Green Fab Lab: Using the Fab Lab To 3D Print New Things From Recycled Plastics

Fab labs, growing in popularity around the globe, have a reputation for being smaller forums where the tools are provided for creative manufacturing, often centered around 3D design and 3D printing in a group setting. Materials obviously play a large role in these progressive environments. Now, researchers are studying a new program, outlining their findings in ‘Green Fab Lab Applications of Large-Area Waste Polymer-based Additive Manufacturing.’

A vast majority of 3D printing projects are created with plastics, causing the authors to explore the idea of fused particle fabrication/ fused granular fabrication (FPF/FGF) printing in a streamlined recycling manner—fabricating directly from a supply of plastic waste (FPF is one of the names for Material Extrusion 3D printing using granules or pellets). This concept would allow green fab labs to function as creative communities—but also as recycling centers. Open source industrial 3D printers would be necessary for such an operation, and the researchers chose the Gigabot X for this study, mainly, although an FFF 3D printer, the Lulzbot Taz, was used for fabricating more detailed parts due to its 0.5 mm nozzle.

Such an operation will embody the concepts of the following:

  • Open source symbiotic economies
  • Biomimicry
  • Regenerative design
  • Circular economy patterns

The Gigabot X 3D printer

Currently, numerous fab labs are exploring how 3D printing can be beneficial to the environment, beginning with the simple fact that it is ‘less environmentally detrimental’ than traditional manufacturing. Upcycling waste into filament is also becoming more popular, with numerous different types of machines being developed to handle this type of production for creating re-usable materials. the researchers point out that they have been responsible for successful recycling with a variety of different plastics, including PLA and ABS, and some other alternative materials too.

Sports equipment was printed for the project, and included a skateboard, kayak paddles, and snow shoes to complete the case study. Blender and FreeCAD were used for designing the products so that the open-source community would have access.

Printing times were as follows:

  • Skateboard – 11 hours, 54 minutes
  • Kayak paddles – 7 hours, 45 minutes (per set)
  • Snow shoes – 18 hours and 16 minutes (per set)

Overall, the researchers found that the Gigabot X offers definite ‘economical potential’ as a recycling system, and it successfully produced the ‘high-value’ sports products in all three case studies. The project was a success economically, even regarding use of electricity, and efforts spent customizing some of the parts substantially.

“For some products the profit potential and return on investment was substantial (e.g. over 1000%) for high capacity use of a Gigabot X. These results clearly show that the economic benefit of distributed recycling and on demand production of large, functional objects using an integrated FPF/FGF tool to promote circular manufacturing,” concluded the researchers.

Although plastics have many uses throughout the world, the question of what to do with them when they are no longer useful to us has become a topic of great concern, along with continued emphasis on recycling and the best methods for doing so—along with constant campaigning everywhere to encourage consumers not to dump items into landfills when materials can be re-used. Almost as soon as 3D printing blasted its way into the mainstream, what to do with all that plastic became an accompanying conversation, whether discussing cannabis containers being made into prostheses, following recycling 3D printing enthusiasts traveling the oceanside in mini-vans, or exploring the possibilities of recycling e-waste into 3D printers.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Skateboard CAD file prepared for print

Finished skateboard

Kayak paddle CAD file prepared for print

(a) Finished kayak paddles (kid’s version) and (b) Finished kayak paddles (Adult version)

Snowshoe CAD file prepared for print

Finished snowshoes

[Source / Images: ‘Green Fab Lab Applications of Large-Area Waste Polymer-based Additive Manufacturing.’]

Recycled Content of Filamentive’s 3D Printing Filaments in Accordance with ISO 14021 Standard

According to UK-based 3D printing material startup Filamentive, 90% of all the plastic used in the world comes from non-renewable sources, which means there’s definitely a major environmental need for recycled 3D printing filament. That’s why Ravi Toor, the startup’s founder and director, decided to launch Filamentive back in 2015, with support from the University of Leeds.

Toor realized that the 3D printing materials market needed to change, and put his environment-based degree, and experience running a 3D printing business, to the test. He founded the startup in order to offer more sustainable filament that can address both environmental impact and the need for high quality materials at the same time.

“As 3D printing becomes more popular, plastic production and consumption will increase, causing many environmental impacts,” the startup notes on its website. “Filamentive was set-up to address the environmental concerns in 3D printing – committed to using recycled materials where possible, without compromising quality.

Filamentive is an ethical brand, committed to both social and environmental sustainability, which is why it is so proud to announce the news that the recycled content of all of its 3D printing filament products are now in accordance with the ISO 14021 standard.

Toor said, “It is becoming evident that all consumers – from hobbyists to large businesses – are becoming increasingly environmentally-aware and so we will continue to set high targets for recycled content and the recyclability of our packaging.”

The Filamentive 3D printing material products listed below have all been evaluated by the International Organization of Standards (ISO) according to BS EN ISO 14021:2016 – Environmental labels and declarations — Self-declared environmental claims (Type II environmental labelling).

Filamentive has responded to the ever-growing issue of harmful waste plastic, and the rise of plastic usage due to the 3D printing industry, by remaining steadfast in its commitment to use a higher percentage of recycled materials in all of the products it manufactures and sells. In addition, the West Yorkshire startup is committed to creating recyclable spools and packaging, thanks in large part to the empty spool return initiative it launched in 2017.

“Due to FDM/FFF 3D printers using plastic materials as feedstock, unfortunately as 3D printing becomes more popular, plastic production and consumption will increase, causing the industry to exacerbate the global problem of plastic. Filamentive specialise in sustainable 3D printing filament materials. The company was founded to address to the environmental need to use more recycled plastics in 3D printing, and also alleviate market concerns over quality and long term sustainability,” Toor stated.

While 3D printing is actually far less wasteful than more traditional methods of subtractive manufacturing, such as CNC machining, using plastic as a feedstock could actually, according to the startup, “exacerbate the global plastic epidemic.”

Thankfully, there are many initiatives around the world that are set on using 3D printing to lower the amount of plastic that we waste, by making things like prosthetic limbs, furniture, shoes, and filament out of the used material. Filamentive is obviously focusing on the latter, and was also founded in order to challenge the common thought that products made from recycled materials are somehow of lesser quality.

The startup knows that high quality prints can only come from high quality filament, which is why it has committed itself to “strict waste selection and manufacturing procedures” so the 3D printing performance of its users isn’t impacted. The news that its 3D printing filaments are now in accordance with the ISO 14021 standard will only serve to help Filamentive continue its mission.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Source/Images: Filamentive]

Halifax e-NABLE Branch Recycling Plastic Weed Container Lids into 3D Printed Prosthetic Limbs

Jake Boudreau [Image: CBC News]

Last year, Halifax resident Jacob Boudreau, who works for a logistics company, watched a TED Talk by heartwarming 3D printed prosthetics volunteer organization e-NABLE, and was inspired to open his own non-profit e-NABLE chapter, called Kindness3D.

Boudreau said, “This project really resonated with me because it’s the perfect marriage between health and tech.”

Isabella, from Nosara, Costa Rica, received a 3D printed prosthetic hand from Kindness3D. [Image: Kindness3D]

Things started off normally enough, with Kindness3D using regular PLA material to fabricate prosthetics, including a 3D printed hand and arm for Brazilian athlete Kelly De Oliveira Malaquias and a hand for a young girl in Costa Rica.

But Boudreau’s work to provide 3D printed prosthetics is now dovetailing with another passion – recycling plastic waste from what he refers to as the “excessive cannabis packaging conundrum” of the NSLC (Nova Scotia Liquor Corporation), the province’s legal cannabis distributor.

Boudreau said, “There’s no real plan in place for how much waste is being put through the NSLC.”

Recently, Canada became the first major world economy to legalize recreational marijuana. But many customers in Nova Scotia are criticizing the NSLC for using excessive packaging for the product. Cannabis guidelines for Health Canada say that the packaging must be tamper-proof, child-resistant, and prevent contamination.

Easy Cheesy cannabis, purchased at the NSLC in Halifax. [Image: CBC News]

While the white plastic containers that Canada’s pot comes in do meet these guidelines, some consumers say they are environmentally unfriendly and not able to be recycled. Boudreau says that all of the lids will eventually end up in landfills…so he’s taking action.

Just like the Million Waves Project uses recycled ocean plastic to make 3D printed prosthetic limbs, Boudreau and Kindness3D want to use these plastic pot container lids to make 3D printed prosthetics for kids.

“We just noticed that there was an obscene amount of waste. To me it seemed incredibly wasteful. It was actually frustrating for me as a consumer,” Boudreau said.

He first got the idea to recycle the plastic cannabis lids into plastic for 3D printed prosthetic limbs when customers asked him if he could help with the waste problem.

“We jumped on board, noticing that there wasn’t really a plan in place to deal with this kind of waste. It’s something we’re really excited about,” Boudreau said. “We’re doing our part to kind of help out and as well repurpose this packaging and create some artificial limbs from it.”

Lizzy Brown of Kindness3D holds up an empty cannabis package at the recent workshop in Halifax. The group is asking Haligonians to drop off the used caps from cannabis packaging at various spots around the city for them to be shredded and turned into 3D printed prosthetics. [Image: Fadila Chater, Star Metro]

First, Kindness3D modified a paper shredder so it could be used to break down the plastic pot container lids, so the shredded plastic could be used in the organization’s 3D printer. Then, it began to ask other local businesses to collect the used lids. Now, Kindness3D asks Nova Scotians to bring the empty cannabis containers, lids and all, to Boudreau’s Dalhousie University Sexton Campus operation, and various other drop-off points, for recycling and reprocessing into prosthetic limbs.

Boudreau hopes to use the lids of cannabis containers to make prosthetic limbs. [Image: CBC, Kindness3D]

Since beginning the cannabis lid recycling project, Boudreau is already working to complete a 3D printed prosthetic arm for a four-year-old girl in California. Additionally, he started a petition in hopes of convincing the NSLC to collect and donate all of its used cannabis packaging to Kindness3D.

But, according to NSLC spokesperson Beverley Ware, the corporation has not been contacted by Kindness3D yet…maybe it’s waiting to get a certain number of signatures first?

Ware is also requesting that customers continue to follow the recycling programs already set up in their communities.

Ware explained, “We do not recycle bottle or cans and don’t have the room in our stores to provide such a drop-off service or the infrastructure to deliver products for recycling.”

I hope this recycling initiative by Kindess3D doesn’t turn into some kind of legal battle. I understand that there are rules for a reason, and maybe the infrastructure doesn’t allow for this sort of program just yet. But the non-profit is trying to do a very noble thing in both recycling large amounts of wasteful plastic and providing 3D printed prosthetics to the people who need them most, so I hope that everything will work out in the end.

[Image: Kindness3D]

What do you think about this? Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below. 

3D Printing News Briefs: October 10, 2018

It’s business news as usual to kick things off in today’s 3D Printing News Briefs, and then we’re moving on to a little medical and metal 3D printing news, followed by a 3D printing experiment and a superhero-sized 3D printed statue. The LEHVOSS Group is expanding the production capacities for its LUVOCOM material, DyeMansion has announced that its new RAL colors are now available, and the Million Waves Project receives a large grant from Shell Oil. A medical technology company is using HP’s Multi Jet Fusion to 3D print dental aligners, a YouTube video shows the depowdering process for a metal 3D printed turbine, and an experiment shows if it’s possible to use a DLP 3D printer for PCB etching. Finally, WhiteClouds designed and 3D printed a huge statue of She-Ra for a special event.

LEHVOSS Group Expanding LUVOCOM Production Capacity

Not long ago, the LEHVOSS Group, which operates under the management of parent company Lehmann&Voss&Co., revealed that that it would be showcasing its high-performance, thermoplastic LUVOCOM 3F 3D printing compounds at upcoming trade shows. Now, in order to keep meeting the ever increasing demand for these materials, the company has taken important steps, such as constructing a new laboratory and innovation center in Hamburg and commissioning an additional compounding line, to expand the worldwide production capacities for LUVOCOM.

“At the same time, these investments are just another consistent step within the framework of our long-term growth strategy,” said Dr. Thomas Oehmichen, a shareholder of Lehmann&Voss&Co. with personal liability. “Additional extensive investments in the expansion of our plastics business are currently the subject of detailed planning and are set to follow shortly.”

DyeMansion’s New RAL Colors Available

While attending the TCT Show in Birmingham recently, DyeMansion launched three machines that work together to depowder, surface treat, and dye 3D printed parts. The DM60 is the fully automated dyeing part of the system, and the company added a brand new palette of 170 standard RAL colors for PA2200 to its portfolio to let people expand the color range of the system significantly.

DyeMansion has now announced that its new RAL colors for the PolyShot Surfacing (PSS) finish are now available for DM60 color cartridges, and can be ordered via the DyeMansion On-Demand Service. To check if your favorite colors are available, type in the RAL color code on the website. To learn more about the RAL palette and the Print-to-Product workflow, visit DyeMansion’s booth 3.1-G61 at formnext in Germany next month.

Shell Oil Gives Million Waves Project a $5,000 Grant

About 40 million people in the developing world don’t have access to the prosthetic limbs they desperately need, while an estimated 28 billion pounds of plastic trash is dumped into our oceans each year. 501c(3) non-profit organization the Million Waves Project is working to fix both of these problems by using recycled ocean plastic to make inexpensive, 3D printed prosthetic limbs for children. The organization is pleased to announce that it will be now be able to make even more 3D printed prosthetics for kids thanks to a $5,000 grant that Shell Oil is providing.

“We are so excited to partner with this incredible nonprofit that aims to help serve the millions of people in need of prosthetic limbs,” said Brenna Clairr, an external relations advisor at Shell. “Our vision at the refinery is to proudly fuel life in the Pacific Northwest for our employees, contractors and our community, and we help bring that vision to life by collaborating with organizations like a Million Waves Project.”

HP’s MJF Technology Used to 3D Print Dental Aligners

Swiss medical technology company nivellmedical AG is focused on developing, manufacturing, and distributing nivellipso, a novel clear aligner system for correcting misaligned teeth. The system, a more aesthetically pleasing alternative to the conventional fixed braces, uses biocompatible, invisible plastic splints that gently move teeth to the desired position. The company is using HP’s Multi Jet Fusion technology to make its  dental aligners, which has helped improve its digital workflow.

“We are putting our focus on precision and quality work,” said Dr. Milan Stojanovic, the head of the nivellmedical board. “3D printing technology has simplified a lot of the production of aligners.

The patient’s mouth is scanned, and the scan is then sent to the laboratory, where a model is 3D printed and used to properly fit the aligners before they are shipped out to the patient. Learn more about the process in the video below:

Depowdering a Metal 3D Print Build

Have you ever seen those videos on the internet that are supposed to be ‘oddly satisfying’ and stress-reliving in a way you can’t quite figure out? The ones that show a ton of matches lighting up in a pattern, or someone slowly squishing their hands in a beautifully decorated pile of slime or some other weird material? Nick Drobchenko, a YouTube user from Saint Petersburg, has now introduced the 3D printing equivalent with his video of using a brush to slowly remove the metal powder from a 3D printed part.

“Hollow stainless steel turbine, 90mm diameter. Printing time 4.5 hours,” Drobchenko wrote in the video description. “Printing cost $140, about 30 cm3.”

If the video below does not soothe and/or satisfy you, then I’m not sure what will:

Can a DLP 3D Printer Be Used for PCB Etching?

A maker named Andrei who goes by Electronoobs online recently acquired a couple of DLP 3D printers. After reviewing them, he wanted to see if it was possible to use DLP 3D printers to build the mask for PCB etching. So he created an experiment – with surprising results – and published a video about his experience on YouTube.

“I would only use the UV light of the printer to create the mask for the PCB, and then etch it using acid for copper PCBs just as always,” he explained in the video.

In addition to the DLP 3D printers, other things required for this experiment included copper boards, dry photosensitive film, sodium carbonate, latex gloves, and an iron. Spoiler alert – Electronoobs succeeds in using DLP technology to 3D print a mask for PCB etching. To see the rest of his impressive experiment, check out the video below:

3D Printed She-Ra Statue for New York Comic-Con

[Image: Darinda Ropelato via Facebook]

Utah-based 3D printing services company Whiteclouds has plenty of experience with the technology in many applications, from aerospace, gaming, and mapping to medical for both animals and humans. But recently, the employees got to participate in a project that was, as Whiteclouds CEO Jerry Ropelato told 3DPrint.com, “one of the coolest (and funnest) 3D prints” they’ve ever worked on. The company was asked to design and 3D print the statue of She-Ra at the recent New York Comic-Con.

“It was our tallest at 11 foot tall,” Ropelato told us.

DreamWorks and Netflix are bringing She-Ra and the Princesses of Power back to life with an animated series that will begin next month. According to a Facebook post by Ropelato, Whiteclouds enjoyed every bit of the Comic-Con project, which included designing and 3D printing She-Ra’s throne and sword. The team used touch-sensitivity electronics for activating the sound and lighting for the statue, and were proud to have a small part in the She-Ra reboot.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below. 

Comparing 3D Printed Parts Made with Virgin and Recycled PLA

While 3D printing continues to grow in leaps and bounds, it still creates a lot of waste, due to removed support structures, disposable prototypes, failed prints, and multiple iterations. Luckily, PLA is biodegradable, and the waste can be easily managed in multiple ways, such as combustion, composting, and dumping it in landfills. However, the best method is recycling: in terms of its environmental impact, it’s 16 times better than combustion and 50 times better than composting, and its carbon footprint is 3,000 times less than that of some plastics based in petroleum, like ABS.

Over the years, many 3D printing companies have started to offer 3D printing filament that’s made from recycled consumer waste, and even recycled filament itself. There are also filament extruders available for people who want to recycle their used material at home. Researchers Isabelle Anderson recently published a paper, titled “Mechanical Properties of Specimens 3D Printed with Virgin and Recycled Polylactic Acid,” about her work evaluating the various properties of 3D printed test specimens made with virgin PLA filament, and comparing them to specimens fabricated with PLA filament made from recycling the original 3D printed specimens.

Testing tensile specimens on the Instron 3369.

The abstract reads, “With the 26% annual growth rate of additive manufacturing, especially in the area of 3D polymer printing, the amount of waste is increasing at a rapid rate. Limited research in the area of recycling has been produced, yet there are several recycling machines being developed for home use. Despite this work there is no published mechanical data on components produced with filament recycled from 3D printed parts. There is very limited data on mechanical properties of any 3D printed materials. This article compares the properties of parts 3D printed with virgin polylactic acid (PLA) to those printed with recycled PLA. Using commercially available PLA and an entry level 3D printer, tensile and shear specimens were produced and then tested for tensile yield strength, modulus of elasticity, shear yield strength, and hardness. The specimens were then ground up and re-extruded into filament, and a second set of specimens were produced and tested using this recycled PLA filament. Mechanical testing showed that 3D printing with recycled PLA is a viable option. With the recycled filament, tensile strength decreased 10.9%, shear strength increased 6.8%, and hardness decreased 2.4%. The tensile modulus of elasticity was statistically unchanged. Although the average mechanical properties before and after recycling were similar, there was more variability in the results of the recycled filament. Additionally, when printing with the recycled filament there was some nozzle clogging, while none occurred with the virgin filament. Overall, the mechanical properties of specimens 3D printed from recycled PLA filament were similar to virgin properties, encouraging further development in the area of recycling 3D printed filament.”

Distributive recycling at businesses and homes, when compared to centralized recycling, can reduce greenhouse gases, and could potentially save more than 100 million MJ of energy each year. However, there isn’t a lot of data about the mechanical properties of virgin 3D printed plastics, and even less about recycled 3D printed plastics.

Anderson chose to evaluate PLA in her study because it’s fairly easy to recycle into filament, and 3D printed all of the specimens on a Flashforge Creator.

“Initial test specimens were produced using virgin PLA filament with a nominal diameter of 1.75 mm. Tensile specimens were fabricated according to American Society of Testing Materials (ASTM) standard D638-14 Type IV,” Anderson wrote in the paper. “The shear specimens were fabricated as square plates with dimensions of 51.2 × 51.2 × 3.9 mm.”

ASTM D638-14 type IV tensile test specimen.

Tensile and shear testing were both conducted on an Instron 3369 Testing Machine, while a handheld Shore D digital durometer was used to test hardness four times from the middle of the shear specimens. After the specimens made with virgin PLA filament were tested, Anderson sent them to Filabot, where they were then ground and re-extruded into 1.75 mm 3D printing filament.

“When the re-extruded filament was received the second set of tensile and shear specimens were produced using the same equipment, software, and method as used on the first set. These specimens were then tested with the same equipment and methods described above,” Anderson wrote.

The results showed that the properties of the specimens 3D printed with virgin PLA were similar to those of the recycled filament, which is “encouraging for the advancement of recycling technology in the area of 3D printing.”

“Although there were some minor difficulties working with the recycled filament, it produced specimens with very usable properties,” Anderson wrote in the paper. “These data are some of the first with large sample sizes, of 25–32, showing tensile, shear, and hardness values for 3D printed PLA, in both a virgin and a recycled format. This verifies that, using an entry level 3D printer, components can be produced with filament recycled from previously 3D printed parts with consistent mechanical properties that are only slightly less than the original parts.”

ASTM shear testing fixture D732-10.

The two types of specimens even looked similar, displaying consistent surface finish and diameter. However, there were some differences between the recycled and virgin PLA, including the fact that the average mechanical properties of the 3D printed recycled specimens were 2-11% lower than those of the prints made with virgin PLA. Additionally, the average shear strength of the recycled material was 6.8% higher than that of the virgin PLA. But there are several possible reasons for these discrepancies, such as a different Poisson’s ratio.

“This project produces valuable baseline data on 3D printed PLA and validates the recycling process with similar data using recycled PLA,” Anderson concluded. “The data produced demonstrates that recycling 3D printed scrap materials into usable filament can yield parts with similar properties to parts produced with virgin filament. This creates the potential to save significant amounts of raw materials, cost, energy, and CO2 emissions in the production of 3D printed components.”

Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.