is just making bulk production for when a 3rd party company needs more product at a later date. Additive manufacturing production rate is based on cycle time and the size of the object to be printed. This causes less inventory waste as there is a lot of time associated with printing a lot of materials at the moment.

Cycle Time

Waiting is a large differentiator in terms of injection molding vs additive manufacturing. 3D Printing technology has vastly increased over the years in terms of efficiency and speed. However, processes such as injection molding, have well established production rates that have been sharpened through decades of use.

Over-processing is not as much of a concern for both of these methods of manufacturing. Injection molding and 3D printing are both great at building quick prototypes of designs. I would argue that the biggest pain point is under processing. Post processing is a big issue when it comes to 3D printers. An injection molded part does have issues in terms of post processing, but not as glaring as most 3D Printing systems at the moment. This then leads to more time and energy spent on production.

Plastic and the Circular Economy

Finally, we will discuss the ability to recycle and reuse products that have been created through injection molding. Re-melting & melt filtration are required for the recycling of injection molded parts. Proper re-melting of the recycled material occurs under very low shear rates in the extruder and at the lower end of the melting temperature. Shear rate refers to the rate at which a progressive shearing deformation is applied to some material. The shearing deformation refers to when there is a deformation of a material substance in which parallel internal surfaces slide past one another. The objective is to gently re-melt the original material, which ensures maintenance of the material properties. A proper melt filtration process will remove any contaminants in the melt like cellulose, metal or wood pieces. Filtration refers to any of various mechanical, physical or biological operations that separates solids from fluids (liquids or gases) by adding a medium through which only the fluid can pass.  State of the art melt filtration is fully automated and does not require manual operation steps. The melt is filtered continuously at low pressure and can remove particles as small as 70 microns in diameter.  Similar processes can be applied to 3D printing materials as well.

Overproduction is a key point in terms of sustainability within both of these processes. It is important to consider the high startup costs associated with injection molding. It typically requires a lot of money to build objects through injection molding because it is a process that creates objects in large quantities. This can lead to having to hold various products within an inventory for an extended period of time. This is waste as these products may have been created without a definite need for them in the present. 3D Printing takes more time to create products, but they can be done with an intent to make a specific amount for an order instead of printing extra for use later.

Throughout this series, it is important to recognize that 3D Printing is a great solution. We still have to be critical of it as a viable option in traditional manufacturing settings. We must have a critical eye in terms of waste reduction. This also must include waste reduction in terms of faulty processes. This will allow us to have an interesting examination of the circular economy.

3D Printing & the Circular Economy Part 1

Circular vs Linear Economy

A circular economy is an economic system aimed at minimizing waste and making the most of resources. In a circular system resource input and waste, emissions, and energy leakage are minimized by slowing, closing, and narrowing energy and material loops; this can be achieved through long-lasting design, maintenance, repair, reuse, re-manufacturing, refurbishing, and recycling. This regenerative approach is in contrast to the traditional linear economy, which has a ‘take, make, dispose’ model of production. Proponents of the circular economy suggest that a sustainable world does not mean a drop in the quality of life for consumers, and can be achieved without loss of revenue or extra costs for manufacturers. The argument is that circular business models can be as profitable as linear models, allowing us to keep enjoying similar products and services.

The economy we operate within currently is a mixture of two economies: linear economy and the reuse economy. The linear economy refers to how raw materials are used to make a product, and after its use any waste (e.g. packaging) is thrown away. The reuse economy refers to how In an economy based on recycling, materials are reused. For example, waste glass is used to make new glass and waste paper is used to make new paper. A linear and reuse economy still has an end product of non reusable waste within product creation. A circular economy would be oriented towards eliminating non reusable waste.

Linear to Circular Economy

According to the report What a Waste 2.0,  the world is on a trajectory where waste generation will drastically outpace population growth by more than double by 2050. Although we are seeing improvements and innovations in solid waste management globally, it is a complex issue and one that we need to take urgent action on. Solid waste management affects everyone; however, those most affected by the negative impacts of poorly managed waste are largely society’s most vulnerable—losing their lives and homes from landslides of waste dumps, working in unsafe waste-picking conditions, and suffering profound health repercussions.

The world generates 2.01 billion tonnes of municipal solid waste annually, with at least 33 percent of that—extremely conservatively—not managed in an environmentally safe manner. Worldwide, waste generated per person per day averages 0.74 kilogram but ranges widely, from 0.11 to 4.54 kilograms. Though they only account for 16 percent of the world’s population, high-income countries generate about 34 percent, or 683 million tonnes, of the world’s waste.

It is important to focus on 3D Printing and the additive manufacturing industry as a whole. This is the future of manufacturing in a sense. Major manufacturing companies are responsible for the majority of our waste production within the world. A major concern for companies is indeed the bottom line. But it can be argued by proponents of the circular economy that a company may gain more from altruistic behavior oriented towards the environment. Additive manufacturing is a process that already is minimizing waste compared to previous methods of production that large manufacturers are used to. What are companies and organizations doing worldwide for this?

Additive Manufacturing and Waste

3D printing and additive manufacturing methods help to minimize excess waste in production, but they are still operating within a linear mindset of production. This refers to how we create a product through design and then send it out for use by an individual. After this product has done its use it may then be terminated, and could lead to similar problems of previous manufacturing methods. It also may be worse as rapid creation of parts can lead to larger aggregates of waste overall in the future. 3D printing and additive manufacturing allow users and organizations to have localized production, This allows for better control over waste steams and for lower C02. Waste reduction occurs naturally as there is transparency with local production And quality control and quick turnover are also important considerations when using additive manufacturing as the basis of a circular economy. With 3D printing, in some cases, we can recycle a number of existing materials into 3D printed things.

I shall be investigating waste and the ideals of the circular economy. I will try to shed light on larger companies and organizations that contribute to waste largely, as well as organizations that are doing their best to be sustainable and lead towards a more circular economy.