Portugal: Cork 3D Printing Composite Shows Promise for Enhancing Polyurethane Foams

In the paper “3D printed cork / polyurethane composite foams,” authors N. Gama, A. Ferreira, and A. Barros-Timmons delve further into the world of enhanced materials for better performance in thermal applications. Here, they explore the use of cork in creating a 3D printing composite for PU foams—often used in insulation, including the ‘sprayed in place’ foam, popular due to:

  • Low conductivity
  • High mechanical stability
  • Good chemical stability

Because of the low thermal conductivity, the authors state that PU foams are more likely to offer strength in required applications and can be controlled for specific functionality by adjusting how pores are filled via reactants—making such products useful in the aerospace and automotive industries for both sound and impact absorption.

Materials like cork can also be used to further reduce thermal conductivity and act as a damping agent, and have been found effective in previous studies in liquified form too. With the advent of 3D printing and additive manufacturing, a variety of new geometries can be produced, and in many new materials—including a wide range of composites today. TPU (Pearlthane 11H94) was used in this study, with cork powder residue. The composite material was mixed to create a filament then used to fabricate the PU forms with an Anycubic Chiron 3D printer.

3D sketch of the PU foam.

The researchers found the cork to have a ‘pronounced effect’ on the filament; however, while increasing the amount of cork residue, they noticed it caused the filament to become ‘rougher,’ suggesting ‘insufficient impregnation’ of the cork.

“Nonetheless, voids were not observed, which are known to be starting points of material failure under stress, indicating good wettability of the cork by the TPU,” stated the researchers.

The cork also decreases the strength of tensile properties in the 3D printed foam samples, with the authors reporting a reduction of up to 15 percent. While they point out that this does ‘suggest lower bond performance,’ interlayer bonding may not be compromised as the foams are more vulnerable to compression stress. Because of that, the team does not expect maximum tension and elongation at break to cause any defect in the performance of the 3D printed foam samples.

“From the results obtained, it was observed that the presence of cork affects the morphology of the ensuing foams, leading to rougher skeletons as well as to the presence of voids in the struts of the resulting PU foams. Due to the presence of cork as well as to the presence of voids, the resulting foams presented lower density, lower thermal conductivity and proved to be more flexible. Moreover, the addition of cork did not affect the thermal stability of the composites and despite of affecting the layer-to-layer bonding performance may not compromise its application,” concluded the researchers.

“Besides their thermal insulation properties, their elastomeric behavior suggests that the 3D printed foams produced may be used as thermal insulation, sound absorption or as damping materials. Moreover, progresses in the 3D printing technology, may increase the added value of the 3D printed foams for example in medical applications such as wound care or surgical aids. Yet, thorough compatibility tests would be required.”

SEM images of PU foam-0cork (a); PU foam-1cork (b), PU foam-3cork (c) and PU foam-5cork (d).

You might be surprised to find out how often foam is the center of 3D printing research and innovation, from ink to aerospace applications for NASA, and even syntactic filaments designed to create foam for marine use. Find out more about composites in foam fabrication here. Discuss this article and other 3D printing topics at 3DPrintBoard.com.

Images of PU foam-0cork (a); PU foam-1cork (b), PU foam-3cork (c) and PU foam-5cork (d).

[Source / Images: 3D printed cork / polyurethane composite foams]

BigRep’s Banyan Eco Wall Mimics Natural Water Drainage

3D printer manufacturer BigRep have developed a prototype wall with an embedded supply and drainage system. Their Banyan Eco Wall takes inspiration from nature, utilising the complex multi-functional structure of plant life. The design showcases the abilities of generative design and 3D printing in the creation of sustainable green walls. Although 3D printed eco walls and […]

The post BigRep’s Banyan Eco Wall Mimics Natural Water Drainage appeared first on 3D Printing.

Burloak Technologies Opens 65,000 Square Foot Additive Manufacturing Centre of Excellence

Burloak Technologies, a division of Samuel, Son & Co. and one of Canada’s leading providers of advanced additive manufacturing services, has announced that their Additive Manufacturing Centre of Excellence in Oakville, Ontario is now fully operational. Not to be confused with HP’s new 150,000 square-foot 3D Printing and Digital Manufacturing Center of Excellence or the […]

The post Burloak Technologies Opens 65,000 Square Foot Additive Manufacturing Centre of Excellence appeared first on 3D Printing.

CRP Technology and PoliMi 3D team up to 3D print wind tunnel model parts

Award winning 3D materials manufacturer CRP Technology has collaborated with the Department of Aerospace Science and Technology of the Politecnico di Milano (PoliMi) to construct wind tunnel aero-elastic demonstrators. Founded in 1970, CRP Technology together with CRP USA, CRP Meccanica, and electric motorbike manufacturer, Energica, comprise the CRP Group Network. The original company began as […]

AddLab becomes K3D-AddFab, increases production for 3D printed aerospace and high-tech parts

AddLab a pilot factory for 3D printing metal components in Eindhoven, will now operate under the name K3D-AddFab. The center is jointly run by four Dutch companies precision manufacturer KMWE, mechatronics supplier NTS-Group, metal manufacturer Machinefabriek De Valkwill, and metal 3D printing service K3D. It was also announced that K3D-AddFab, will increase the production of metal 3D printed parts […]

Pioneering the Additive Manufacturing Revolution in the Aerospace and Avionics fields

CRP Technology has been among the first to import additive manufacturing technology to Europe, and has developed the Windform® TOP-LINE family of composite materials.

They are some of the international market’s most high-performance Carbon- or Glass- composite laser sintering materials, in use for more than 20 years in the aerospace, UAV, defense, avionics markets for the most demanding applications.

Therefore it is unquestionable that CRP Technology has been changing the rules of additive manufacturing, smashing records and setting models nowadays that apply to 3D printing with polyamide materials.

A clear sign of this continued performance is Windform® FR1 (FR stands for Flame Retardant), the new-born material from the Windform® TOP-LINE family of composite materials for additive manufacturing.

It is intended to become a game-changing material in the field of 3D printing for its uniqueness: it is the first Flame Retardant (UL 94 V-0 rated) material for additive manufacturing which is carbon fiber reinforced.

It is also passed the FAR 25.853 flammability tests successfully as well as the 45° Bunsen burner test.

“Only a few weeks from the launch of a new range of Windform® materials, the P-LINE for HSS technology,” commented Franco Cevolini, VP and CTO at CRP Technology. “I’m very proud to introduce a new revolutionary composite material from the Windform® TOP-LINE family of materials for laser sintering technology. Our aim is to constantly produce technological breakthroughs. With Windform® FR1 we can steer you toward the proper solution for your projects.”

Franco Cevolini. Ph©Elisabetta Baracchi

“I’m firmly committed to solving one of the most important challenges, maybe the main one, for people who work in the 3D printing field “– added Cevolini – “the ability to ensure the performance and reliability of the AM process and materials. At CRP Technology and CRP USA we work extremely hard to control our process. We do testing on both equipment and materials on a regular basis. This kind of effort lets our customers understand that we are not just cranking out parts like a traditional rapid prototyping service bureau.”

Someone could say this technology and materials are expensive, but it is not correct especially in a long-term perspective. It is proven that using professional 3D printing and Windform® composite materials produce substantial cost savings considering the whole process performance.

“With professional 3D printing and Windform®” commented Cevolini – “the manufacturing process, from the design phase to product development, is optimized. Quality is not a cost, it is an investment”.

Aerospace and Avionics application spotlight

Not only the new-born Windform® FR1 material, but all the Windform® materials allow manufacturing of functional prototypes as well as finished, high-performance functional parts.

Windform® materials from the TOP-LINE range of composite materials have some unique properties. Let’s consider, for example, Windform® XT 2.0: resistance to UV, low outgassing and its lightweight versus strength are some of the key characteristics that allow for it to replace a traditional material like Aluminium in some applications.”

The freedom of additive manufacturing allows the creation of more complex geometry, especially in the aerospace field.

TuPOD deployed © JAXA NASA

Recently CRP USA , the U.S.-based 3D printing company partnered with CRP Technology, contributed to mark a new milestone in the small satellites arena with TuPOD, the innovative cubesat manufactured via laser sintering in Windform® XT 2.0. This ground breaking project was carried out by GAUSS, Teton Aerospace, Morehead State University. From a distance, the TuPOD looks relatively simple, but upon closer examination there are some areas in the design that would have been more difficult to accomplish with traditional manufacturing methods. 

The significant performance of Windform® is creating new ways to invent and manufacture, while it is proving to be a viable option for the innovative design and high-performance features associated with advanced Aerospace applications.

“Leveraging 3D printing and Windform® composite materials properly has been a key advantage that our customers in the Space Industry have quickly adapted to. Whether it is entire structures or smaller components, we have been amazed at the creativity. The time to produce the parts is often dramatically less than through traditional methods.”

Progress has been also made in the avionics field: recently Windform® composite materials combined with laser sintering technology, have been used to manufacture some external parts of the wind tunnel model in 1:8.5 scale for the prototype of the new Leonardo Helicopter Division tiltrotor AW609, for a series of dedicated low-speed wind tunnel tests. (Designed, manufactured and assembled by Metaltech S.r.l., under supervision of Leonardo HD).

Tiltrotor-AW609. Courtesy Leonardo HD

These 3D printed parts highlight the perfect union between advanced 3D printing technology and Windform® high-performance composite materials. Thanks to the Windform® materials, it was possible to complete and test the model in the wind tunnel within a very short time, with excellent results and with high-performing mechanical and aerodynamic properties.

The 3D printed parts have been created by CRP Technology using Windform® XT 2.0 are nose and cockpit, rear fuselage, nacelles, external fuel tanks and fairings.

CRP USA also contributed to demonstrate the effectiveness of additive manufacturing and use of Windform® as a structural material for avionics applications: on behalf of Leonardo HD and under the control of ATI Co. – Newport News (the model supplier), CRP USA manufactured via laser sintering and Windform, the external fuselage and additional components for a new 1:6 model.

It was created for a high-speed wind tunnel test campaign at NASA Ames Unitary Plan 11 by 11 foot transonic wind tunnel, as part of a thorough review of aircraft behavior. 

The model scale selected was 1:6 of the full scale in order to be fully compatible within the given constraints of the physical size of the NASA 11 by 11 tunnel.

The architecture of the new 1:6 model for transonic high-speed tests was very similar to the AW609 model but with some improvements in order to have the remote controls for the flaperons and elevator surfaces.

For the first time the Windform® XT 2.0 Carbon-composite material was used for an high speed model tested at NASA AMES facility.

Windform® TOP-LINE family of high-performance composite materials have passed NASA and European Space Agency (ESA) outgassing screening, suitable for aerospace applications: 

  • Windform® XT 2.0, Windform® SP both carbon-composite materials; Windform® LX 3.0, Windform® GT both glass-composite materials: have been tested in accordance to the ASTM E-595-07 standard, and passed with no issues
  • Windform® XT 2.0 carbon-composite material: has been passed ESA screening outgassing tests in accordance with ESA TEC-QTE 7171 (based on ECSS-Q-ST-70-02C); it has been K-rated according to Japan Aerospace Exploration Agency (JAXA) outgassing test.

In addition:

Rolls Royce Chooses SLM Solutions’ SLM 500 Quad-Laser for Aerospace Additive Manufacturing Processes

Rolls Royce continues their foray into additive manufacturing on an even larger scale, selecting the SLM Solutions’ SLM®500 quad-laser machine, furthering progressive production; however, these parts are not meant for their cars, but instead will aid in fabrication of aerospace components—an industry where they also lead in manufacturing of quality engines common to Airbus and Boeing.

Headquartered in Germany (with other offices around the globe), SLM Solutions Group AG is a manufacturer of AM technology and multi-laser machines. Their expertise in multi-laser optics, along with a patented bi-directional recoating mechanism offers significant credibility to their brand, with the SLM 500—on the market since 2013—boasting four lasers enabling build rates up to 171 cm3.

“The SLM®500 serves as the flagship metal 3D printer for high volume processes while offering automated, closed-loop material supply, recovery and sieving to minimize operator handling of metal powder,” states the company in a recent press release sent to 3DPrint.com.

The SLM®500 build chamber

While Rolls Royce is certainly no stranger to precision in parts, as well as accommodating safety measures, building aerospace components lends an even higher level of challenge in production due to stringent certifications required for every part.

“Rolls-Royce is very advanced in additive layer manufacturing, with a state-of-the-art approach and expert team working on extremely complex metal additive manufacturing solutions. SLM Solutions recognized the need at Rolls-Royce for a supplier to support with equipment qualification,” said Meddah Hadjar, CEO of SLM Solutions Group AG.

“We work closely to develop products that meet their needs to assure aerospace certified part quality levels. This way the Rolls-Royce team can document their expertise and control of the systems adhering to strict regulations and keep their ambitious and innovative additive production plans on track.”

While Rolls-Royce has complex manufacturing needs, along with a checklist for industry aerospace regulations and inspections to be considered, they also must meet the obvious demands for productivity. With the four laser SLM 500, and the control of inert gas flow, they can keep a constantly controlled work atmosphere in the build chamber, with gas flow and control mechanisms perfected.

” We are delighted to be working with SLM Solutions and using their quad-laser machines. Rolls-Royce continues to develop our additive layer manufacturing capability to ensure we are at the forefront of advanced manufacturing,” said Neil Mantle, Head of Additive Layer Manufacturing at Rolls-Royce. “We knew that transferring our expertise and knowledge gained from single laser machines to multi-laser platforms would require a close working relationship and SLM Solutions have provided this.”

Rolls-Royce is now part of the SLM Solutions beta customer program too, as they all look forward to new machine accessories in the future.

Embracing additive manufacturing quietly for decades, the automotive industry continues to roll out impressive new prototypes and parts—from BMW to Ford to a range of racing cars—and even the top of the line at Rolls Royce, with their Phantom bearing over 10,000 3D printed parts, and future plans for their luxury vehicles, such as personalized exteriors. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: SLM Solutions]

See the 3D printed BANYAN ECO WALL, BigRep and NOWLAB’s latest large format innovation

 large-format 3D printer manufacturer BigRep has unveiled a fully 3D printed wall with inbuilt water and drainage system. Developed by the company’s award-winning NOWLAB initiative the BANYAN ECO WALL has been created to demonstrate the bounds of design exclusive to this technology. Stephan Beyer, CEO of BigRep, said, “Our BANYAN ECO WALL is adopting nature’s principle […]

Is plasma the missing link in assembling 3D printed parts?

Creabis, a Kirchheim-based 3D printing service bureau, is using Relyon Plasma’s piezobrush PZ2, a handheld cold plasma device, to bond 3D printed parts.  The piezobrush PZ2 uses plasma to activate surface particles of a substance which strengthens the adhesion between joined parts. With a strong bond between assembled 3D printed parts, it is possible to manufacture large-sized sturdy […]

Interview with Len Wagner of Deer Valley Ventures

Len Wanger

Len Wagner

Len Wagner is Chief Technology Manager at Impossible Objects, Inc. He is also currently a Managing Partner at Deer Valley Ventures, investing in early stage advanced and additive manufacturing companies. He gives good insight into both the technical world as well as the financial realm within additive manufacturing. He also is involved as a chairman of the FabLab Association for the Museum of Science and Industry.

What has lead you to this point?

I started my career in computer graphics. I was focused on the software that produced the images. I did a lot of graphics simulations. This lead to CAD and finite element analysis. In 1992 I was a researcher and was able to work on one of the first 3D printers. I was able to help researchers to visualize their data. Later on I was able to work on the financial side as I run a fund. I sit between these two things. I am also involved in a lot of STEM education as well and it has been important for me to give back. It took a while, but I figured out I had a skill of explaining the technical side to the business side. It took a while to realize that was important.

What kind of developments have recently disrupted this marketplace?

We have seen a big movement in the industry. We have moved from prototyping to manufacturing. We are at the very beginning stages of this. Customers and vendors are doing things to make this transition. It is a very different set of requirements from making prototypes to actual production levels. We at Impossible Objects are somewhat betting on this. The word disruption is funny. It is a slow methodical process to move in this field. Manufacturing moves very conservatively and methodically. More parts are moving toward digital manufacturing and additive manufacturing. If you talk to a large aircraft manufacturer like Boeing, a modern aircraft has hundreds of parts. A small percentage of these parts are continuously being made with additive manufacturing. Good steady progress is important. The full life cycle of material properties is important to understand.

Can you explain your work and day to day operations for Impossible Objects?

I run the engineering group as the Chief Technology Manager. The main function we have is designing and building new machines. We want to improve the process with new materials and machinery. We work on process development and I also help to make an automated machine that may assist with these types of process developments. I also work with customers for them to work with machines.

Impossible Objects

You have an interesting mix of skills in terms of venture capital as well as engineering. Can you give some insight into how you operate within both worlds?

It really comes down to building teams and having communication skills. It is important to build the communication skills. It’s important to translate the cultures. Engineers have a certain way of speaking and it is important to be able to explain things in terms of the business side and that realm of communication.

I feel the future of the additive sector lies within the precision of 3 dimensional imaging techniques. What are your thoughts on this?

I think it is important to measure the quality control of a product. 3D optical scanning at a cheap rate is not really on the market just yet and I think there is a great market need for it. Why is there not an open source package that is oriented towards this?

Fab Lab Association

People compare the additive manufacturing industry to the early days of computers. Do you agree or disagree and why?

I largely agree but it is not a perfect analogy. I agree that the transformation for being able to do manufacturing cheaper and faster at a small scale is similar to how programming costs went down extremely over time. Authoring is hard to do in 3D. Thinking in 3D is difficult. I also do not think there is a Moore’s law of Additive Manufacturing. I do think the ability to change the manufacturing sector is large.

Museum of Science and Industry Fab Lab

Can you explain some of the work you do as chairman of the FabLab Association for the Museum of Science and Industry?

With the FabLab Network, I am an advisor to the board of the MIT FabLab Network. The Museum of Science and Industry has a FabLab and it is great to expose people to one aspect of the maker movement. Schools and organizations are allowed some exposure and experience to this environment. There is an educational aspect of the Museum as well. This also invigorates people. It sparks the interest in people as well. I help to raise funds and I advise the lab. The equipment has become relatively cheap so schools can have access to these items. It is important for us to teach educators how to use these types of machines. It is important to give people access as well as give people mentorship.

What are some key points that companies should be focusing on in terms of the additive manufacturing strategies?

We must focus on material properties. It also is important to know the speed of prints. It is also important to have the economics down pat as well. Lastly, I think these machines have to work within your larger manufacturing environments. We are adding a camera to slice every image of all levels that have been printed. It is also to take advantage of digital manufacturing and mass customization.