CHU J750 trial shows 3D printed models can increase patient understanding by up to 50%

The Centre Hospitalier Universitaire de Bordeaux (CHU de Bordeaux) has become one of the first hospitals in the world to add a Stratasys J750 to its facilities. Used by the surgical team at CHU de Bordeaux’s Department of Urology and Kidney Transplantation the system is being applied to fabricate full color, detailed organ models. The overall […]

Korean Startup USEED to Launch Voice Activated AI Driven 3D Printer for Kids

USEED is a Korean startup headed by Jung Soo Lim. The eight-person company got its start making 3D printer kits, and specializes in the education market. The firm makes robotics kits, Prusa i3 type 3D printers, its own Creator 3D printer, and even an SMT placement machine. The company designs, develops and manufactures its machines in Korea and has been expanding steadily. Now they aim to undertake a bit of a quantum leap. The firm has been designing and testing its Thingi for months now. The Thingi is one of the, if not the most, adorable 3D printers I’ve ever seen. Specially designed to be accessible, safe and easy to use for children, the Thingi is meant to let kids easily 3D print. The 125 x 140 x 190 build volume machine can print over WiFi, has a 260C capable extruder, and can print up to 60 mm/s. The printer has a new trick up its sleeve, however. The voice-activated AI-powered printer can listen to kids’ commands and prints accordingly. If the voice activation works well and the company can accordingly automate the entire printing workflow, it would make 3D printing much more accessible and easier. Potentially it would make 3D printing much easier for all of us as well. It was refreshing to finally see something innovative happening again in desktop 3D printing. The company is testing the printer now and aims to go to crowdfunding in a few months. We interviewed CEO Jung Soo Lim to find out more.

What is USEED?

Our company manufactures 3D printers and coding education kits for kids. We have 8 employees. Our company was founded to provide IT seeds that can be easily implemented if anyone has an idea.

Therefore, we are currently supplying educational 3D printers and related education services to Korean educational institutions. The big plan that our company has is to launch a voice driven AI printer. In Korea, 3D printing is not being popularized fast enough. We analyzed the of this causes through our experiences in selling technical products. There was pressure to learn 3D modeling in order to use 3D printers. Also, children between the ages of 5 and 10 want to use 3D printers. However, these purchases were not made because children had to use computers independently. With that background, our company developed the Thingi early last year and is currently preparing to mass-produce it. Also, to cover the costs of molds, we are looking for funds through crowdfunding platforms.

Our company will complete 3D printers and content that children can use for making their own toys. We hope to have is available this year at Christmas.

Why a voice-activated 3D printer? 

I want kids to have fun while using 3D printers to make the things that they want. If a child wants to make a Hello Kitty patterned cup, the kid talks to our 3Dprinter. The Thingi recommends the best model file and will then print it out. We will simplify this process so that children can use 3D printers in a fun way. I think that if many people enjoy and use our products, the limitations of technology will be overcome.

The post Korean Startup USEED to Launch Voice Activated AI Driven 3D Printer for Kids appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Bralco and GE Additive Sign MoU for Increased Development of 3D Printed Magnetic Components in APAC Region

Singapore-based metal Bralco Advanced Materials, a research, product development, and commercialization company specializing in metal 3D printing, just announced that it has signed a Memorandum of Understanding (MoU) with GE Additive in order to speed up the development and manufacturing processes for 3D printed magnets and electromagnetic components in the Asia Pacific (APAC) region.

Bralco often collaborates with academic research institution Nanyang Technological University of Singapore (NTU). The company works to leverage the power of 3D printing to provide quicker, less expensive solutions for developing, prototyping, and customized mass manufacturing complex electromagnetic components for customers in the aerospace, energy, e-mobility, industrial automation/rotating devices, and robotics fields.

“Bralco is honored to be working with GE Additive in this very exciting space of digital industry 4.0. This collaboration is a major milestone for us, coming at a time when the demand for soft and hard magnets is growing rapidly due to their use in every aspect of modern life be it health care, mobility, personal communication devices, renewable energy or robotics,” said Amit Nanavati, the founder and CEO of Bralco Advanced Materials.

“Moreover, the adoption of additive manufacturing technology will save millions of dollars in material cost due to the additive nature of this technology compared to the traditional manufacturing processes.”

L-R: Dr. Ho Chaw Sing, Managing Director, National Additive Manufacturing Innovation Cluster, H.E.; Mr. Javed Ashraf, High Commissioner of India; Mr. Amit Nanavati, Founder & CEO of Bralco Advanced Materials Pte. Ltd.; Mr. Tan Czek Haan, General Manager, GE Additive; Mr. Wouter Van Wersch, President & CEO, GE ASEAN & NZ; Mr. Francis Chan, Trade Commissioner of Canada [Image: Bralco]

We often see 3D printed magnetic components used for applications in the aerospace, automotive, energy industrial automation, medical, and robotics fields.

Combining its own expertise in magnetic materials with GE Additive’s 3D printing and powder manufacturing technology know-how, Bralco will be able to increase the speed of development for both hard and soft magnets and components with complex shapes, high mechanical strength, differentiated magnetic fields, high frequencies and torque conditions, and able to operate at elevated temperatures. These kinds of magnetic components for perfect for demanding applications, like electric vehicles’ traction motors.

“We are very excited to set up our first R&D Lab and Product Innovation Centre in Singapore, fully equipped with GE Additive machine and a state-of-the-art powder and built parts testing and characterisation lab,” Nanavati continued.

“We hope these steps will add to the growing importance of Singapore as a global center for the additive manufacturing industry and as one of the most attractive locations to set up a high tech R&D facility – an achievement largely due to the vision of the Singapore government in early adoption of Industry 4.0 and Additive Manufacturing and the untiring efforts of its nodal agencies National Additive Manufacturing Innovation Cluster (NAMIC), Enterprise Singapore (ESG) and Enterprise Development Board (EDB).

The signed MoU will give Bralco access to GE Additive’s AP&C (Advanced Powders & Coatings) materials division, as well as its engineering consultancy team Addworks – enabling the company to decrease both the product development and commercialization cycles. Additionally, the MoU looks at the future potential of appointing Bralco an APAC service provider for 3D printing parts and components, based on its own magnetic material compositions, with GE Additive machines and powder materials.

“We, at Bralco, are very excited to be right at the front of this leap into the digital future,” Nanavati concluded. “We look forward to exploring ground breaking discoveries through our work with GE Additive in this next chapter of our journey.”

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post Bralco and GE Additive Sign MoU for Increased Development of 3D Printed Magnetic Components in APAC Region appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Dynamic Materials Allow For Light-sensitive Support Scaffolds

Support structures can be a major hassle for anyone who has tried their hand at 3D printing. Although recent innovations like dissolvable materials have made the job easier, there’s always room for better. That’s why researchers from many different universities have collaborated to develop a new type of photosensitive dynamic material that alters its polymer […]

The post Dynamic Materials Allow For Light-sensitive Support Scaffolds appeared first on 3D Printing.

Bloodhound LSR featuring 3D printed parts relaunches with 500 mph target

The Bloodhound LSR, a British supersonic land vehicle featuring 3D printed parts from UK-based additive manufacturing specialist Renishaw, is set to carry out its first run on a custom dry lake bed race track at Hakskeen Pan in the Kalahari Desert in October 2019. It has the target of reaching 500 mph, which is a […]

Taiwan: Researchers Rely on 3D Printed Models & Surgical Guides for Pediatric Orthopedic Surgery

Medical researchers and orthopedic surgeons in Taiwan at Kaohsiung Veterans General Hospital continue to explore better ways to heal bones and manage defects, with their findings outlined in the recently published ‘Anatomic three-dimensional model-assisted surgical planning for treatment of pediatric hip dislocation due to osteomyelitis.’

While bone defects are already a challenge to manage, obviously the problem is compounded in children, with smaller bones being even more difficult to repair in surgery. Currently, there are few options for a good device meant for small bone repair during pediatric osteotomies—making it difficult for surgeons around the world to correct both subluxated hip joints and deformed femurs in children.

The authors (and surgeons) performed corrective surgery on a four-year-old boy with a post-osteomyelitis deformity. In preparing for the surgery, they relied on a 3D printed model of the bone for studying the condition, surgery and preparing the site for the appropriate implant. Because this type of surgery requires ‘meticulous planning,’ the doctors required both 2D and 3D assistance, in the respective forms of axial images and 3D virtual models of patient anatomies.

Radiographs taken before corrective surgery. (a) Triple film showing the proximal femur deformity with osseous recovery. Three-dimensional computed tomography image: (b) anteroposterior and (c) lateral views

As the surgeons examined the patient and reviewed the CT, they noticed a genu valgus deformity (more commonly known as a ‘knock-knee’ condition). Another corrective surgery was scheduled, with 3D CT imaging examined for bone tissue analysis. The surgeons realized, however, that the procedure would be more successful overall with a life-size 3D model. They were able to outline a patient-specific plan, also bringing in additional assistance from an orthopedic consulting firm focused around 3D orthopedics and ‘patient-specific instrumentation.’

Customized-to-patient three-dimensionally–printed guide. (a) The patient-specific guide for our patient. (b) Two resecting osteotomies can achieve optimal joint congruency and varus angle correction. (c) Correcting the femoral rotation would result in joint translation in both the coronal and axial planes

What was also very valuable to the surgery—and the outcome for the little boy involved—was that the surgeons could use the model to practice on, exercising ‘simulations of possible osteotomy options.’

“After a few osteotomy options had been analyzed, one osteotomy cut was made vertically to the femoral shaft on the subtrochanteric area, and another was made on the middle third of the femur to correct the bowing deformity of the midshaft,” stated the researchers. “Correction of femoral rotation can result in either joint translation in the coronal and axial planes or difficulty with fixation, both of which could be prevented with the help of the 3D model in the present case.”

The results of the surgeries were successful, with the patient able to stretch and begin other mobilization activity after four months.

Postoperative (a) anteroposterior and (b) lateral views. Fifteen-month postoperative (c) anteroposterior and (d) lateral views

“The result of our case suggests that the use of 3D printing models improves the postoperative performance as shown by both physical function and radiological evidence,” stated the authors in the concluding discussion.

“The use of a 3D-printed patient-specific guide is a safe, modern, affordable, and promising method that offers advantages including a shorter surgical time, optimally positioned implant placement, acceptable alignment, and a probable lower rate of complications. The utilization of 3D-printed models for skeletal deformity surgery, especially complex and difficult pediatric surgery, provides superior precision and foreseeably better outcomes. We strongly believe that with the promotion of 3D printing methodology, models for preoperative planning may soon become the gold standard for pediatric deformity correction surgery.”

3D printing continues to make impacts in the area of healing bones, regeneration and planning for complex surgeries with a range of medical devices and models. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Triple film at 2-year postoperative follow-up showing no significant leg length discrepancy (<0.5 cm)

[Source / Images: ‘Anatomic three-dimensional model-assisted surgical planning for treatment of pediatric hip dislocation due to osteomyelitis’]

The post Taiwan: Researchers Rely on 3D Printed Models & Surgical Guides for Pediatric Orthopedic Surgery appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Sandia National Laboratories 3D Printing Tamper-Indicating Enclosures

Scientists at Sandia National Laboratories are researching improved methods of monitoring and inspecting enclosures, with new systems that visualize molecular changes, alerting users to an issue with a specific area that may have been breached. Their findings are outlined in ‘Tamper-Indicating Enclosures with Visually Obvious Tamper Response,’

With the use of progressive ‘bleeding materials,’ Sandia National Laboratories is creating methods for inspectors to realize penetration of material simply by looking at a tamper-indicating enclosure (TIE). Today, most traditional methods rely on high-maintenance, time-consuming examinations by inspectors. They may also use cameras, or other equipment or approaches.

General schematic of R&D concept. A two-phase material consisting of a sensing polymer and transition-metal encapsulated microspheres are 3D-printed or spray-coated on to a unique geometry. Upon tampering, the microspheres rupture and the two sensor components interact to form an irreversible visible color change.

Securing whole volumes includes:

  • Enclosures that are non-standard in size/shape.
  • Enclosures that may be inspectorate- or facility-owned.
  • Tamper attempts that are detectable but difficult or timely for an inspector to locate.
  • The requirement for solutions that are robust regarding reliability and environment (including facility handling).
  • The need for solutions that prevent adversaries from repairing penetrations.

In creating a new method, the scientists explored the idea of 3D printing microspheres that would become discolored upon a breach. They also explored a spray coating formulation, with typical TIEs falling into three categories of use:

  • Materials the inspector visually examines
  • Active electronics methods/materials
  • Externally deployed indicators of penetration or access to materials

“The limitations to these three categories are the subjective and time-consuming process of visually inspecting surfaces, the inability to deploy an active approach in some situations because of batteries or because of environmental conditions or facility requirements, and the limited materials able to be analyzed by eddy current and potential inability to bring external equipment into a facility. Further, some approaches rely more on post-mortem analysis rather than in-situ verification,” said the researchers.

The researchers envision a 3D printed material adding substantially to the TIE toolbox—currently ‘limited in options.’ It will also be available for customized inspection equipment, as well as spray coated equipment. The team expects 3D printed prototypes to be subjected to a range of environmental assessments, along with testing regarding durability and vulnerability levels.

Urea Formamide (UF) performed the best in terms of materials performance. The researchers noted details such as a ‘robust’ synthetic method, narrow size distribution, uniform particle properties, along with good compatibility of mobile phase materials which the team had already tested.

 “The anticipated benefits of this work are passive, flexible, scalable, cost-effective TIEs with obvious and robust responses to tamper attempts,” explain the authors in their abstract.

Viable applications for this technique could include:

  • Custom TIEs
  • Spray coating on items or structures
  • Spray coating of circuit boards
  • 3D printed seal bodies

3D printing has opened a wealth of knowledge about the countless materials available to scientists today seeking to improve industrial and other applications. Monitoring and sensing devices are becoming extremely popular in the 3D realm also, allowing for better performance of machines and higher quality prototypes and parts. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Qualitative scoping study results on 3d transition metal color changes with the addition of organic sensor in methanol. All metal solutions get significantly darker, and many have a dramatic color change.

 

[Source / Images: ‘Tamper-Indicating Enclosures with Visually Obvious Tamper Response’]

The post Sandia National Laboratories 3D Printing Tamper-Indicating Enclosures appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

10 startups announced for the 2019 STANLEY + Techstars Additive Manufacturing Accelerator

Ten companies have been announced for the 2019 STANLEY+Techstars Additive Manufacturing Accelerator program based in Hartford, Connecticut.   Run by Techstars, a Colorado-based venture capital firm, and multinational tool manufacturer Stanley Black & Decker, this program supports and mentors startups with the aim of forwarding new technologies onto the market.  Claudia Reuter, Managing Director at Techstars, […]

Q&A: Cheryl MacLeod, Global Head of 3D Fusion Science and Materials Expansion at HP

A veteran of the 2D printing industry, Cheryl MacLeod has been leading various R&D projects at HP for over 25 years. In 2017, around the time the company announced extensions to its Multi Jet Fusion line, MacLeod made the move to the company’s 3D printing business, and now serves as Global Head of 3D Fusion Science […]

Wikifactory’s Docubot Challenge Creates a Hardware Solution for Documentation

International startup Wikifactory, established in Hong Kong last June, is a social platform for collaborative product development. Co-founded by four makers and counting 3DPrint.com Editor-in-Chief Joris Peels until recently as a member of its advisory board, Wikifactory also has locations in Madrid and Shenzhen, and is dedicated to makers and DIY projects. It’s an all-in-one workspace designed for open source communities to help connect product developers to useful tools, such as 3D printing.

Recently, the platform launched the Docubot Challenge to help inaugurate the first Distributed Hardware Hackathon in the world. The global open source community was charged with finding a hardware solution for an issue that every maker faces – documentation.

This is a very prevalent issue in the maker community in terms of open knowledge for the purposes of digital fabrication. Documentation makes it possible for community members to gain the necessary knowledge and skills to further contribute to an ever-growing base of information. But just because it’s useful doesn’t mean it’s easy – while documenting fabrication methods may be a necessary evil, it can be a painstaking and tedious process that can slip through the cracks if you’re not meticulous about updating your work.

“Every product developer faces the task of having to document their work, but it’s a painful process. When your hands are full with what you are doing, it’s hard to take a step back and jot down the steps. That’s why documentation is often written after the process has already been completed, so there will always be missing photos or information,” the challenge states.

“We should strive to make the process of documentation easier, because Documentation in itself is an amazing thing. As a resource, it helps a broader community learn the skills and acquire the knowledge to contribute to a growing open source knowledge base.”

The Wikifactory team really wanted to turn the first edition of its Docubot Challenge into a distributed event; it is, after all, tagged as being “designed for makers, by makers.” Due to support from makerspaces around the world – specifically Pumping Station One in Chicago, Makerspace Madrid, and TroubleMaker in Shenzhen, China – this hope became a reality. Wikifactory is a great tool when organizing maker community events like workshops and hackathons, as it makes it simple to bring teams together online so they can contribute before, and even after, the event.

The goal of the challenge was to, according to WikiFactory, “accelerate a solution to a common problem faced by product developers” by collaboratively building a real-time documentation assistant that will take photos and videos on command, and could even convert speech to text. As someone who spends plenty of time transcribing recorded interviews, I want to know when this documentation assistant will be commercially available!

“With a hardware solution, doing documentation can be made into a more interactive, assisted process which can help accelerate engagement and collaboration in open source design and hardware,” the challenge stated.

The Docubot Challenge was originally instigated by Wikifactory members Gianluca Pugliese and Kevin Cheng. The participants were connected through Wikifactory to host project events in their own cities, engage with other teams around the world, and accept feedback and advice from other problem solvers. While it was definitely a learning experience, Docubot is now officially an open source hardware initiative, and great progress has already been made.


The Shenzhen Team developed an app that converts speech to text, the Madrid Team created a fun game that helps makers beat laziness and get documenting, and the Chicago Team created a button that signals a phone to start recording voice messages as well as pictures,” Wikifactory wrote.

The worldwide maker community is invited to get involved and contribute to the Docubot initiative. Whether you’re working on design ideas, developing the app and OS, or the hardware integration, the collaborative project needs your help in further extending the ideas by the team members who originally started it.

“With interactive and intercity sessions, participants will get to build relationships with creative problem solvers from around the world. It is an opportunity to apply skills in digital fabrication machines like 3D printing, hardware, electronics, programming and robotics for a relevant cause.”

Learn more about the Docubot Challenge here.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

[Images: Wikifactory]

The post Wikifactory’s Docubot Challenge Creates a Hardware Solution for Documentation appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.