3D Printing News Briefs, June 20, 2020: 3DEO and 3MF Consortium

Our 3D Printing News Briefs this week are indeed brief, but no less important. We’ll tell you how 3DEO has reached an important production milestone, and also about the newest member of the 3MF Consortium.

3DEO Reaches 150,000 Production Parts Shipped

Monthly shipment of 3500 pieces to a 3DEO customer

Metal 3D printing company 3DEO, founded in 2016 for the purpose of competing against conventional manufacturing with high-volume metal additive manufacturing, recently announced that it has reached a major milestone: it’s shipped out 150,000 production parts for end-use applications. The California company’s mission is to make metal 3D printing available for mass production through its digital industrial platform, and this announcement is excellent evidence that it’s well on its way. 3DEO has an interesting business model – instead of selling its 3D printers, the company has focused on becoming an expert user of its own patented technology, and built an automated end-to-end industrial platform, to which its customers then have access.

“150 thousand parts is a terrific milestone for 3DEO. It validates our patented technology, our unique business model, and our mission to break metal additive manufacturing (AM) into high-volume production. Today, we routinely win bids against traditional manufacturing because of our competitive cost structure and material performance,” said 3DEO’s President Matt Sand.

“150,000 parts shipped is only the beginning for us. We are scratching the surface of what’s possible with metal AM in the $130 billion U.S. metal parts market. With our additive and automation software and hardware, combined with our world-class R&D team and quality systems, we are primed to scale metal AM into millions of parts next year.”

3MF Consortium Announces New Specification and Member

Five years ago, Microsoft launched the new .3MF file format for 3D printing, along with the collaborative 3MF Consortium. It works to define the 3D Manufacturing Format that facilitates easier operation, making it possible to send 3D models sent to other applications, services, and platforms. Members of the consortium include Ultimaker, GE Global Research, ASTM International, Autodesk, and now Viaccess-Orca (VO), a global provider of advanced data solutions and digital content protection. VO, which will be a Founding Member, helped the consortium define its new 3MF Secure Content Specification, which will address production control requirements and payload protection and is available through GitHub under a permissive BSD license.

“In a modern cloud-connected world, data security and end-to-end encryption are playing an increasingly important role to mitigate the risk of leakages and data corruption in globally distributed manufacturing environments. Protecting the integrity and confidentiality of product designs, patient-specific biometric data, and other sensitive manufacturing content is critical to enabling additive manufacturing to scale into final part production in distributed, contractual, and highly regulated manufacturing environments,” stated Scott White, Software Distinguished Technologist at HP Inc. “We are thrilled that Viaccess-Orca joined the consortium and contributed their decades-long expertise to the design of the 3MF Secure Content extension. The final specification defines the payload encryption based on industry standards, and allows third parties to build their own key management ecosystems upon it. We believe this will allow it to be used to address a broad range of critical use cases simply and seamlessly.”

As a consortium member, VO will help address digital asset security aspects in the digital manufacturing industry. The company also announced the general release of its Secure Manufacturing Platform (SMP), which makes sure that digital assets are traceable and secure, in compliance with the new 3MF specification, across digitally distributed supply chains.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post 3D Printing News Briefs, June 20, 2020: 3DEO and 3MF Consortium appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

BCN3D Testes Chemical Resistance of Eight Common 3D Printing Materials

A material’s ability to resist degradation, erosion, or impregnation from contact with liquids, solids, or vapors of a different nature, like chemical solvents, acids, and bases, is known as chemical resistance, and it’s pretty important to achieving successful parts. When you’re choosing the materials you want to use for 3D printed end-use applications, especially for industrial purposes, you should know each element’s chemical resistance. Some 3D printing materials can swell when exposed to the liquids or vapors of solvents, like alcohols, esters, ketones, fuel, brake fluid, motor oil, and various mixtures of mineral and synthetic hydrocarbons, which changes the end part’s mechanical properties and shape. Industrial parts need to be able to hold up well under contact with these kinds of corrosive products, so filaments should be chosen wisely.

Barcelona-based desktop 3D printer manufacturer BCN3D Technologies wanted to investigate the behavior of its main filaments when they came in contact with corrosive products, in order to better inform customers on which materials should be used for specific applications. So the company put eight of its materials to the test by pitting them against an organic solvent’s chemical attack.

“This experiment was carried out by partially immersing these 3D printed parts in a small volume of organic solvent,” BCN3D wrote. “The corrosive agent chosen was Nitro-P, which is used to dilute paints and is very aggressive. To maximize the damage, the 3D printed parts were immersed in the solvent for a period of 24 hours, and their change in shape and properties was monitored by a timelapse camera followed by a visual and physical evaluation.”

The team wanted to simulate the effect caused on a 3D printed object when a solvent is accidentally splashed on it – quite a common occurrence in workshop and factory environments. The goal was to show users how important it is to choose the right filament for the end application, and risk of chemical exposure, so that the final product is safe and durable. The same print settings were used to fabricate parts with a shape that was designed to “favor the material degradation” out of the following filaments:

  • Polylactic acid (PLA)
  • Polyethylene terephthalate – glycol (PET-G)
  • Acrylonitrile butadiene styrene (ABS)
  • Thermoplastic polyurethane (TPU)
  • Polyamide (PA)
  • Polypropylene (PP)
  • High Temperature Polyamide carbon fiber reinforced (PAHT CF15)
  • Polypropylene glass fiber reinforced (PP GF30)

BCN3D hypothesized that the parts 3D printed out of PP would come out fully intact, while the PLA and ABS parts would be most affected by the solvent and hygroscopic materials (absorbing moisture from the air), like TPU and PA, would likely increase in volume.

So, what ended up happening?

They were right about the PLA and the ABS – the geometry of the 3D printed PLA part was totally, and quickly, changed by the solvent. The layers were separated, which broke the part, and the surface finish dimmed from bright to matte. Additionally, its thickness increased by 60%. The thickness of the ABS was only reduced by 15%, but the layers still separated, making the part viscous where it was submerged. Degradation was constant, causing the ABS to dissolve, and it was the only sample that changed above the level of the liquid: the evaporated solvent caused it to become brighter.

TPU sample

The TPU sample absorbed the solvent quickly, which caused its thickness to increase by a whopping 150%. BCN3D explained that the absorption generated “delaminations in the submerged part of the model as a result of the increase in volume due to the polarity of the solvent and the absorption capacity of TPU,” but once the absorbed solvent evaporated, the part “recovered its original properties,” which led the team to believe the results were “a phenomenon of physical adsorption without dissolution of the polymer.”

The thickness of the PA sample increased by 10%, and the effects of the solvent also caused it to gain flexibility. The PAHT CF15 also increased its flexibility and thickness in the solvent, but there was no dissolution of the material in the solution. This one swelled a little, but held on to its resistance and original shape.

The surface finish of the PET-G sample lost its brightness, though the solvent smoothed and softened its surface. The layers were slightly concealed due to the superficial polishing caused by the solvent, and the thickness and flexibility both increased. But while it lost most of its rigidity and resistance, the part did remain in its general shape.

Neither the PP nor the PP GF30 were terribly affected by the solvent during the test, showing no change in mechanical behavior or variations of either an aesthetic or dimensional sort. The PA did swell a bit, but managed to keep most of its original resistance and shape. The experiment shows that these two materials are ideal for 3D printed industrial applications where parts need to hold up under contact with other corrosive substances.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

The post BCN3D Testes Chemical Resistance of Eight Common 3D Printing Materials appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: October 6, 2019

We’ve got lots of material news for you in today’s 3D Printing News Briefs, starting with a Material Development Kit from RPS. Polymaker and Covestro are releasing three new materials and EOS has introduced a new TPU material for industrial 3D printing. Moving on, CASTOR and Stanley Black & Decker used EOS 3D printing to reduce costs and lead time, and Velo3D is partnering with PWR to make high performance heat exchangers.

RPS Introduces Material Development Kit for NEO800

UK 3D printer manufacturer RPS just launched its NEO Material Development Kit, which was designed by company engineers to be used as a polymer research and development tool for its NEO800 SLA 3D printer. The MDK comes in multiple platform and vat sizes, and allows developers to work with different resin formulations, so that R&D companies can work to develop a range of polymers that are not available in today’s industry. Users can print single layer exposure panes with Titanium software and the 1 liter vat in order to find the photo-speed of the formulation they’re developing; then, tensile testing of different material formulations can commence. Once this initial testing is finished, developers can scale up to the 13 liter vat – perfect for 3D printing prototype parts for use in optimizing final configuration settings.

“This NEO Material Development Kit now opens the door for large industrial chemical companies such as BASF, DSM and Heinkel to push the boundaries of UV photopolymers,” said David Storey, the Director of RPS. “The industry is looking for a quantum jump in materials to print end-user production parts from the stereolithography process.”

New Polycarbonate-Based Materials by Polymaker and Covestro

Advanced 3D printing materials leader Polymaker and polymer company Covestro are teaming up to launch three polycarbonate-based materials. These versatile new materials coming to the market each have unique properties that are used often in a variety of different industries.

The first is PC-ABS, a polycarbonate and ABS blend which uses Covestro’s Bayblend family as its base material. Due to its high impact and heat resistance, this material is specialized for surface finishings such as metallization and electroplating, so it’s good for post-processing work. Polymaker PC-PBT, which blends the toughness and strength of polycarbonate with PBT’s high chemical resistance, is created from Covestro’s Makroblend family and performs well under extreme circumstances, whether it’s subzero temperatures or coming into contact with hydrocarbon-based chemicals. Finally, PolyMax PC-FR is a flame retardant material that’s based in Covestro’s Makrolon family and has a good balance between safety and mechanical performance – perfect for applications in aerospace motor mounts and battery housings.

EOS Offers New Flexible TPU Material

In another materials news, EOS has launched TPU 1301, a new flexible polymer for industrial, serial 3D printing. Available immediately, this thermoplastic polyurethane has high UV-stability, great resilience, and good hydrolysis resistance as well. TPU materials are often used in applications that require easy process capabilities and elastomeric properties, so this is a great step to take towards 3D printing mass production.

“The EOS TPU 1301 offers a great resilience after deformation, very good shock absorption, and very high process stability, at the same time providing a smooth surface of the 3D printed part,” said Tim Rüttermann, the Senior Vice President for Polymer Systems & Materials at EOS. “As such the material is particularly suited for applications in footwear, lifestyle and automotive – such as cushioning elements, protective gears, and shoe soles.”

You can see application examples for TPU 1301 at the EOS booth D31, hall 11.1, at formnext in Frankfurt next month, and the material will also be featured by the company at K Fair in Dusseldorf next week.

CASTOR, Stanley Black & Decker, and EOS Reduce Costs and Lead Time

Speaking of EOS, Stanley Black & Decker recently worked with Tel Aviv startup CASTOR to majorly reduce the lead time, and cost, for an end-use metal production part that was 3D printed on EOS machinery. This was the first time that 3D printing has been incorporated into the production line of Stanley Engineered Fastening. In a CASTOR video, EOS North America’s Business Development Manager Jon Walker explained that for most companies, the issue isn’t deciding if they want to use AM, but rather how and where to use it…which is where CASTOR enters.

“They have a very cool software in which we can just upload the part of the assembly CAD file, and within a matter of minutes, it can automatically analyze the part, and give us the feasibility of whether the part is suitable for additive manufacturing or not. And in case it is not suitable, it can also let us know why it is not suitable, and what needs to be changed. It can also tell us what is the approximate cost, which material and printer we can use,” said Moses Pezarkar, a Manufacturing Engineer at Stanley’s Smart Factory, in the video.

To learn more, check out the case study, or watch the video below:

PWR and Velo3D Collaborating on 3D Printed Heat Exchangers

Cooling solutions supplier PWR and Velo3D have entered into a collaborative materials development partnership for serial manufacturing of next-generation heat exchangers, and for the Sapphire metal 3D printer. PWR will be the first in the APAC region to have a production Sapphire machine, which it will use to explore high-performance thermal management strategies through 3D printing for multiple heat exchange applications. Together, the two companies will work on developing aluminum alloy designs with more complex, thinner heat exchange features.

“PWR chose Velo3D after extensive testing. The Velo3D Sapphire printer demonstrated the ability to produce class-leading thin-wall capabilities and high-quality surfaces with zero porosity. Velo3D and PWR share a passion for pushing the limits of technology to deliver truly disruptive, class-leading, products. We are a natural fit and look forward to building a strong partnership going forward,” said Matthew Bryson, the General Manager of Engineering for PWR.

“Heat exchanger weight and pressure-drop characteristics have a huge impact on performance and are significant factors in all motorsport categories. Using additive manufacturing to print lightweight structures, enhancing performance with freedom-of-design, we have the ability to further optimize these characteristics to the customer’s requirements whilst providing the necessary cooling. The broad design capabilities and extremely high print accuracy of the Velo3D Sapphire 3D metal printer will help us optimize these various performance attributes.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below. 

The post 3D Printing News Briefs: October 6, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: June 27, 2019

In today’s 3D Printing News Briefs, we’re starting with a couple of stories from the recent Paris Air Show: TUSAS Engine Industries has invested in GE Additive technology, and ARMOR explained its AM materials partnership with Airbus. Moving on, Formlabs just hosted some live webinars, and PostProcess Technologies released a whitepaper on surface finishing metal 3D printed parts. Modix is sharing a lot of news, including four new 3D printer models, and finally, FormFutura has introduced sustainable packaging.

TEI Invests in GE Additive Technology

TUSAŞ Engine Industries, Inc. (TEI), founded in Turkey as a joint venture in 1985, has invested in GE Additive‘s direct metal laser melting (DMLM) technology. GE Additive announced at the recent Paris Air Show that TEI had purchased two of its M LINE factory systems and two M2 cusing machines. While the financial terms of the investment were not disclosed, the 3D printers will be installed at TEI’s Eskişehir headquarters, joining its current fleet of laser and Arcam EBM printers.

Professor Dr. Mahmut Faruk Akşit, President and CEO of TEI, said, “Today, we invest in TEI’s future by investing in additive manufacturing, ‘the future of manufacturing.’ Our longstanding partnership and collaboration with GE is now broadening with GE Additive’s machine portfolio.”

Armor and Airbus Partner Up for Aerospace 3D Printing

Air pipe prototype printed using the Kimya PLA HI (Photo: ProtoSpace Airbus)

Continuing with news from the Paris Air Show, ARMOR Group – a French multinational company – was also at the event, exhibiting its Kimya materials and a miniFactory printer, as well as its new aeronautics filament, PEI-9085. While there, ARMOR also met up with Airbus, which has frequently used 3D printing to create parts and prototypes, such as an air nozzle for the climate control system of its 330neo passenger cabin. The company has now requested ARMOR’s expertise in better qualifying its materials in order to standardize its own AM process.

“We have qualified the PLA-HI and PETG-S. We are currently testing more technical materials, such as the PETG Carbon before moving on to the PEI and PEEK. We have requested a specific preparation to make it easier to use them in our machines,” Marc Carré, who is responsible for innovation at Airbus ProtoSpace in Saint-Nazaire,

“We expect to be able to make prototypes quickly and of high quality in terms of tolerances, aesthetics and resistance.

“Thanks to ARMOR and its Kimya range and services, we have found a partner we can share our issues with and jointly find solutions. It is very important for us to be able to rely on a competent and responsive supplier.”

Webinars by Formlabs: Product Demo and Advanced Hybrid Workflows

Recently, Formlabs hosted a couple of informative webinars, and the first was a live product demonstration of its Form 3. 3D printing expert Faris Sheikh explained the technology behind the company’s Low Force Stereolithography (LFS) 3D printing, walked through the Form 3’s step-by-step-workflow, and participated in a live Q&A session with attendees. Speaking of workflows, Formlabs also held a webinar titled “Metal, Ceramic, and Silicone: Using 3D Printed Molds in Advanced Hybrid Workflows” that was led by Applications Engineering Lead Jennifer Milne.

“Hybrid workflows can help you reduce cost per part and scale to meet demand, while taking advantage of a wider range of materials in the production of end-use parts,” Formlabs wrote. “Tune in for some inspiration on new ways of working to advance your own process or to stay on top of trends and capabilities across the ever-growing range of printable materials.”

PostProcess Whitepaper on 3D Print Surface Finishing

PostProcess Technologies has released its new whitepaper, titled “Considerations for Optimizing Surface Finishing of 3D Printed Inconel 718.” The paper discusses a novel approach to help improve surface finish results by combining a patent-pending chemistry solution and software-driven automation. Using this new approach, PostProcess reports increased consistency and productivity, as well as decreased technician touch time. The whitepaper focuses on surface finishing 3D prints made with alloys and metals, but especially zeroes in on nickel superalloy Inconel 718, 3D printed with DMLS technology.

“With current surface finishing techniques used that are largely expensive, can require significant manual labor, or require the use of hazardous chemicals, this paper analyzes the benefits of a novel alternative method for post-printing the part’s surface,” PostProcess wrote. “Key considerations are reviewed including part density and hardness, corrosion (chemical) resistance, grain structure, as well as manufacturing factors including the impact of print technology and print orientation on the surface profile.”

You can download the new whitepaper here.

Modix Announces New 3D Printers, Reseller Program, and Executive

Israel-based Modix, which develops large-format 3D printers, has plenty of news to share – first, the company has come out with four new 3D printer models based on its modular design. The new models, which should be available as soon as Q3 2019, are the 1000 x 1000 x 600 mm Big-1000, the 600 x 600 x 1200 mm Big-120Z, the 1800 x 600 x 600 mm Big-180X, and the 400 x 400 x 600 mm Big-40. Additionally, the company has launched a reseller program, where resellers can offer Modix printers to current customers of smaller printers as the “best next 3D printer.” Finally, Modix has appointed 3D printing veteran John Van El as its new Chief Commercial Officer; he will help build up the company’s partner program.

“We are proud to have John with us,” said Modix CEO Shachar Gafni. “John brings aboard unique capabilities and experiences strengthening Modix’s current momentum on the path to become a global leader in the large scale 3D printing market.”

FormFutura Presents Recyclable Cardboard Packaging

Dutch filament supplier FormFutura wants to set an example for the rest of the industry by not only raising awareness about sustainability, but also by stepping up its own efforts. That’s why the company has moved completely to cardboard packaging – all of its filaments up to one kilogram will now be spooled onto fully recyclable cardboard spools, which will also come in cardboard boxes. All of FormFutura’s cardboard spools and boxes are manufactured in its home country of the Netherlands, which helps reduce its carbon footprint in terms of travel distance, and the material is also a natural drying agent, so it will better protect filament against humidity.

“Over the past couple of months we’ve been brainstorming a lot on how we can make FormFutura more sustainable and help renew our branding. As over this period we have received feedback from the market about helping to find a viable solution to the empty plastic spools, we started setting up a plan to reduce our carbon footprint through cardboard spools,” said Arnold Medenblik, the CEO of FormFutura. “But as we got to working on realizing rolling out cardboard spools, we’ve also expanded the scope of the project to include boxes and logistics.”

Because the company still has some warehoused stock on plastic spools, customers may receive both types of packaging during the transition.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Renishaw Partnering with Altair to Bring Metal 3D Printing to Industrial End Users

UK-based Renishaw, one of the world’s top metrology and spectroscopy companies, is also well-known for its advanced metal 3D printers. The company works to make the technology more mainstream, and is now partnering up with enterprise engineering software provider Altair for a new series of projects with the end goal of bringing metal 3D printing to industrial end users for the purposes of serial production.

“Working closely with Renishaw benefits the development and application of our software to optimize designs for functionality as well as for printability, accuracy and suitability for its designated purpose,” said David Coates, Altair’s Senior Program Manager. “This collaboration helps ensure AM part development, print cycles and scrap rates are minimized for our customers.”

This isn’t the first time that Altair, headquartered in Michigan and serving 5,000 customers across broad industry segments, has collaborated with Renishaw over the years. The two companies – one focused on hardware and the other on software – have partnered up on several various projects, including a pivoting bell crank for a race car’s suspension system, a spider bracket for architectural glass panels, and a unique, customizable bicycle frame.

Now, Renishaw is able to leverage all of the software products that Altair has to offer, including its HyperWorks suite with Altair OptiStruct and Altair Inspire.

“Altair is a world leader in simulation-driven design. Research combining their software with our latest systems will give them practical insights that will lead to innovative improvements in their products,” said Stephen Anderson, the AM Business Development Manager of Renishaw Inc.

Altair applies simulation, optimization, and machine learning throughout a product’s lifecycle to transform design and decision-making processes. Using its broad portfolio of patented simulation software allows companies, like Renishaw, to confidently generate reliable, high quality designs that can achieve correct 3D printed parts the first time.

On the flip side, Altair is now using Renishaw’s wide range of metal 3D printers to manufacture products based off their customers’ specific concepts.

“With Renishaw’s help, we are learning about how to best generate and simulate products for multiple laser systems and are actively thinking about laser assignment strategies within our simulation models,” said Coates.

The two companies are now offering joint workshops, training events, and seminars to their customers. These collaborative events demonstrate nearly the entirety of the metal 3D printing process – all the way from powder to finished build – with special emphasis on both machine productivity and throughput.

Customers attending these joint events can also engage in 3D design projects with Altair, in order to develop designs that are well-suited for printability on Renishaw’s metal 3D printer range. In addition, any customers that want to design and test the manufacturing of their metal 3D printed parts at one of Renishaw’s Solutions Centers can instead use Altair’s expertise and software.

Anderson explained, “Together with Altair, we are collaborating on customer-focused productivity projects, particularly in the automotive sector, which will lead to significant improvement in part volumes and lower costs per part.”

What do you think? Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.