3D Printing News Briefs: November 28, 2018

We’re starting with some business news in today’s 3D Printing News Briefs, and then moving on to an award. A British company is the first automotive consumer retail brand built entirely around 3D printing, which is a pretty big deal. Oerlikon has a new online instant quoting and tracking tool, while MakePrintable has released some new updates and Additive Industries is launching a new center in Singapore. Finally, the SMS Group has won a prestigious award.

First Automotive Consumer Retail Brand Built Around 3D Printing

Leeds-based digital manufacturing company Carbon Performance uses 3D printing, artificial intelligence, and blockchain to design and fabricate lightweight, next-generation automotive components that are environmentally sustainable. Recently, the company designed an suspension upright for a Lotus Elise sports car that was 3D printed in aluminum. The part, with an organic design, ended up being 25% more lightweight and was consolidated from a total of nine parts into just one.

But what really sets Carbon Performance apart is that it packages up its 3D printed automotive components and retails them to end customers, which technically makes the company the first automotive consumer retail brand in the world that’s built entirely around 3D printing. Take a look at its short promo video below:

Oerlikon Offering New Online Tool

Swiss technology and engineering group Oerlikon is now offering a new online tool to help its customers save time with their on-demand manufacturing and rapid prototyping needs. The company is offering an online instant quoting and tracking tool that’s capable of handling a large variety of metal and polymer part needs.

The tool is easy to use – just upload your CAD file and prepare your part for 3D printing by choosing from available options. Then, Oerlikon will 3D print your part, and you can track the order until it’s sent quickly right to your door. The company is even offering a discount for the first order you place in its new service through December 31st, 2018. Simply enter the promo code AMFIRST in the Oerlikon AM online quoting tool to take advantage of the deal.

MakePrintable Releases New Updates

Speaking of tools, the MakePrintable service launched by San Francisco startup Mixed Dimensions back in 2014 has just released a few major updates. It already offers such services as easy, automated 3D file fixing and better user efficiency in 3D printing, and is now rolling out its latest – a pay per download service and a full color 3D printing service. The first lets customers repair files, then pay if they’re pleased with the quality, without having to purchase a subscription, while the latter service is able to produce “unmatched quality prints at competitive pricing compared to others in the industry.”

“When we designed our printing service we focused heavily on all pillars (quality, speed and cost) as we know how much expensive and problematic it is to get quality prints and even to get past most 3D printing services checkout process,” Baha Abunojaim, Co-Founder and CTO of Mixed Dimensions, told 3DPrint.com. “At MakePrintable we guarantee our users a smooth and fast experience with a competitive pricing point while also leveling up the quality thanks to our years of research and robust file preparation technology.”

Additive Industries Announces New Center in Singapore

After an official State Visit from Mdm Halimah Yacob, the President of the Republic of Singapore, to its Eindhoven headquarters, Additive Industries announced that it would be building a Process & Application Development (PAD) Center in Singapore. The company plans to build its newly launched PAD Center up into a regional Asia Pacific hub for customer support and local development. The PAD Center will also serve as a competence center for the industrialization of metal 3D printing within the company itself, with special market focus on important regional verticals like semiconductor equipment and aerospace applications.

“Singapore is an ideal stepping stone for Additive Industries’ growth ambitions in the Asia-Pacific region,” said Daan Kersten, the CEO of Additive Industries. “It is a natural hub with great infrastructure, it’s an excellent fit with our target markets and the governmental support accelerates our execution.”

3D Printed Spray Header by SMS Group Wins Award

A group of companies that’s internationally active in plant construction and mechanical engineering for the steel and nonferrous metals industry known as the SMS Group just announced that it won the German Design Award 2019, in the Industry category, for its 3D printed spray head for forging plants. This is likely the first time a small machine component like the spray head, which is used to cool dies in forging presses, has won one of these awards, so it’s a pretty big deal. The 3D printed spray head is the result of a joint effort between the group’s Forging Plants Department, Additive Manufacturing Project Team, and simulation technology experts. While it is a small component, it’s certainly mighty – it was designed to fulfill its function in the most efficient way possible. 3D printing helped to make the spray head smaller, less expensive, easily customizable, and made it possible to add flow optimized channels for cooling die heads.

“Winning the Design Award makes us extremely proud. It is recognition of many teams within SMS group whose work is characterized by a highly interdisciplinary approach,” said Axel Roßbach, Research and Development Extrusion and Forging Presses with the SMS group GmbH. “The spray head is a milestone innovation marking a new era in the design of plant and machine components, enabled by the game-changing potential of 3D printing and function-optimized design. The design of a machine part is today no longer limited by the constraints imposed by conventional – process-optimized – forming and machining techniques. Supported by latest software and computer technology, we can now give a component exactly the design that fulfils its designated function in the best possible way. Another important aspect is that we have used new materials. Therefore the Award honors not only a new design, but above all the new way of thinking lived within SMS group, which has materialized in a global approach to Additive Manufacturing.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

Customers Customizing Their Own 3D Printed Razor Handles with Gillette’s New Razor Maker Platform

Everywhere you look, there’s customization and personalization in the products we use daily – we consumers definitely like the items we use to reflect our preferences and personal tastes. And in today’s world of advanced manufacturing, it’s easier than ever to connect everyday products with personalized experiences to form bonds with customers…and get us to buy things, of course. Now, razor manufacturer Gillette is turning to 3D printing again, this time to pilot its new Razor Maker concept and open up consumer personalization with 3D printed razor handles.

The new platform is a great example of direct-to-consumer, end-use 3D printed parts, as Razor Maker is giving consumers the power to create and order their own customized razor handles. Fabricated on Form 2 3D printers, there are 48 different designs to choose from, with more coming later, along with a variety of colors; there’s even an option to add custom text to your razor handle.

Donato Diez, global brand manager for Gillette and Razor Maker co-founder, said, “Our partnership with Formlabs, and the power of their 3D printers, enable consumers to have a say on how their razors should look. We are excited to work with our Boston neighbors to pilot this breakthrough concept of customization.

“For Gillette, piloting Razor Maker represents a crucial step in our customization journey where new technology and new business models must come together in order to deliver products that are as unique as our consumers.”

Gillette’s Razor Maker concept brings design freedom to the final product in a new business model that could change how companies work across the whole product lifecycle. This is more than just a 3D printed razor handle, my friends – it’s a look at the future of mass-customized products.

Evan Smith, global product manager for Razor Maker, said, “We know consumers today are looking for brands that innovate in ways that let them express themselves – and that’s exactly what this pilot is all about.”

Razor Maker had to totally rethink its approach to manufacturing in order to deliver such customization. So back to the 3D printed razor handle itself – the first process steps are totally digital. First, the customer customizes their own unique handle through the platform’s website. Next, the final design is converted into a 3D file by Razor Maker.

Then, multiple design files are sent to a Form 2 3D printer to be printed at the same time in one batch. Once the handles are done printing, they’re washed, post-cured, coated, and assembled, before they’re shipped right to the customer’s door in 2-3 weeks.

“The Razor Maker concept allows us to create a new design, print and test it, and then the next day that design becomes a new handle available on the website. That was never possible before,” said Rob Johnson, a design engineer and Razor Maker co-founder.

The designers of some of the original Razor Maker handles were inspired by many of the geometries and shapes often seen in architecture, nature, and even technology, but would be tough to reproduce through conventional methods of manufacturing.

“It allows us to think about form in a way that was never possible before. In a traditional sense, we could only do one or two razor designs a year, whereas now we can have an idea, create it in 3D, print it, look at it, adjust it, and say that’s it,” said Rory McGarry, industrial design lead at Razor Maker.

Easy customization like this is one of the hallmarks of 3D printing, which Gillette previously only used for prototyping purposes. No tooling is required, there’s no up-front investment in molds, and the costs of having to produce several complex design iterations to find the optimal one are gone. It’s easy to scale custom manufacturing by just adding more 3D printers, and the lack of design constraints makes it easy for consumers to make razors that are entirely personalized – good news in a market where we see a lot of mass-produced stuff for sale.

Johnson said, “Combining our best shaving technology with the power and flexibility of 3D printing opens up a whole new world of product design possibilities.”

In addition to its new Razor Maker platform, Gillette is also working with Formlabs to possibly automate its 3D printing production processes. The company is one of the first testers of Form Cell, its relatively new automated production system.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

[Source/Images: Formlabs]

3D Printing News Briefs: September 18, 2018

We’re starting with a bit of business news in today’s 3D Printing News Briefs, then a story about metal 3D printing, and then moving along with examples of some of the amazing and innovative things people have been making with this technology. Sigma Labs has issued a letter to shareholders about some company changes, and a YouTube video introduces some new hard tool steels for 3D printing. WASP is carrying on with a major project by its Crane construction 3D printer, and a University of Minnesota professors talks about 3D printing electronics directly on skin. BMW Motorrad created 3D printed motorcycle components, and a Wisconsin sign company is using 3D printing for its products. Finally, Wrights Robotics made a full-sized, 3D printed, talking robot from a little 1980s movie called Short Circuit, and a low poly artist made some neat 3D printed chain mail.

Sigma Labs Says Goodbye to Mark Cola

Mark Cola

This past Friday, September 14th, Sigma Labs, Inc., which provides quality assurance software under the PrintRite3D brand, announced that its President, Co-Founder, and CTO Mark Cola would be retiring next month. After the news had time to settle over the weekend, the company announced the release of a letter to its shareholders from CEO and Chairman John Rice. In the letter, Rice paid tribute to everything Cola had done for the company over the years, and also assured shareholders “that the succession taking place is smooth and secure,” noting that Cola’s internal management responsibilities will be covered by Sigma’s Vice President of Engineering Darren Beckett, while Dr. Martin Piltch will take over his role on the company’s outside team of technology consultants.

“We thank Mark as founder and a leader of Sigma Labs, for creating and driving a vision of advancing the Additive Manufacturing Industry’s ‘good’ 3D manufacturing technology to become a ‘great’ high-quality manufacturing technology assured by Sigma’s IPQA,” the letter reads. “We shareholders can thank Mark for building and leading the multi-discipline technology team that is commercializing our robust data-rich analytical and interactive software – hardware tools that promise to add real value to an industry that needs such a tool. Yes, Mark now surely has the right to step back. Thank you and well done, Mark Cola!”

Here at 3DPrint.com we’ve met with Mark and have been very impressed with his deep 3D Printing knowledge and his vision on 3D printing for manufacturing and know he’ll be sorely missed at Sigma Labs.

Hard Tool Steels for SLM 3D Printing

Formetrix Metals, a brand new company I’d not heard of before today, recently posted its first video about its use of BLDRmetal steel alloys for laser powder bed fusion 3D printing. The 3D printable hard tool steel was used to make industrial dies for rolling bolt threads, after the dies made with CNC machining had failed.

After designing the dies, new BLDRmetal tool steel was used to 3D print prototypes. Once the surface finish was complete on the prototype dies, they were able to achieve high toughness and a high case hardness of up to 74 HRC.

WASP Crane Construction 3D Printing

WASP (World’s Advanced Saving Project) is well-known for its large-scale construction 3D printers, and for the last two years has been working to develop a new one, called the Crane or “the infinity 3D printer.” Evolved from the BigDelta 12M, the Crane is a modular 3D printing system with different configurations to choose from. Next month in Italy, WASP plans to present the Crane to the public in Massa Lombarda, which is where the village of Shamballa is being 3D printed.

On October 6th and 7th, a program will be held surrounding the introduction of both the WASP Crane 3D printer and the Gaia Module, a 3D printed earth house. According to WASP, Gaia is “the first module in soil ever realized with the 3d print- technology.” For more information on the event, visit the WASP website. You can see the new Crane 3D printer in action below:

3D Printing Electronics on Skin

While augmenting humans with electronics that can monitor our vitals, enhance our senses, and provide us with real-time information may sound like just an episode out of new science fiction series Glimpse, from Futurism Studios and DUST, the idea of advanced wearable electronics is not so far-fetched. Researchers like Michael McAlpine, a 3D printed electronics expert and mechanical engineering professor at the University of Minnesota, are working to improve upon existing technologies to make this fantasy a reality. This spring, McAlpine published a study that demonstrated how to 3D print electronics directly onto skin with an inexpensive, self-made 3D printer and ink made from silver flakes. Recently, Futurism interviewed McAlpine about his research, and his thoughts on the future of 3D printable electronics.

“All of these technologies we’re developing will lead to the post-computer era. You’re basically going from 2D to 3D [microchips to integrated circutry], which is essentially what biology is. So, that’s where the merger of electronics and biology is going to happen. Any privacy or ethical issues that spring from that aren’t going to be much different from the ones that we have with current electronics,” McAlpine said.

3D Printed Motorcycle Components 

The motorcycle brand of German automotive company BMW, called BMW Motorrad, recently developed a new motorcycle that’s full of 3D printed components and parts. This is not surprising, considering the parent company’s love for and use of 3D printing for both its regular and concept automobiles – BMW has been using 3D printing to build its cars for nearly 28 years.

3D printing can achieve parts with complex geometries, which is why it’s a perfect technology for the automotive industry. BMW Motorrad’s special concept motorcycle, called the S1000RR, demonstrates how the company can build new components using rapid prototyping technologies, as it is made of many 3D printed parts, such as a swingarm and an aluminum chassis. Take a look for yourself in the video below:

3D Printing Signs: Beneficial or Not?

Adam Brown in the shop at Sign Effectz.

Four years ago, a sign making company called Fastsigns decided to adopt 3D printing in three of its major markets – Chicago, Milwaukee, and San Diego. Fastsigns isn’t the only company to use 3D printing to make signage – a Milwaukee business called Sign Effectz, which was first founded in the company president’s garage in 1996 and now resides in a 17,000-square-foot facility, decided to explore 3D printing a few years ago, because it could open new ways of customizing signs and make it simpler and less expensive to produce small batches of custom products. But, workers in skilled trades may not appreciate the technology quite as much.

Your fabricators on the floor now turn into (computer-aided design) modelers. I did. I love it. I came from busting my knuckles and dropping stuff on my toes and wasting material to problem solve and figure out how to build something… to getting to the 3D CAD modeling world where you can do all of that stuff in a virtual world and make sure 1,000 pieces all match and align and run it through animation to see if it works,” said Adam Brown, the President of Sign Effectz, before noting the potential downside of the technology.

I wonder if you’ll be able to maintain the level of interest and passion in 3D CAD modeling because there’s little pain associated with it all of the sudden. It’s just a mental math problem and you hit print.”

In my opinion, products like custom signage are one of the many applications for which 3D printing is perfect. Using 3D design and CAD software to create signs is still a creative way to build something, even if you’re not manufacturing every bit of the sign by hand.

Full-Size 3D Printed Johnny 5 Robot

If you’re a fan of 80s movies, then you surely know of Short Circuit, starring such well-known actors of the decade like Steve Guttenberg and Ally Sheedy. With the tagline “Life is not a malfunction,” the movie tells the story of Number 5, one of a group of experimental military robots. When the robot is struck by lightning and electrocuted, he suddenly gains self-awareness and intelligence, and flees the laboratory, as he is afraid of being reprogrammed. He is later rechristened as Johnny 5.

Wrights Robotics recently completed its own life-size, 3D printed version of the Johnny 5 robot, and published a YouTube video showing its audio, neck motor, and lip light tests. Just like the real Johnny 5, this 3D printed robot moves, lights up, and talks, even uttering the movie phrase “Don’t disassemble Number 5!”

3D Printed Chain Mail 

If you’re a frequent visitor to Renaissance festivals, then you’ve no doubt seen plenty of chain mail in your day. But Agustin Flowalistik, a low poly 3D printing artist based in Madrid and the Fablab manager of Tecnolab, decided to create his own chain mail – of the 3D printed variety, of course. If you want to make your own, Flowalistik has made the files available for download at Cults3D, Thingiverse, and MyMiniFactory.

“The chainmail size is 195x195mm. A 60x60mm sample is available to test and find the right settings before printing the big chainmail. Print the model with a 0.4mm nozzle and 0% infill,” Flowalistik wrote in the Thingiverse description for the 3D printable chainmail.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.