Will GEFERTEC’s 3DMP Metal 3D Printing Process Make 3D Printing Large Metal Structures Affordable?

German company GEFERTEC’s 3DMP process is a very interesting metal 3D printing technology. We profiled the company and its wire fed 3D printing technology a few months ago. Rather than focus on inexpensive parts (inkjet) or fine mechanical small parts (DMLS, SLM) their wire arc based technology is focused on large 3D printed metal parts. How large? Well, how about 1 meter or five-meter parts made out of various metals? What’s more, the industrial firm is committed to making its process affordable by opening up the process to let people use traditional low-cost wire arc feedstock. By positioning the technology in this way the company is trailblazing into the construction of airframes, wing spars and large structural components in aircraft.

Welding based technologies such as Trumpf’s, Sciaky‘s and Optomec as well as the various other Directed Energy Deposition technologies are much less well known than DMLS/SLM/LPBF powder bed fusion technologies. Developed during the cold war they were extensively used on the Shuttle and other space programs before people decided to do something brilliant and make a wire arc or other welding technology go up a layer. They often are used for defense-related applications such as satellite, missile or experimental aircraft structural components. Indeed a number of these technologies were specifically developed for such defense applications.

At the moment aerospace companies are very publicly focusing on tiny components. This means that they can gain from the advantages of 3D printing with these small components quickly while qualifying technologies. In my mind, the huge leap in design capabilities will also happen once full airframes, rockets, warheads and other large several meters in size components are qualified for aviation. At the moment this is being done on the down-low but the move towards civil aviation is happening behind the scenes. We now can see the market split into three in what I’ve termed the Goldilocks Moment. Essentially we’re seeing distinct segments in low cost, fine mechanical and large metal printing technologies emerge. One of the companies vying for a prize of the large-scale printing of metal parts for aerospace and other applications is the German firm GEFERTEC. We asked Tobias Röhrich the CEO of GEFERTEC to tell us about his firm and the 3DMP technology.

What is 3DMP? What kind of parts are ideal for the technology?

“3DMP stands for 3D Metal Print. It is the most economic additive manufacturing process for big metal part based on wire and arc. There are a lot of different interesting application scenarios for 3DMP. Once the parts must be made from metal, 3DMP is an economically and technically viable option for parts of a certain size, which are expensive or difficult to manufacture with conventional methods. In case you are looking at substituting milling it is of interest when expensive or difficult to machine materials are being processed. Especially when you look at parts with high cutting volume. 3DMP can be also an economically and logistically alternative to casting or forging in particular in case of low quantity lots, where you could save on the tooling cost and gain delivery time advantages.

“Furthermore, there is a list of functional and structural benefits of parts made by 3DMP that would be unthinkable using conventional methods. It is possible to generate inner structures like closed hollow parts, cooling channels etc.. For many applications for example in tool manufacturing, it is of great interest of combining different material layers in one part, like having a mild steel body and a hardfacing on top.”

What sizes can you print parts? 

“3DMP, especially comparing with laser and powder, is a very economical 3D printing process for bigger parts. The maximum size of the built structure reaches in the standard machines almost 3m³. Besides that the process is scalable, meaning it is technically possible and economically viable to use 3DMP for even bigger parts. In a joint effort, GEFERTEC and AIRBUS are driving a project looking at the possibility of printing titanium parts of 7 to 8 m size.”

What materials are possible? 

“Basically, you can use all of the conventional welding wire usable for this process, whereby one has to say that there are materials that are easier to handle and there are those with special challenges. We already control the process for about 30 different metals, amongst them tooling steels, stainless steels, high alloy steels, nickel-based alloys, titanium, copper based alloys, different aluminum alloys and many more.”

How are you positioning the technology vis a vis DMLS and DED?

“If you compare the different printing methods it is notable that there are different properties and applications coming along with them. 3DMP is an economical, easy to handle and robust technology for printing of big metal parts. Instead of powder and laser, 3DMP uses the wire and the arc. This has consequently a lot of advantages comparing it. One is the build rate, that compared with for example the DMLS is about 10-15 times higher. Another advantage is the easy handling of the wire instead of the complexities one has to deal with using metal powder. Furthermore, the wire is significantly less costly, there is a great variety of proven and certified materials available in the market for a technology that has essentially been used for about a 100 years.”

Is using wire feedstock cheaper than using powder? 

“Yes. Using wire is significantly cheaper than using powder. Having said that, it is also more efficient. Meaning with a wire you have almost a 100% of a material to part conversion. Using powder you, unfortunately, have a significant percentage of lost material.”

What kind of surface roughnesses can you achieve? Densities?

“The aim of 3DMP is to produce near net shape parts which will be milled afterwards. There will always be kind of a wavy surface due to the welding beads. The best you can achieve is about 0,3mm roughness, but again the purpose is not to produce finished parts. You have to mill afterwards and therefore it doesn´t matter to much if you have 0,3 mm or 1mm as roughness. Most of DMLS and DED parts need the milling as a finishing process as well, even though the reachable roughness would be finer. The relative density is 100%.”

What are the part costs when compared to inkjet metal, DED and DMLS? “This depends on the part, its geometry and its size. Generally speaking, the build rate, which is a big factor of the cost, is compared to DMLS 10 – 15 times higher. Big parts are not economically built up with DMLS, but are with 3DMP.”

What does a machine cost? 

“Machine cost varies between 300 and 750 thousand Euro.”

Who are your target customers?

“We are targetting job shops, aerospace companies, the shipbuilding industry, the power plant industry, general machine builders and many more verticals.”

NUST MISiS doubles the strength of 3D printed aluminum

3D printed titanium components are favored in aerospace, medical and automotive industries for their high strength to weight ratio. However, a new metal powder composition from the Russian National University of Science and Technology (NUST) MISiS aims to match these properties with components made from aluminum. In a recent study, published online in the journal […]

B9Creations launches material development toolkit for high-quality resin 3D prints

B9Creations, the South Dakota-based manufacturer of the B9 Core Series of DLP 3D Printers, has launched B9Captivate. The new tool is a software suite designed to optimize custom material settings for 3D printed models. “Our customers are transforming industries, changing the future of medicine and the nature of manufacturing, pioneering discoveries and delivering products unlike […]

UNL Professor Prints Dissolvable Medical Implants

With all the novel new research in the medical sector, 3D printing crops up in so many different ways. From skin repair to tissue growth assistance, additive manufacturing is aiding in medical developments everywhere. However, the newest leap appears to have come from a University of Nebraska-Lincoln professor who has invented his own medical implants […]

The post UNL Professor Prints Dissolvable Medical Implants appeared first on 3D Printing.

Soft Robotic Sheets Can Make Inanimate Objects Move

Among 3D printing’s many applications, the technology often crosses over into the field of robotics, including soft robotics. Soft robotics is a field that has been changing the way people look at robots, taking them from rigid metal creations to something much more fluid and flexible. Applications include synthetic muscle, prosthetics, search and rescue tools, and more. Now researchers at Yale University are creating soft robots from everyday objects.

The researchers created “skins” by embedding sensors and remotely operated actuators into elastic sheets. When those skins were wrapped around objects, the objects could move, grasp, and even walk. A stuffed horse was able to move its legs when wrapped with the sheets, and a foam tube was able to squirm. The research is described in a paper entitled “OmniSkins: Robotic skins that turn inanimate objects into multifunctional robots.

Rebecca Kramer-Bottiglio, Assistant Professor of Mechanical Engineering and Materials Science and leader of the research, said that the sheets could be used to create improvised robots that could be used in disaster situations, for example.

“A designer could quickly construct a robot using the robotic skins wrapped around whatever deformable materials they have access to and stick a camera on it, and then deploy the robot for exploration of small or dangerous spaces,” she said. “Robotic skins can be applied to, removed from, and transferred between different objects, and used in combination to create many different configurations to perform many different tasks.”

Kramer-Bottiglio and her colleagues plan to use 3D printing to build additional components for testing the robotic sheets, as well as creating clay structures that can morph into different shapes.

“I’m really excited to see what other people will do with robotic skins,” Kramer-Bottiglio said. “The possibilities are endless.”

The field of soft robotics encompasses a wide variety of production techniques, although 3D printing has been one of the most common methods of fabricating them. Soft robotics has the potential to eliminate many components from traditional robots, doing away with circuits and other clunky parts in favor of actuation by light or chemical reaction. With this new way of looking at robots, they can be made and activated more easily, and used in situations that involve small or unknown spaces.

“This is a very exciting study that demonstrates the versatility and adaptability of soft robotics,” said Conor Walsh, an Associate Professor of Engineering and Applied Sciences at Harvard University. “The idea that we can have a soft and flexible sheet, wrap it around any surface, have it learn what it is attached to and then move it in some desired way has lot of potential.”

Soft robots can be made out any number of flexible materials, but the researchers’ idea is novel in that it can transform ordinary objects into robots just by wrapping them in fabric. As Kramer-Bottiglio pointed out, this means that in an emergency situation, any flexible item that happened to be at hand could be quickly turned into a search and rescue bot – or, in a less urgent situation, kids could turn their favorite stuffed animals into companions that could move around the house. Whether that’s fun or creepy is a matter of opinion, but it’s hard to argue against this new method of robot creation as being potentially very useful in the future.

Authors of the paper include Joran W. Booth, Dylan Shah, Jennifer C. Case, Edward L. White, Michelle C. Yuen, Olivier C. Choiniere and Rebecca Kramer-Bottiglio.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

Researchers Develop a Low-Cost Metal 3D Printer Using MIG Welding

Metal 3D printing, although it has gone down in cost, is still quite expensive. This limits access to the technology for small and medium-sized businesses, meaning that many applications go untried. In a paper entitled “Design and Development of a Low-Cost 3D Metal Printer,” a group of researchers discuss how they created a low-cost metal 3D printer that utilizes metal inert gas (MIG) welding and an open source microcontroller to fabricate parts.

The researchers took the design of their 3D printer from a Prusa i3 system and used several off-the-shelf components to build it.

“The components consist in developing 3D metal printer machine are; a pair of bearing holder and motor bracket, motor casing, shaft holder, ball screw, coupling, limit switch, linear bearing, stepper motor, polyurethane cylinder, polytetrafluorethylane (PTFE) plastic cylinder and various fastener,” they explain.

A MIG welding machine was used to supply the material and the energy to melt the material. The movement of the printer and the translation of command from the printer’s server to the host computer was controlled by firmware provided with an Arduino microcontroller. The cost of the entire system was about RM 3496, which translates to roughly $840, much more affordable than a typical metal 3D printer.

“In order to ensure the metal print is connected during operations, the MIG welding was set to switch on and off automatically,” the researchers continue. “The shielding gas was set to flow before the printing process starts. The welding torch was placed under the fixture design perpendicular to the bed to build the surface. The distance between the bed surface and nozzle was adjusted to about 6 mm by leveling the height of the welding torch.”

The MIG welding machine begins building a part layer by layer, from bottom to top. In order to test the system, the researchers performed two experiments in which a cylinder and a rectangle were 3D printed.

“The aim for the first experiment is to find the suitable voltage during 3D printing that produce relatively good bead geometry of 3D printed part,” the researchers state. “At first, the welding was deposited along the custom cylinder design. The parameter used for welding voltage varied from 18.5 V to 22.5 V. The first experiment was done with a constant speed of 50 mm/s and current of 100 A. The final dimensions were taken and compared with the actual CAD data. The second experiment was designed so that capability of the newly developed machine to 3D print a rectangular shape can be analyzed. The aim of the second experiment is to find the suitable value of speed in producing good structure.”

Five samples were 3D printed for the first experiment and their average values were recorded. They found that porosity occurred when voltage was either to high or too low, and that higher voltages reduce the size of the specimen due to the excessive flow of the molten metal. A voltage setting of 20.5V produced a good quality part, but it was not dimensionally accurate. In the second experiment, the researchers attempted to find the best printing speed. A too-slow speed resulted in a rough surface and poor fusion. They found that the speed should not be any higher than 20mm/s, however, so that the liquid had time to solidify. Post-processing was required in all cases to get better surface finish. As you can see the results are far from perfect but at this price point many would be able to try to improve such systems. Given more time and investment this could very well be a viable alternative to some metal parts.

Output of printing process (a) speed at 20 mm/s, (b) speed at 40 mm/s, (c) speed at 60 mm/s, and (d) speed at 80 mm/s

“Nevertheless, the study demonstrated that simple design specimens were successfully fabricated using the MIG welding and 3D printing process,” the researchers conclude. “The microstructure shows that the layer perfectly coincides with each printer layer and the top region of manufactured layer has the lowest hardness compared to the initial layer. However, further research needs to be done in the future to improve the product’s quality and to study the mechanical behavior of the parts produced by this technique.”

Authors of the paper include N.A. Rosli, M.R. Alkahari, F.R. Ramli, S. Maidin, M.N. Sudin, S. Subramoniam and T. Furumoto.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

 

Nuclear researchers identify “critical deposition height” of DED 3D printed layers

A collaboration between the Australian Nuclear Science and Technology Organization (ANSTO), the Indian Institute of Technology Bombay (IIT Bombay), and Monash University has discerned the perfect balance of stresses in DED 3D printed coating. Realized as a theoretical model, the critical deposition height of DED layers is a step towards improving the longevity of components repaired using […]

3D Printed Kits Help College Students Understand Complex Concepts

3D printed models can help anyone learn, from preschool students to doctors. In a study entitled “Modeling Antibody-Epitope Interactions with 3D Printed Kits in Large or Small Lecture Courses,” a team of researchers from Colorado State University discuss how they created 3D printed models to help college microbiology and immunology students understand a complex concept.

One of the more difficult concepts for college students to understand, the researchers explain, is the interaction between antibodies and the multiple epitopes found on antigens. Two students, as part of an honors thesis, designed 3D models of antibodies and viruses using Tinkercad. The program allowed them to create an intricate design, placing antibody cylinder “solids” onto viral antigen “holes” to demonstrate their binding. They also designed a cartoon version of an Influenza A virus as their model.

With help from the university’s Idea2Product Lab, the researchers 3D printed their models using PLA and Afinia 3D printers.

Before the test class period, the students were asked to watch a video on the immune system and antibodies. In the class itself, they were given kits with the 3D printed models and asked to do the following:

  • Describe how antigens and epitopes are related
  • Explain why some antibodies that do not bind to epitopes are produced
  • Discuss which regions on the heavy and light chains come together to bind to specific isotopes
  • Identify the region on the antibody that determines its class or isotope

“In total, they will work with four different combinations, two of which will bind an epitope on the same antigen on the virus, and two of which will not have specificity for the virus,” the researchers explain. “This allows students to understand that not all antibodies will be specific for an epitope on an infecting microbe.”

Over four semesters of using the 3D printed kits, 91% of students were able to correctly identify the epitope to which an antibody would bind.

Interestingly, when the combination of heavy and light chains did not bind to any epitopes on the virus only 63% of students answered that the antibodies were not specific for any epitope,” the researchers continue. “This could indicate either that students do not understand that not all of the randomly created antibodies will have specificity for a given infection, or they are not confident enough to answer ‘none of these’. However, after seeing the first antibody that was not specific for any epitopes and discussing how this was possible, when they were given a second antibody that was not specific for the virus 91% answered ‘none of these’, and 96% correctly identified the epitope binding site of the second antibody that had viral specificity.”

No matter the age of the student, 3D printed models can be valuable tools to help with understanding concepts – whether it’s preschool students learning shapes and colors or college students learning about antibodies and epitopes. Some things can be understood much better with interactive physical representations, and 3D printing allows educators to easily and inexpensively tailor models for certain lessons. In addition to learning how a single antigen could have multiple epitopes, students were able to use the 3D printed kits to explore concepts such as agglutination, crosslinking, neutralization, and isotypes. The 3D models are available on Thingiverse.

Authors of the paper include Erica L. Suchman, Jennifer McLean, Steven T. Denham, Dana Shatila, and David Prowel.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

The NIOSH on 3D Printer Fumes and Health. Your Guide to 3D Printers and Health, Best Practices.

The NIOSH is a part of America’s CDC (Centers for Disease Control). The NIOSH itself is The National Institute for Occupational Safety and Health for the United States. It is the part of the government tasked with researching into the safety of workers in many professions. At 3DPrint.com we noticed a number of very interesting articles come out by NIOSH researchers about 3D printing. Wewere especially impressed with their thoughtful and thorough research on carbon nanotubes in 3D printer filaments. There is also a very informative post about 3D printers and safety on the NIOSH website. We’ve always been worried about 3D printing safety including fine particles and especially fumes from 3D printers. At 3DPrint.com we think that we are potentially creating significant health issues with some 3D printing practices. We, therefore, reached out to the NIOSH for some guidance. A group of NIOSH researchers took the time to respond to us with some best practices for 3D printer safety. We’re very thankful for their well thought out and clear answers to our questions. We must, as they have, qualify their statements as an initial response but we do believe that this is the clearest and most extensive look into 3D printing safety online.

“It is important to note that there is a current lack of data on 3D printer emissions. In addition, the rapidly shifting description of the “workplace/production environment,” the availability of this technology beyond industrial applications, and the tremendous variety of feedstock polymers that are commercially available or can be made by consumers mean that additional research is needed to evaluate these emissions’ possible health effects.” 

1)     If I 3D print with FDM at home should I get a fume hood or HEPA/Carbon filtration just in case?

‘NIOSH focuses on worker health and our research is performed in the laboratory and in occupational settings, which can be quite different from homes.  Consideration of whether to use a fume hood or filtration will depend on several factors, including the design of the 3-D printer, the type of filament being extruded (filaments are materials (plastic, nylon or other) that are fed into the printer in order to create the final object), the size and air movement in the room in which it is being used, and who is occupying the room (children, adults, people with pre-existing health problems).

While there are no occupational exposure limits for the small particles emitted by 3-D printers, there are some exposure limits for specific chemical vapors that are emitted during printing.  For occupational settings, these chemical exposure limits can be used to guide the selection of appropriate controls to reduce exposures to a safe level.  In workplaces, NIOSH research has shown that appropriately designed and operated local exhaust ventilation with HEPA/carbon filtration reduces the amounts of particles and chemicals in air.  It is important to understand that occupational exposure limits are intended to protect adults in workplace settings and, at this time, we do not know what levels of particles or chemical vapors would be safe for children and others in homes.  Given this uncertainty, it is difficult to recommend specific levels that should be achieved when trying to reduce emissions in homes, though use of a printer in a well-ventilated area could help lower emissions.”

2)     What are the risks of 3D printing? 

“For FDM 3-D printers, there are risks related to the printer itself and potentially from the emissions.  Risks related to the printer are similar to those associated with working with other types of machines and may include electrical shock from damaged power cords, burns from touching hot surfaces such as the extruder nozzle, and injury such as cuts from contact with sharp edges or contusions from contact with moving parts.  At this time, our understanding of risks from particle and chemical vapor emissions from 3-D printers is limited.

In one study done by NIOSH, rats exposed for 1 hour to particle and vapor emissions from a FDM 3-D printer using ABS filament (a type of plastic material) developed acute hypertension, indicating the potential for cardiovascular effects.  In another NIOSH research study, lung cells exposed to FDM 3-D printer emissions from printing with ABS and polycarbonate for about 3 hours showed signs of cell damage, cell death, and release of chemicals associated with inflammation, suggesting potential for adverse effects to the lungs if emissions are inhaled.  These in vitro findings need to be confirmed with more extensive in vivo studies.  It is important to understand that exposures used in toxicology studies may not be the same as those encountered by workers or in homes for a number of reasons, including the use of ventilation in workplaces or the amount of fresh air brought into homes by the heating and cooling system.”

3)     How would I best protect myself against 3d printing risks? 

    • “Risks related to the printer itself can often be eliminated by safe work practices and the design of the 3-D printer.  For example, as with any electrical device used at work or in the home, daily inspection of the electrical cord can help to identify if the cord is damaged and should not be used.  After an object is printed, allowing sufficient time for the extruder nozzle to cool down before removing the object from the build chamber will reduce the risk of burns.  NIOSH researchers often observe smaller 3-D printers being used in workplaces that are also purchased by consumers for private use.  Using a 3-D printer with a cover or doors that prevent the user from reaching in while machine parts are moving will help reduce the risk of injury.

    • At this time we do not know what levels of exposure causes adverse health effects, so we can’t recommend safe levels of exposure to 3-D printer emissions whether in the workplace or in homes.  In occupational settings, we use the “hierarchy of controls” to protect workers from risks on their jobs.  The hierarchy of controls specifies, from most preferred to least preferred, the types of controls that should be used to reduce occupational exposures:
      • The most preferred method is to substitute or eliminate the hazard.  For example, in the case of FDM 3-D printing with filaments that contain carbon nanotubes, the emission of plastic-particles that contain carbon nanotubes can be eliminated by not using that type of filament if it is not necessary for the performance of the built object.
      • If a risk cannot be eliminated, engineering controls such as a fume hood or local exhaust ventilation (a system that specifically ventilates the printer rather than the air in a room) with HEPA/carbon filtration would be the next preferred method to reduce emission levels.  Some 3-D printers are now being sold with built-in filtration units.

Alternatively, a printer owner may purchase an after-market fan/filter systems to reduce emissions.  However, NIOSH researchers have not yet evaluated how well these built-in or after-market filtration systems work.  It is important to understand that for engineering controls such as fume hoods or local exhaust ventilation with filtration to be effective, these systems must be properly designed, built and operated.

In one workplace, NIOSH researchers showed that an appropriately designed and operated local exhaust ventilation with HEPA/carbon filtration reduced the amounts of particles and chemicals in air.  NIOSH researchers have also observed that in some workplaces where the ventilation system is not built correctly that the chemicals are released back into the room air.  Additionally, systems that use carbon filters to remove organic chemical vapors need to be monitored over time because the charcoal has a finite capacity to adsorb chemicals.  Once this capacity is reached, the charcoal filter needs to be replaced or it will not capture additional organic vapor emissions.

      • If engineering controls cannot reduce the risk to an acceptable level, administrative controls may be used.  An example of an administrative control is that NIOSH researchers have observed in some workplaces that employees do not enter the room where 3-D printers are operating unless it is necessary (e.g., to perform maintenance or to retrieve a built object).
      • Finally, if none of these controls can reduce emissions to an acceptable level, the least preferred control is the use of personal protective technologies such as respirators or dust masks.  In workplaces, respirators are the least preferred means of control because they do not remove the exposure, they only reduce the amount that might be inhaled;  this depends on the proper selection of filters and cartridges that remove contaminants while breathing.  Additionally, to be effective, respirators rely on the worker to properly wear and use the mask.  To wear a respirator, a user must be medically cleared by a physician and it must be properly fitted and retested each year to ensure fit. The user must be properly trained on how to wear, remove, and maintain the respirator.  NIOSH researchers have observed in some workplaces where 3-D printers are used that some employees with facial hair will put on a respirator, but the hair prevents the respirator from forming a tight seal with their face so the mask does not provide any protection to the worker.”

4)     If I had a 3D printer at a school what should my safety precautions be?

“NIOSH focuses on worker health and our research is performed in the laboratory and in occupational settings, which can be quite different from environments such as homes or schools.  For example, 3-D printers may be used with different frequency in schools and there may be only one printer operating in a large classroom as opposed to many printers in a small workspace.  These differences will influence the types of controls implemented to reduce emissions.

There are no occupational exposure limits for the small particles emitted by 3-D printers but there are some exposure limits for specific chemical vapors that are emitted during printing.  For occupational settings, these chemical exposure limits can be used to guide the selection of appropriate controls to reduce exposures to a safe level.

It is important to understand that occupational exposure limits are intended to protect adults in workplace settings. At this time, we do not know what levels of particles or chemical vapors would be safe for children in schools.  Given this uncertainty, it is difficult to recommend specific levels that should be achieved when trying to reduce emissions in schools.  In workplaces, NIOSH research has shown that appropriately designed and operated local exhaust ventilation with HEPA/carbon filtration reduces the amounts of particles and chemicals in air.  If exhaust ventilation is not feasible, use of a printer in a well-ventilated area could help lower emissions.”