Airbus to help qualify GEFERTEC metal 3D printer for aerospace-grade production

GEFERTEC, the German developer and provider of 3DMP metal 3D printers and technology, is to deliver an industrial-scale arc403 machine to international aeronautics company Airbus. Together with German private sector research organization the Bremen Institute for Applied Beam Technology (BIAS), Airbus is preparing the arc403’s 3DMP metal 3D printing process for use in the aerospace industry. […]

Polish 3D Printing Company UBOT3D Launches High Temperature Printer

There are a surprising number of 3D printing companies coming out of Poland. Vshaper and 3DGence are two emerging firms that both make high temperature printers. These are now joined by a colleague UBOT3D. UBOT3D is like many 3D printing companies moving up in the world making more expensive 3D printers that are capable of handling high performance materials such as PEEK and PEI. Acording to CEO Michal Melon , they’ve been around since “2015 and made and sold hundreds of 3D printers to polish and euroepan customers. Until this year we were focused strictly on the desktop market, but simultaneously designed an industrial grade machine using the same FFF technology.

Ubot3D Build chamber.

Ubot3D Build chamber.

 

Enclosed chambers, ventilation and higher quality is what many industrial customers want. Increasingly firms are heeding the call and making systems suited for the shop floor or for manufacturing rather than just sitting on someone’s desktop. Is the UBOT3D’s new system a capable one that can actually manufacture at scale? This is something we don’t know yet but if we look at the specs then the company at least is on a route to a promising device.

I sure hope this isn’t inside of it.

 

The P440 printer has a build volume of 440 x 330 x 300 mm and a 1500 W chamber heating system. It seems to have two ball screw and two linear guides inside of the chamber the guides seem enclosed but I wonder if the guides and ball screw will hold up like that. Specifically I’m wondering what will happen to the ball screw lubricant if the chamber becomes 400 C. The idea of having a seperate complete chamber heater is a solid one since lack of thermal control over the heated chamber and the wicking of heat is an issue with many high temperature 3D printers. If this system does maintain a constant temperature and can heat it up properly then this will be an advantage.

Ubot3D Build chamber.

Ubot3D Build chamber.

The team also installed a four stage chamber filter of HEPA, carbon, PP and cold catalysis. Which sounds very safe indeed although I must confess to have no idea what cold catalysis is. The print bed is fastened with magnets, which is a nice feature, and it is powered by an 800 W heating unit. Which makes me think that its a good thing that there we do not yet have these EU energy efficiency ratings for printers. This should however give your bed a lot of heat and power which is great. Print bed maximum temperature is 150C, nozzle maximum is 400C. The 400 degrees is a tad limiting for some PEEK-like materials but if they have adequate chamber control they should be able to print most high performance materials. And they have automated leveling where, “the software creates the entire table image and then generates its image using the finite element method. This ensures that the print bed of the 3D printer will be calibrated correctly.” They say that their Hellfire hot end has been optimized for high temperature materials and the team has developed their own extruder as well as an own hot end. Its nice to see someone not using a E3D hot end, I would just hate it if Sanjay became too wealthy. The P440 also has automatic updating, a nice emergency off switch, expert mode and on board camera as well as an app to control the printer and can SMS you if there is an issue with the filament or if you’re running out and it costs 13,000 Euros which is $15,000. This makes it double the price of the Intamsys Funmat HT and more expensive than a Vshaper Pro and around 10k less than a 3Dgence Industry F340 and  and around the price of an Intamsys Funmat Pro HT. If the performance is there then its a good price point to be at. But, it will have to be significantly better than a Funmat and a bit better than a Vshaper to even be considered by many. UBOT3D is at a sweet spot for HT printing but at the same time this is a part of the market that cares about performance and reliability above all else.

The Ubot does have two very unique features. Appearantly the printer, “has been equipped with the ability to order filaments directly through the device” and it can work for 30 minutes on auxiliary power if the lights go off. Yes people the days of chucking some rods and stepper motors into a box are gone. We have arrived in featureville, expect more features, demand more features. At first glance the UBOT3D has spent a lot of time thinking about features users care about. The things that their machines has on board are things that people do care about. It is exactly these features that allow for office friendly production that will get the next generation of corporate 3D printer customers.

Study Finds that Orientation Influences Electrochemical Behavior in 3D Printed sensors

3D printing sensors is an area that is seeing a lot of emerging research. We all know that print orientation can really affect the quality of your prints. Sensors experience this as well with print orientation having been found to have effects on electrochemical behavior. The paper, entitled “The effects of printing on the electrochemical behaviour of 3D printed acrylonitrile butadiane styrine (ABS)/carbon black electrodes,” can be found here.

The researchers 3D printed a variety of electrodes using both horizontal and vertical printing direction. The horizontal printing direction resulted in a smooth surface for an HPSS (horizontally printed smooth surface)  electrode and a relatively rougher surface for an HPRS (horizontally printed rough surface) electrode. The vertically printed electrode showed enhanced current response when compared to the two horizontally printed electrodes, showing that print orientation is in fact a factor in the level of conductivity that a 3D printed object has.

“No differences in the capacitive response was observed, indicating that the conductive surface area of all types of electrodes were identical,” the researchers state. “The VP (vertically printed) electrode had reduced charge transfer resistance and uncompensated solution resistance when compared to the HPSS and HPRS electrodes.”

According to the paper, it’s a challenge to develop electrochemical sensors with complex geometry.

“Composite electrodes are defined as a surface that consists of an ordered arrangement (array) or a random arrangement (ensemble) of conductor regions, typically micrometres in dimension, separated from one another by an insulator,” the researchers explain. “Early composite electrodes were carbon paste electrodes, however over the years various conductive and insulative materials have been utilised.”

Composite electrodes are easy to make in any geometry using 3D printing, and have mechanically robust properies, but their performances vary depending on the differences in the homogeneity of the material and electrode surface from batch to batch. They also have increased resistance compared to solid conductive materials, presenting another challenge to the manufacture of composite electrodes.

3D printing has presented a viable way of fabricating complex electrodes, thanks to the availability of 3D printers and the variety of conductive filaments on the market. Several studies have used 3D printing for sensing, and carbon and metallic materials have been used for 3D printing the electrodes.

“A polystyrene 3D-Printed electrochemical device with embedded carbon nanofiber-graphite-polystyrene composite conductor electrode, showed to have good signal to background voltammetric responses for detection of aqueous Pb2+ via anodic stripping,” the researchers state. “3D printed metal electrodes have been shown to be suitable for the measurement of various analytes, where improved analytical performance and electrode stability compared to glassy carbon electrodes were shown.”

This study specifically was undertaken in order to explore the behavior for ABS/carbon objects that were 3D printed in a horizontal or vertical direction, and found that print orientation does in fact affect how conductive an object will be.

  “Overall, our findings indicate that 3D printed conductive materials can produce useful sensors for electroanalytical purposes, and that print orientation can significantly influence the electrochemical behaviour,” the researchers state. “Printing of conductive carbon composite filaments into 3D structures enhanced the electrochemical behaviour of the base material.”

Authors of the paper include Hairul Hisham Bin Hamzah, Oliver Keattch, Derek Covill and Bhavik Anil Patel.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

 

MultiMechanics & Fortify Team Up to Improve 3D Printing Consistency

Increasing numbers of 3D printing companies and manufacturing firms are looking to improve additive manufacturing. These companies often partner together to solve an issue. This time around Fortify will use MultiMechanics’ MultiMech software to improve the predictability of 3D printing products. This will allow them to make a print more consistent with the design they intended and […]

The post MultiMechanics & Fortify Team Up to Improve 3D Printing Consistency appeared first on 3D Printing.

Clinicians use 3D printed breast phantoms for safer and faster cancer diagnosis methods

Researchers from the U.S. Food and Drug Administration (FDA) in Maryland have developed a new 3D printing software tool that aids in the creation of patient-specific 3D printed breast phantoms. Breast phantoms are frequently used in place of breast tissue as test beds for mammography devices to ensure optimized breast cancer detection and treatment. Cancer […]

Allevi partners with Made In Space for first zero gravity tissue 3D printer

Allevi, the 3D bioprinting company formerly known as BioBots, has announced a partnership with U.S. microgravity 3D printer developer Made In Space. Together, the two companies are to work on the Allevi ZeroG, a 3D bioprinter capable of working in low-gravity conditions. 3D printing in space Made in Space is the company behind the Additive Manufacturing […]

Researchers Use AI, 3D Printing & Bending Light for Numerical Calculations

Today, you will find 3D printers in the most surprising places—and all over the world. Not only that, but they are often busy doing the most surprising things for the human race. If you have been following 3D printing for even the shortest amount of time, then you may have learned to continually expect the unexpected. Machine learning and data calculations are perfect examples of this as they are now being applied in 3D via a new artificial intelligence system that performs its work through bending light.

AI is built on looping calculations of numbers and data that ultimately result in recognition. As UCLA researchers discovered, they can actually translate this into physical form through 3D printing with the accompaniment of light. Working with the premise of 3D printing that is built on layers, the researchers are able to make transparent diffraction patterns, ‘reflecting’ data in a neural network. Their work was recently published in a paper titled ‘All-optical machine learning using diffractive deep neural networks,’ by Xing Lin, Yair Rivenson, Nezih T. Yardimci, Muhammed Veli, Yi Luo, Mona Jarrahi, and Aydogan Ozcan.

“Deep learning has been transforming our ability to execute advanced inference tasks using computers,” state the researchers in their abstract.

They are able to establish this with a diffractive deep neural network, also known as a D2NN architecture—and one that is able to perform functions based on the collective diffractive layers.

“We create 3D-printed D2NNs that implement classification of images of handwritten digits and fashion products as well as the function of an imaging lens at terahertz spectrum,” state the researchers. “Our all-optical deep learning framework can perform, at the speed of light, various complex functions that computer-based neural networks can implement, and will find applications in all-optical image analysis, feature detection and object classification, also enabling new camera designs and optical components that perform unique tasks using D2NNs.”

The team used their unique learning model to recognize numbers that were written out by hand, afterward converting the matrix math into a data series related to ‘optical transformations.’ Each layer contributes to creating this data with the use of light, refocusing and adding values. This process involves millions of optical transformations on the 3D printed plates, with the system translating light into numeric values; in fact, the researchers report that with the 3D-printed D2NNs they are having a 90 percent success rate!

While the process is still being refined by the research team, it could be relevant to numerous applications in the future due to the flexibility of such calculation tools. It could be used to read letters instead of numbers too, as well as offering facial or other types of physical recognition. Find out more about this research or order the article for further reading here.

Discuss this article and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: TechCrunch]