Allevi and Corning Present the First Protocol for Bioprinting With Matrigel

Mouse models of malignant tumors called sarcomas have provided a fundamental tool for researchers to understand the pathology behind human cancers. However, it was not until the 1980s when researchers began looking for ways to grow mouse sarcoma cells and develop genetically manipulable mouse models that they became fully capable of examining the direct causes of many cancers in an in vivo setting. Around that time, material sciences and technology multinational Corning, developed Matrigel matrix, a solubilized basement membrane preparation extracted from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma, a tumor rich in extracellular matrices (ECM) proteins, such as laminin, collagen IV, heparan sulfate proteoglycans, entactin/nidogen, Transforming growth factor-beta (TGF-ß), epidermal growth factor, insulin-like growth factor, fibroblast growth factor, tissue plasminogen activator, and other growth factors.

Today, 30 years later, this natural ECM-based hydrogel is widely used as a model for 2D and 3D cell culture in vitro, and together with 3D bioprinter manufacturer Allevi, they have created the first-ever protocol for bioprinting using Matrigel matrix called: ‘Allevi bioprinting protocol using Corning Matrigel matrix’.

From the development of several types of tumor cell invasion assays to exploring organoid model environments, from cancer and stem cell research to neurobiology, tissue engineers, biologists, and industry giants are using Matrigel matrix as a foundational biomaterial for diverse applications.

It has been tested for the ability to promote neurite outgrowth of chick dorsal root ganglia cells, in mouse colonies routinely screened for pathogens via Mouse Antibody Production (MAP) testing, in protein concentrations, and is very commonly used in cell growth and differentiation; metabolism and toxicology studies; invasion assays; in vitro and in vivo angiogenesis assays; in vivo angiogenesis studies and augmentation of tumors in immunosuppressed mice.

Corning Matrigel matrix (Image: Corning)

Since 2014, Allevi has turned into one of the companies leading the way in bioprinting thanks to its easy-to-use and cost-efficient bioprinters, software, as well as their broad understanding of cells. Years of experience taught them how to keep the cells alive during the printing process and what materials can help with this, like Corning Matrigel matrix. The company claimed that their 3D bioprinters are capable of printing high-quality bioinks without the need for viscosity agents that can hinder the ECM’s performance. They suggest that they engineered their patented CORE printheads to optimally print pure biomaterials, such as Matrigel matrix.

Moreover, Corning’s Matrigel matrix offers a network of proteins that provide the environment needed for optimal tissue performance, driving cellular responses such as proliferation and attachment. Allevi explained that Matrigel matrix has a unique formulation that, when used with Allevi bioprinters, allows users to create custom 3D tissues. Claiming that this is an optimal platform for cells to differentiate and behave more closely to how they would in the human body.

Matrigel matrix is a hydrogel that is rich in extracellular matrix proteins. The company behind it indicates that it has been successfully used for several 3D culture and tissue engineering applications. Now, it can also be used on the Allevi Platform to 3D bioprint cancer spheroids with a variety of cell lines. Furthermore, combining Matrigel matrix with Allevi 3D bioprinters can enable the automation of spheroid and organoid generation in a standardized and repeatable manner.

3D bioprinted cancer spheroids with a variety of cell lines (Image: Allevi)

Allevi officials stated that “we can’t wait to see what you will do when you bioprint with Allevi and Matrigel matrix in your lab. It’s been 30 years of breakthroughs with Matrigel matrix, and we have a feeling that the pace of discovery is bound to quicken as we add another dimension to this bioink.”

The protocol developed clearly establishes that Matrigel matrix should be stored at -20˚C and that once removed from storage it needs to be thawed in an ice bucket at 4˚C overnight. Other indications include using an Allevi 5 mL Syringe, a syringe cap, a full metal 250 µm nozzle, and Costar Multi-well Plate or Falcon® Petri Dish.

Allevi is a company that understands the importance of teaming up to enhance the power of bioprinting. Last year they partnered with Xylyx Bio to create liver-specific bioinks, and previously with Made In Space for 3D bioprinting in orbit. This new protocol will help researchers and scientists make the best out of a combination of products that have a lot of potential for new trends in in vivo applications, virus testing, 3D cell culture research, and much more.

The post Allevi and Corning Present the First Protocol for Bioprinting With Matrigel appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Spanish Company BRECA Health Care is at the Forefront of Medical Devices & Bioprinting

In 2018 Spain’s health care system ranked third in the world, behind Hong Kong and Singapore, and first in Europe according to a Bloomberg study, so it’s no wonder that research and development of bioprinting technologies are heavily pushing to make the country a haven for its patients. In 2011, industrial engineer José Manuel Baena funded BRECA, a Granada-based healthcare company with its sights set on helping medicine solve some of the most complex pathologies out there. BRECA is a pioneer in Europe, specializing in the design, manufacture and marketing of customized implants. It is also one of the first companies in the world to manufacture a 3D printed implant using a combination of 3D printed made-to-measure synthetic medical devices and bioprinted structures to regenerate a lesion. It’s all about solving the greatest number of pathologies for Baena.

“There are many diseases in the world and most of us are going to be users of these medical solutions some day, so investing time in creating the necessary equipment to help the medical community is essential,” Baena told 3DPrint.com during an interview.

The founder of BRECA Health Care is also founder and CEO of REGEMAT 3D, a startup focusing on regenerative medicine, developing custom hardware and software required and demanded by some of the mayor hospitals and research universities in the region, as well as creating bioinks for bioprinting -from commercial to bioinks developed with university labs made of cellulose, colagen paste and with thermoplastic properties ideal for cellular therapy. They develop their own bioprinting systems, the BIO V1 machines, and customize them for their users’ applications according to the requirements of each investigation. It was back in 2011 when Baena met Juan Antonio Marchal, a professor at the Biomedical Research Centre (CIBM) of the Universidad de Granada, in Spain, working with cells and looking to make scaffolds and 3D matrices, that his interest in regenerative medicine peaked, so he began creating technology and synthetic materials to make cells that would help doctors repair and regenerate injuries.

REGEMAT 3D’s BIO V1 printer

“I see an exciting future ahead, with 3D printing offering many opportunities and applications in regenerative and therapy medicine. The next stage of bioprinting is to combine several tissues and build in vitro organs, but that could take decades. To get to a point where we can create functional complex solid organs, we need more developments, research, more people interested in using this technology, which is a fascinating tool for in-depth knowledge on the future creation of organs. It is also important to understand how bioreactors and decellularization will help us to develop functional tissues and organs. Which is why we have groups of researchers currently working on these applications, both in the short-term and looking way ahead into the future,” suggested Baena, one of the many enthusiasts who are trying to bridge 3D printing technology with medicine.

There are a lot of opportunities right now for companies like BRECA, like the combination of 3D printed custom made synthetic medical devices and bioprinted structures to regenerate an injury. According to Baena, in the past, if you wanted to do a reconstruction using biomaterials that biodegrade, you were restricted by the geometry and performance of sized medical devices. But now with 3D printing they offer customized solutions even using autologous cells of the patient to enhance the regeneration. REGEMAT 3D’s bioprinting platform is ideal for developing this type of customized options and along with BRECA they are very successful in bringing 3D printed implants and prosthesis to the clinical application with optimum results.

BRECA makes custom made plates, ATM implants, and bone reconstructions

BRECA was one of the pioneer companies in bioprinting, introducing the first bioprinter in the country. Today, they are the only Spanish company that designs and manufactures them on site. They also create bioreactors and in 2018 attempted to engineer cartilage tissue, one of the most promising treatments for articular cartilage defects, thanks to a bioreactor designed to implement a non-invasive real-time monitoring of the neo-cartilage tissue formation processes through ultrasonic signal analysis. Polylactic acid (PLA) scaffolds were printed and seeded with human chondrocytes and then, they were cultured in an ultrasound-integrated bioreactor. The team used a bioreactor system to validate ultrasound data against proliferation, gene expression and quantitative biochemistry of in vitro 3D chondrocytes.

With a total of 200 clinical cases all over the world, BRECA is helping doctors transition to a more customized solution that will improve patients’ lives. Through more personalized treatments, reducing complex surgical times and costs, the company is using 3D printing technologies for reconstruction of injuries in cranioplasty, maxillofacial, bone and cartilage, pediatric and thoracic surgery, neurosurgery, as well as other reconstructions with tailor-made surgical guides. Various reconstruction surgeries were performed at the University Hospital of La Paz, one of BRECA’s research partners, and where Ramón Cantero and Baena coordinate the 3D Tissue Engineering and Printing Platform (PITI3D), which provides ingredients and processes to generate functional tissues. 

REGEMAT 3D printer at work

“Last year we started working with PITI 3D, a fantastic 3D printing platform for tissue engineering at one of the most innovative hospitals in Spain. We offer solutions for patients, medical doctors and scientists in regenerative medicine applications. Our current projects include skin regeneration, specifically for a pediatric pathology known as butterfly skin (a genetic mutation that results in skin blistering); Kit Lab on a chip for antitumor treatments, and manufacturing custom-made medical devices for complex surgeries at the University Hospital of La Paz (which we do through BRECA),” suggested Baena, who recently graduated with his PhD in Biomedicine.

REGEMAT 3D printer at University of Iowa lab

Among the top 10 bioprinting companies in the world, BRECA has over 50 active projects in 25 countries, including the University of Sydney, Australia, the University of Iowa, in the U.S., the Paper and Fibre Research Institute of Sweden, Virgen del Rocio Hospital in Seville and Colombia´s National Institute of Rehabilitation. They have participated in many neurosurgery processes by developing the made-to-order medical devices for cranioplasty in patients with injuries or cranial defects, as well as jaw reconstructions and other types of bone prosthesis. The custom contoured grafts are made from materials such as titanium or synthetic bone substitutes.

“Many of the other bioprinting companies are selling mass-produced 3D printers but we chose to offer a one-of-a-kind machine for the researcher who wants to create unique bioprints, and this is working quite well for us, because we don’t just want to have our printers in every bioprinting lab, instead we like to be involved in the research being done, get to know the projects and help in any way we can. The BRECA-REGEMAT model is strongly invetsting on the future of clinical applications of additive manufacturing. There has been a continuous growth in bioprinting advances in the last thre years, but I consider that the next five years will see a strong increase in bioprinting discoveries,” says Baena.

With so many applications for bioprinting in the horizon, Baena believes that once we can engineer any human fully functional tissue, the next frontier will lie in uploading our memories, knowledge and consciousness for storage and to eventually regenerate encephalitic mass. He explains that we have the regeneration part down, but we need technologies and processes that will allow us to copy the existing information in the brain so that we can regenerate it too. “Like a backup of our brain”, he calls it. And although the scientist and engineer know that the idea is far fetched and could take years before it actually happens, he believes that “continuous investigation is the key to making the impossible possible.” After all, regenerating tissues was something that sounded quite futuristic some 50 years ago.

The Spanish company believes in the advantages and potential of technology, as well as in its innumerable applications, but there is still a lot of investigation on the way and decades before some of the more daring ventures, like creating fully functional organs, become realities. According to Baena, Spanish legislation is not an impediment for using the 3D printing machines, but yes when it comes to the clinical phase, so it might be a few years before some of the research gets to patient clinical trials and lawmakers catch up to some of the technological advances tacking place today.

Baena and the REGEMAT team

Polish Company CD3D Opens Largest 3D Bioprinting Cluster in Europe

Centrum Druku 3D, or CD3D, is the largest online website devoted to 3D printing technology in Poland. Launched in 2013 with an online portal, the company’s operations are based on two important pillars: providing knowledge in the 3D printing field, and scientific-research and R&D activities in the medical and pharmaceutical sciences. In 2014, CD3D held Poland’s first 3D printing awards, and this week launched a new medical project – the largest 3D bioprinting center in Europe.

The Open 3D Bioprinting Cluster launched in Lodz at the Bionanopark, which is one of the country’s largest laboratory complexes and works on multiple science and research projects in the medicine and biotechnology fields, including computational chemistry, 3D printing, biochemistry, and medical implants. CD3D, under the CD3D Medical brand, is the creator of the cluster, and will be operating it together with the Laboratory of Molecular and Nanostructured Biophysics at the complex, which also includes an incubator and conference center. In addition to bioprinting, CD3D Medical also offers SLA, FDM, and DMP 3D printing technologies.

21 3D bioprinters, created by CD3D and called SKAFFOSYS for ‘scaffold systems’, make up the cluster, and according to Pawel Slusarczyk, a Project Director at CD3D, they are the first Polish bioprinters.

The system uses a 5 ml syringe as a printhead, and performs extrusion mechanically, as semi-liquid, gel, and hydrogel materials are applied to a laboratory pan that’s been affixed to a working table. The SKAFFOSYS Lite 3D bioprinter features a 170 x 125 x 80 mm build area, with a process accuracy of 0.2 mm, and can also complete bioplotting. As more challenges are created over time by bioprinting projects, CD3D will expand the SKAFFOSYS Lite by adding new functionalities and modules.

Due to the teamwork between the Bionanopark and CD3D Medical, scientists are able to use additive bioprinting to complete comprehensive research and development projects in the biomedical engineering field. Under the close supervision of CD3D specialists and scientists from the Laboratory of Molecular and Nanostructured Biophysics, laboratories at the Bionanopark can now successfully complete, according to the website, “biochemical, biological and molecular research at virtually any stage of the creation of three-dimensional structures.”

The reason the 3D Bioprinting Cluster is so important is due to its open nature. We use 3D bioprinted structures for a myriad of purposes, from growing biological material on printed scaffolds and creating composite materials to researching alternative food sources and creating, studying, and testing out new types of biocompatible materials. So the fact that this large, new cluster for 3D bioprinting is open means that other external entities can use its important resources to complete tasks such as commissioning a comprehensive scientific and research service.

The partners and customers of the new Open 3D Bioprinting Cluster in Poland can now rest assured that the comprehensive service will make it possible to outsource scientific research projects to all of the laboratories in the Bionanopark.

What do you think? Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Images: CD3D]

Bioprinting 101: Part 3 Industrial Printers

Today we will look into bioprinters that are well known. One must understand biochemistry, and other important aspects within biology to fully do well with bioprinting. The development of bioprinting technology will take patience and time. The climb will be steep but in the future, and it may very well have huge impacts on the future of health for society.

There are 4 typical printing setups that can be associated with bioprinters. These include:

  • Extrusion
  • Inkjet
  • LIFT
  • Stereolithography

Extrusion is a process used to create objects of a fixed cross-sectional profile. A material is pushed through a die of the desired cross-section. The two main advantages of this process over other manufacturing processes are its ability to create very complex cross-sections, and to work materials that are brittle, because the material only encounters compressive and shear stresses. It also forms parts with an excellent surface finish. Syringe nozzles are often used for extrusion purposes in 3D bioprinters.

Inkjet printing uses a printer head that moves across a variety of substrates, selectively depositing a liquid binding material. A thin layer of material is spread across the completed section and the process is repeated with each layer adhering to the last. When the model is complete, unbound material is automatically and/or manually removed in a process called “de-powdering” and may be reused to some extent.

LIFT printing refers to laser-induced forward transfer. LIFT is a relatively new printing technique that enables transfer from a thin-film donor material onto your chosen receiver placed nearby. Unlike conventional laser-printers, which print liquids or inks, LIFT printing can transfer solid phase materials in (ideally) an intact state, for a range of applications.

Stereolithography is a form of 3D printing technology used for creating models, prototypes, patterns, and production parts in a layer by layer fashion using photopolymerization.

Lift 3D printing

These techniques for printing are standard within the 3D printing industry. A problem within the bioprinting industry is the vast amounts of ways to conduct bioprinting. The field is still new, so there are various techniques relying on classic additive manufacturing techniques, as well as newer technology made specifically for bioprinting. The following is a list (not exhaustive) of manufacturers and the 3D bioprinters they have made:

  • 3D Bioplotter – EnvisionTec
  • Bioscaffolder – Gesim
  • Inkredible+ – Cellink
  • Biofactory – RegenHu
  • Revolution – Ourobotics
  • Bio3D Explorers –  Bio3D technologies
  • CellJet Cell Printer – Digilab
  • BioAssemblyBot, advanced solutions
  • Regenova – Cyfuse
  • NovoGen MMX – Organovo
  • Dimatrix Materials Printer – Fujifilm
  • Poietis
  • Nyscript
  • Aether
  • Allevi
  • Fabian

organovo 3d bioprinter

Organovo 3D Bioprinter

The 3D-Bioplotter System by Envisiontec is a versatile rapid prototyping tool for processing a great variety of biomaterials for computer-aided tissue engineering (CATE), from 3D CAD models and patient CT data to the physical 3D scaffold. This printer costs between $80,000 and $150,000

The Bioscaffolder manages a wide range of very different tools and ensures automatic XYZ alignment for all. The BioScaffolder also has software which allows for the definition of an inner “scaffold-”.  As with the built-in scaffold generator, up to three different materials and different pore sizes can be assigned to the CAD model.

The Allevi allows researchers to create 3D printed tissue reliably with the curing mechanism, as well as a heated dual extruder that is able to keep cells at what would normally be natural body temperature. Thermoplastic supports can be cured also during the process allowing for greater latitude in creation as well as flexibility in material being used. Users are able to put several materials into the same sample which allows for speed, diversity, and complexity.

The Inkredible 3D Bioprinter is an extrusion-based 3D Bioprinter with dual extruder heads for bioprinting of human tissue models and organs. Once the structure has been printed, it can be cross-linked using the Blue LED UV crosslinker or ionic solutions, depending on your bioink material.

The BioFactory allows researchers to pattern cells, biomolecules and a range of soft and rigid materials to create realistic biomimetic tissue models, while the 3DDiscovery system is a more cost-effective alternative designed to explore the potential of 3D engineering.

The Revolution features a hand-like retooling system. This allows for users to interact with materials that may be sensitive to human touch and interference. The system is modular, and can work with a wide variety of bioinks, regular and specialized materials. It can print with 10 materials or more at a time and it uses a heated enclosure for keeping cells alive.

Bio3D Technologies created a bioprinter with multiple print heads, modular design, nozzle-to-platform auto-alignment, remote viewing and control.This printer has integrated an anti-vibration levitating platform into a 3D printer. With the introduction of Bio3D Explorer, they made 3D bioprinting even more affordable and accessible.

CellJet holds up to 16 independent channels (i.e. many different cell types can be printed at once). More than 20 types of primary cells and cell lines have been successfully printed by a CellJet. CellJet is a compact system fitting in most of the hoods and biological safety cabinets. CellJet may come in different settings to fit the customer’s needs and be customized on demand.

The BioAssemblyBot robot arm gives you the freedom to 3D print advanced tissue structures and constructs as well as print contour. BioAssemblyBot maintains temperature control from 5 Celsius to 110 Celsius and can be adjusted during specific points in the 3D printing workflow.

The the Regenova bioprinter uses the “Kenzan” method, in which cellular spheroids are cultured in fine needle arrays. As each spheroid is placed in a particular order, they can autonomously connect and form macroscopic tissue structures without the use of collagen or hydrogel. The researchers add a series of needles to the needle array to change the length and/or thickness of their intended output.  Depending on the arrangement of the needle array, it is able to ensure circulation of the culture medium and oxygen until it is mature enough to be used.

Kenzan Method

The NovoGen MMX 3D printer, which is not for sale commercially, creates tissues that are sold to drug manufacturers. It also uses syringe-based extrusion technology, with two robotically-controlled precision print heads (one for the human cells, the other for the life-sustaining microgels) that can produce thick tissues of 20 or more cell layers.

FUJIFILM Dimatix has leveraged its piezoelectric inkjet technology and MEMS fabrication processes with its extensive inkjet product. The DMP-2850 allows the deposition of fluidic materials on an 8×11 inch or A4 substrate, utilizing a disposable piezo inkjet cartridge. This printer can create patterns over an area of about 200 x 300 mm and handle substrates up to 25 mm thick with an adjustable Z height.

Poietis is a biotechnology company specializing in the laser-assisted bioprinting of living tissue.It provides industrial stakeholders and researchers with a unique platform to design and manufacture bio-printed products for regenerative medicine, preclinical research and evaluating the efficacy of cosmetic products and ingredients.

The nScrypt has a setup consisting of Linear Motors. The XY plane of the system can travel in a range of 300 – 1500 mm. The system has a 10 nm resolution as well as 1 micron accuracy. The printer can also travel 150 – 200 mm in the Z plane. There are options for multiple printer heads in a setup.

The Aether features 8 pneumatic syringe extruders with a vertical retraction system. It also has an anodized aluminum heated syringe mount with a 30cc glass syringe. It also contains a solenoid microvalve droplet jetting extruders coupled with a 445nm Laser.

The Fabion is a 5 nozzle bioprinting system. These nozzles are programmable in terms of how they dispense materials. The main differentiator from other products is their specific biopaper material used for printing. The technology combines a variety of biofabrication methods. These include self assembly, as well as robotic control systems.

With all of these incredible 3D bioprinter technologies comes a con: A majority of these products are industry grade quality and have high price tags. If one has $10,000 or $100,000 lying around to buy said devices, great. If not, well welcome to most realities. So what are alternatives to individuals who want to know more about this particular biotech. In future articles, I will discuss the feasibility of DIY bioprinting options and how to work on making your own bioprinter.