Open Source Grinding Machine Cuts Cost of Pellet 3D Printing

In pursuing the Distributed Recycling and Additive Manufacturing (DRAM) approach to open-source hardware development, a significant challenge lies in addressing the high cost of the compression screw component for alternative 3D printers, such as Fused Particle Fabrication (FPF) or Fused Granular Fabrication (FGF).

Platform solutions such as RepRap and Arduino, have allowed users and professionals worldwide to access or manufacture products or scientific tools themselves, cheaper and more effectively than commercial hardware products. Yet, as Dr. Joshua Pearce, of Michigan Technological University (MTU), notes in his study on the topic, open hardware lags the success of the open software community by about fifteen years. It is initiatives such as Dr Pearce’s Open Lab that are helping to bridge this gap—and in this case, with open hardware solutions that make FPF and FGF cheaper, more accessible, and more efficient than they are at present. The details of the lab’s work on the subject are described in a recent study, “Open Source Grinding Machine for Compression Screw Manufacturing.”

FPF or FGF are more effective than the traditional Fused Filament Fabrication (FFF) for DRAM, since they use raw plastic particles or granules which are more easily available and cheaper, instead of filament, to 3D print objects. Although it is has proven much cheaper and technically viable to produce filament from a variety of waste polymers, using an open-source waste plastic extruder (or recyclebot) – the process degrades the mechanical properties of the filament material over time, and limits its recyclability. In addition, commercially 3D printing filament is more expensive, at $20 per kg, than raw plastic pellets which are priced at $1-5 per kg.

This is why FPF and FGF printers are seen as a more effective alternative for the DRAM approach, and are already being used by academia, maker communities and businesses—the best example for the latter being GigabotX, an open-source industrial 3D printer than can use a range of materials from Polylactic Acid (PLA) to polycarbonate (PC). However, FPF/FGF 3D printers are more expensive, primarily due to the high cost of the precision compression screw, compared to FFF printers, and commercially available screws are not only very expensive (over $700 for the filabot screw) but also limited in handling larger pellets due to their small scale and size.

Image courtesy of MDPI

This is where Dr. Pearce’s open source hardware solves the problem: by providing a low-cost open-source grinding machine, so users of FPF/FGF can fabricate a precision compression screw for about the cost of the bar stock. Users will no longer be limited to commercial designs, and will be able to customize or optimize the screw to suit their requirements in terms of channel depth, screw diameter or length, pitch, abrasive disk thickness, handedness, and materials (three types of steel, 1045 steel, 1144 steel, and 416 stainless steel).

Image courtesy of MDPI

These compression screws will make recycling polymer particles/granules cheaper, more efficient, and flexible for FPF/FGF users, thus strengthening the case for DRAM as it pushes towards a circular economy.

Image courtesy of MDPI

The grinding machine is made using an off-the-shelf cut-off grinder (approximate cost $130, ideally suited only for steel or stainless steel) and less than $155 in parts. It is classified as an outside diameter cylindrical grinding machine. All the 3D printed parts can be made using any desktop printer using PLA (in this case a Lulzbot Taz 6), and the plywood parts were prepared using a CNC wood router.

Dr Pearce has long been an advocate of open source, distributed manufacturing, and DIY solutions for students, businesses, and, in particular, for scientists and researchers. To help accelerate innovation, empower scientists and users dependent on or limited by expensive commercial equipment and supply chains, and to reduce the cost of scientific tools, Dr.Pearce has led the way with his open source software or hardware solutions and initiatives. He has helped develop the Recyclbot, respirators, ventilators, specialized 3D printers, scientific or medical device components, and more.

Among other work, he has also worked to show how DIY 3D printing could impact the toys and game market (reducing costs of simple and complex toys or games by 40-90%), how to develop open-source, affordable metal 3D printing solutions using GMAW, and to 3D print slot die cast parts, that cost thousands of dollars, for just cents. He is also the author of Open-Source Lab: How to Build your Own Hardware and Reduce Research Costs and teaches a renowned open source introductory course in additive manufacturing at MTU, which is now online and free.

This latest work shows just how far his lab is going to make manufacturing technology accessible, even down to the compression screw needed for FPF/FGF 3D printing. The design, instructions and files for the device are free, and available here.

The post Open Source Grinding Machine Cuts Cost of Pellet 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Scientists 3D Print an Effective Terahertz Waveguide

(a) Segments of the hollow waveguide; (b) experimental results of the loss coefficient; (c) mechanical spliced 90 cm hollow waveguide.

The terahertz (THz) wave is the electromagnetic radiation at frequencies from 0.1 to 10 THz, which is located between the millimeter wave and the far infrared wave. It has not been fully studied because of a lack of effective means of generation, detection and transmission, so it is referred to as the “Terahertz Gap.” The terahertz wave has a lot of potential in non-destructive imaging, biomedicine and national security and defense, because it has penetrability for most of non-polar materials and does not cause ionization damage while covering the vibration and rotational energy levels of biological macromolecules.

In a paper entitled “A 0.1 THz low-loss 3D printed hollow waveguide,” a group of researchers discusses the use of 3D printing to create THz functional devices, such as terahertz lenses, phase plates, waveguides and more. 3D printing is a low-cost, simple and effective way to create these devices, they point out.

“Therefore, the combination of low-loss dielectric waveguide and low-cost 3D printing will help to break through the bottlenecks and realize THz remote applications,” the researchers state. “The paper focuses on the design, fabrication, and characterization of a novel 0.1 THz low-loss hollow waveguide. Its theoretical loss is as low as 0.009 cm−1 and the measured loss is 0.015 cm−1. The experimental results show that the proposed hollow waveguide not only reduces the transmission loss of the terahertz wave, but also can effectively localize the terahertz field and confine the divergence angle of the terahertz beam.”

The researchers used PLA to create the hollow waveguide. First they needed to 3D print a PLA disk in order to obtain the elecrtromagnetic parameters of the material. The disk was printed on an Ultimaker 3D printer and characterized by terahertz time-domain spectroscopy (THz-TDS).

“After that the design for the hollow waveguide could be started,” the researchers continue. The first step is designing the cross section of the waveguide based on the anti-resonant waveguide model and drawing the cross section’s two-dimensional graph. Secondly, the graph is imported into the finite element simulation software (Comsol Multiphysics) and a larger circle around the cross section is drawn as the perfect matching layer. Thirdly, the different materials and the corresponding refractive index are selected and the design model is meshed. Finally, according to the simulation, the effective refractive index of different modes transmitted in the center air hole of the hollow waveguide can be acquired.”

(a) Cross section of the hollow waveguide; (b) HE11 fundamental mode field distribution

The 90-cm-long hollow waveguide was then 3D printed and characterized. To verify the localization effect of the hollow waveguide on THz wave, the researchers measured the THz divergence angle at the end of the waveguide. The measured loss was 0.015 cm−1. The experimental results showed that the hollow waveguide can not only reduce the transmission loss of the terahertz wave in the air, but also effectively localize the terahertz wave. The researchers conclude that remote low-cost THz sensing and imaging can be achieved in the future by the development of flexible and longer hollow waveguides.

Authors of the paper include Pengfei Qi, Weiwei Liu and Cheng Gong.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

3D Printing and a Smartphone Create an Inexpensive, Compact Interferometer

Smartphones serve many functions, including that of scientific instruments. With a little tinkering and 3D printing help, makers have turned smartphones into things like microscopes, and in a paper entitled “Design of a 3D printed compact interferometric system and required phone application for small angular measurements,” a pair of researchers document how they used 3D printing and a smartphone to create an interferometer, a scientific instrument that takes precise measurements through the interference of two beams of light.

“The working principle of the proposed interferometer is based on the formation of circular interference fringes due to the reflection of the monochromatic light beam from the top and inner bottom face of a microscopic glass slide,” the researchers explain. “The optical path difference (OPD) between these two interfering beams can be varied by changing the inclination angle of the glass slide with respect to the incident light beam. The central bright fringe gradually changes to dark fringe with the change in OPD, and consecutively there is a variation in the fringe order with angular rotations. The smartphone camera has been used to record the interferogram, and then it is processed by the custom designed application for automatic calculation of the change in the fringe order, the pixel shift of the interferogram from the initial position and intensity variation of the central fringe to calculate the angular rotation of the glass slide.”

The opto-mechanical components for the system were all developed using ZW3D CAD software and then 3D printed on a Raise N2 Plus 3D printer. Optical components such as a lens and pinhole were mounted to the 3D printed components. The phone itself is equipped with a 13 megapixel count CMOS sensor with high resolution. An Android application was developed for onboard fringe processing and automatic evaluation of angular rotation of the glass slide.

“The usability of the designed optical tool has been demonstrated for the monitoring of small angular variations with high precision and reliability,” the researchers conclude. “The smartphone has been visualized as a platform for automated complex fringe analysis and interferometric data processing which is a critical point in any interferometry based sensing applications. The required opto-mechanical parts for the present work have been obtained from 3D printing technology which reduces the overall fabrication cost of the designed interferometer. In the future, the applicability of the proposed device will be demonstrated for more complex interferometry based applications such as determination of thin film thickness and refractive index with the required optimizations in the device parameters.”

3D printing has been used to create all sorts of low-cost laboratory equipment, including reactors, drug testing systems and much more. The purpose of the researchers’ paper was to demonstrate that a complex interferometer could be created using accessible, inexpensive means – a smartphone and 3D printed components. Not only is the device inexpensive, it’s user-friendly and compact, making it portable enough to take anywhere in the field. These are the advantages of 3D printing – the ability to take complex tools and reduce them to only a few components, drastically cutting back on cost and size.

Authors of the paper include I. Hussain and P. Nath.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

Assessing the Potential for 3D Printed Equipment in Cleanrooms

a) Wafer box for four 100 mm wafer quarters 3-D printed out of PLA including top (black), bottom (blue) and holder (black ring). b) Open SCAD model of the customizable single wafer box. c) Wafer quarters stored securely in the 3-D printed box. d) Wafer quarters free to move in a commercial single wafer box.

3D printing has been used by scientists to save money on lab equipment, which is typically quite expensive. Things get a bit complicated, however, when it comes to equipment that is used in clean rooms. There are strict limitations on the types of materials and items that are allowed in cleanrooms, so a good deal of study and experimentation must be done before clearing a new item or material for use. That is the purpose of a study entitled “Compatibility of 3-D Printed Devices in Cleanroom Environments for Semiconductor Processing.”

“As the dimensions of typical semiconductor devices are in the micrometer range, it is essential to fabricate those components in an environment, where the level of contaminants (e.g. dust particles and organic compounds) is accurately controlled,” the researchers explain. “In cleanrooms, the level of contamination is specified by the number of particles per cubic meter at specified particle sizes by the international ISO (the International Organization for Standardization) standards.”

To meet these requirements, air flowing into the cleanroom is filtered and recirculated through HEPA filters, and operators wear protective clothing. Limitations are set on the materials that can be used to make cleanroom equipment and tools, such as wafer boxes and tweezers, since they are only allowed to generate a minimal amount of particles.

“The use of FFF-based 3-D printing in the cleanroom is limited because of the particles generated during fabrication itself, which depend on numerous factors including filament type, filament color, printing parameters and printer design,” the researchers continue.

The study takes a look at the possibility of using 3D printing for some of the least strenuous applications in the cleanroom environment – those that do not require chemical compatibility. The researchers used two objects – a custom single wafer storage box and a wafer positioner for a metrology system – and tested three 3D printing materials: ABS, PLA and PP, 3D printing them on a LulzBot TAZ 6 3D printer.

Increase in particle count during 15 days storage in various single wafer boxes. The initial number of particles on all wafers were in the order of 10-20. The dashed lines indicate reference levels set by the commercial PP box, which is commonly used in cleanroom environments. The error bars are determined from the variation in several repeated measurements.

The results of the study show that single wafer boxes 3D printed from PLA and ABS generate as few particles as a commercial equivalent, while slightly more particles were found in the PP box.

“The 3-D wafer positioner seems to cause a negligible particle increase on the manipulated wafer, while abrasion of the mechanical parts generate larger numbers of particles that may disperse in the environment,” the researchers state. “Regular cleaning of those parts is thus recommended, and applicability in a cleanroom environment will depend on the cleanliness constraints.”

Elemental analysis showed that 3D printed objects contained no harmful metal impurities, other than those resulting from colorants, so the researchers recommend that only natural-colored filament be used, especially in applications where metal contamination could be an issue, such as in semiconductor processing.

a) Parts of the positioner modelled in the OpenSCAD software. b) 3-D printed and assembled positioner.

The filaments studied also showed themselves to be resistant to isopropanol and deionized water, which are used for the cleaning of objects in cleanrooms. The researchers conclude that 3D printing is a safe method of creating objects for use in cleanrooms, enabling scientists to take advantage of the cost savings that the technology offers.

Authors of the paper include T.P. Pasanen, G. von Gastrow, I.T.S. Heikkinen, V. Vähänissi, H. Savin and J.M. Pearce.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

3D Printing Inexpensive Lab Equipment with the Custom Lab Institute

One thing we’re particularly passionate about at 3DPrint.com is when 3D printing is an enabler. When our technology is used to radically change others lives, industries and practices through being a force multiplier for them. In custom prosthetics, we can see huge impacts in people’s lives because 3D printing can make tough inexpensive prosthetics. This is still one of the most inspiring examples so far of the desktop side of our industry making an impact. Another thing that could operate in a similar manner is for 3D printing to be harnassed for lab equipment and scientific research. Lab equipment and all manner of scientific tools have been hampered by high costs and the fact that many things are low volume and may even be unique. Jars, testing vessels, tests, holders, housings and the like can cost four or forty times more than a comparable item in another industry. This slows down science by making it needlessly expensive. This means that we as a world are learning less quickly than we could because of a few companies making outsized margins in niches. This is a particular problem that 3D printing can help solve in many areas and we will see this happening again and again.

The Custom-Lab Institute has just gotten started but it and many initiatives like it could really bring down the cost of scientific testing. The custom lab uses stereolithography to make lab equipment for less. Whats more, this equipment can be customized to the user’s needs. We interviewed Uli Lutz who is a Biologist at the Max Planck Institute for Developmental Biology and founded the Custom Lab.

Why are researchers 3D printing their own lab equipment?

Researchers started to print lab equipment for several reasons. I think the main motivations are the reproduction and optimization of equipment, which is already available on the market but hopelessly overpriced and not fitting specific needs. Further, researchers often deal with highly specific problems, which require highly specific tools not available on the market. These tools often are surpisingly simple, but help to save a lot of time.

What kind of 3D printed lab equipment is there?

The spectrum of 3D printed lab equipment got quite broad in the last few years. On the one hand, there are simple but helpful tools like reaction tube racks, which fit specific needs (e.g. tube number, or in which angle the tube is kept). On the other hand, 3D printing helps researchers to develop more complicated instruments like for example microscopes. Its kind of an irony that scientists are always all about sharing information and yet they for free supply publishers with articles and these then get locked away behind closed doors.

Open Lab Equipment, from the Custom Lab.

Open Lab Equipment, from the Custom Lab.

Is the open part of the equation important to you?

Yes, it’s a fundamental part. The whole project is inspired by the open-science-hardware movement.

Why do you use SLA?

We decided to start with SLA because we liked the fine structure, high precision and the stability of the prints, all being important for the project I had in mind when started with 3D printing in the lab. For sure, other technologies might become more interesting for future projects!

Don’t you worry that test samples may react with the SLA resins?

No, that’s not an issue, because all tools are used in combination with special reaction tubes. The samples never get in contact with any part of the 3D printed tools.

3D Printed Lab Equipment

3D Printed Lab Equipment

Is this a business for you?

No. It’s rather an experiment, to figure out whether the spectrum of users of open science hardware can be expanded by offering the tools ready-to-use, to thereby circumvent the still limited accessibility of 3D printing hardware for researchers.

What kind of things do you see researchers print in the future?

All kinds of. Better accessibility, easier usability and newer technologies of 3D printing will help researchers to realize even more specific ideas. I hope that very soon every institute or university department will have a 3D printer to print own designs and to reproduce designs deposited at repositories by colleagues.

We applaud this initiative and can’t wait to see more 3D printed science the world over. Check out the Custom-Lab Institute here.

Experiment Tests the Suitability of 3D Printing Materials for Creating Lab Equipment

Many scientists are discovering that 3D printing is an effective, inexpensive way to make certain kinds of lab equipment, such as reactors, microscopes and more. But when chemicals are involved, care must be taken to ensure that the additives and colorants in 3D printer filaments are compatible with those chemicals. This potential incompatibility has restricted the widespread use of 3D printing for lab equipment. A new study tested the compatibility of 10 widely available FFF plastics with solvents, acids, bases and solutions used in the wet processing of semiconductor materials.

The study, entitled “Chemical Compatibility of Fused Filament Fabrication-based 3-D Printed Components with Solutions Commonly Used in Semiconductor Wet Processing,” can be accessed here. The savings amassed by 3D printing lab equipment are significant – the researchers note that 3D printing can reduce costs by 90-99% compared to conventionally produced equipment. Most 3D printing so far, however, has been limited to equipment without strict chemical compatibility standards or the use of known reagent-grade materials.

“As the exact chemical formulation of low-cost commercial 3-D printing filaments (as well as additive such as plasticizers and colorants) is proprietary and thus chemical compatibility of printed parts is unknown, there has been no significant 3-D printing use in more challenging laboratory environments, such as those of clean rooms used for semiconductor processing,” the researchers state.

Even basic equipment in clean rooms is expensive, so there is a huge opportunity to save money through 3D printing. In addition, a great deal of time in clean rooms is spent overcoming equipment limitations, as the equipment is designed to serve a wide range of research purposes instead of the optimum for every process. 3D printing equipment for individual purposes could not only reduce cost, but improve the output of experiments.

In the study, 10 different common 3D printing polymers were immersed in a range of common cleanroom chemicals for one week. After both surface and vacuum drying, mass and dimension changes were observed. Those results were then compared to chemical compatibility information available in literature for the pure plastic that correlates to the main component of the filament. The plastics tested were:

  • PLA
  • ABS
  • PETG
  • Eastman Amphora AM3300-based nGen
  • Amphora 1800-based Inova-1800
  • PP
  • ASA
  • taulman3D Alloy 910
  • PET
  • PC

Pieces of virgin polymer were tested, as were rectangular 3D printed objects. The results showed that virgin polymers were overall less resistant to the solutions than the 3D printed samples.

“The results for the materials for which compatibilities have been reported in the literature were mostly in line with the reported compatibility,” the researchers state. “Therefore, the additives and antioxidants used in 3-D printing filaments do not significantly impair their chemical properties compared to virgin polymers. All case studies were successful showing no loss of dimensional stability from the relatively extreme chemical environments.”

3D printed PP was the most promising material for various chemical environments, according to the researchers, but more common (for now 3D Printing) materials such as ABS and Alloy 910 also showed resistance to a wide range of chemicals. The best way to avoid unknown contaminants, they add, is to use uncolored filament.

The results are promising, but the researchers note that further study is needed to fully ascertain whether 3D printed labware is suitable for work such as semiconductor processing. There is great potential in using 3D printing for labware overall, however. It can reduce the risk of damaging samples by ensuring that tools are tailor-made for each specific sample size. They also reduce the need for using excess amounts of chemicals, in turn reducing processing costs and risk of injury.

Authors of the paper include Ismo T.S. Heikkinen, Christoffer Kauppinen, Zhengjun Liu, Sanja M. Asikainen, Steven Spoljaric, Jukka V. Seppälä, Hele Savin, and Joshua M. Pearce.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.