Interview with Dr. Albert Woo: How can Hospitals and Surgeons Harness 3D Printing Today?

Dr. Albert Woo is the Chief of Pediatric Plastic Surgery and Director of the Cleft and Craniofacial Center at Hasbro Children’s Hospital and also an Associate Professor of Surgery, Pediatrics & Neurosurgery at The Warren Alpert Medical School of Brown University. Albert has done extensive work in CMF (cranio maxillofacial) and pediatric surgery including a lot of research and significant experience in things such as Endoscopic Craniosynostosis Surgery and ocular facial surgery. Additionally, he is the Director of the Lifespan 3D Printing Lab. Albert has for a number of years now played a pioneering role in bringing 3D printing into hospitals and in using 3D printing for surgery. The current trend in 3D printing labs in hospitals has partially pioneered by Albert at St. Louis and now at Lifespan. I found it hugely inspirational to meet Albert at Additive Manufacturing Strategies in Boston. I’d met good Doctors working with 3D printing and good engineers who were trying to get 3D printing into medicine but here was someone who bridges the gap in understanding our technology and how it can be applied. We interviewed him to see how hospitals and surgeons can harness 3D printing today?
Why as a surgeon are you excited about 3D printing?
3D printing is extremely exciting to me because it represents the future of medicine. Particularly in my profession as a plastic surgeon specializing in craniofacial abnormalities, it is well understood that every individual is different and that every face is unique. In that regard, it seems unreasonable to think that while everyone is different, we can still perform the exact same operation on each individual. The promise of 3D printing is that it can help us to understand the nuances that are particular to each person and to design or alter surgical procedures to best fit each person’s needs.
Beyond this, the use of surgical guides and computer designed implants help us as surgeons to provide consistency and accuracy in our operations. Generally, all patients want their doctors to “be experienced”. Why? Because they are hoping for the best possible result, and the idea of experience is a surrogate for accuracy and predictability. One of the advantages of 3D printing is that it can provide an inexperienced surgeon with the tools to plan a procedure down to the millimeter in accuracy —  in essence, helping that physician get comparable results to that of a master with decades of experience. Wouldn’t you want your doctor to have this technology available if it could potentially improve your surgical results?
What is holding back 3D printing in surgery?
Every technology has hurdles to adoption. In general, medical 3D printing is largely in its infancy. Most physicians have no idea about this technology to begin with, have no access to 3D printing, and are inherently wary to adopting new, “unproven” or “unconventional” ideas. Many have been doing things the same way for decades and see no need to change. Indeed, when frustrated with hiccups in a procedure, angry surgeons will often yell out, “We do it the same way every time!” 3D Printing threatens change and not everyone likes change.
Beyond this, based on my experience with the additive manufacturing industry, it seems clear that communication barriers exist. 3D printing companies are very used to speaking the language of manufacturers but do not know how to speak to clinicians. Similarly, engineers designing materials do not have a great idea of the challenges facing those performing procedures on patients.
Finally, smooth workflows have yet to be ironed out. You can’t just buy a printer today and start printing medical models or implants in 30 minutes. The printers require specialty software provided by separate companies which frequently do not work with the original vendors. Moreover,  there is a dearth of trained professionals to create medical models (and even training opportunities if you want to learn). How many of us feel comfortable building a computer from scratch and purchasing all the parts and software separately? This is where we are in the field now, prior to the advent of companies like Dell which put everything together for us. These issues will need to be ironed out before Medical 3D Printing becomes mainstream.
Do you see patient specific procedures as having a bright future or will their applications be more limited?
Eventually, I predict that virtually all procedures will become patient specific. It is only a matter of time as technologies become faster and more ubiquitous. Certainly, today, there are some fields that will require more patient specificity early while others may be delayed in adoption. My field of craniomaxillofacial reconstruction, for instance, is highly specific to each person. This can also be said for pediatric heart abnormalities, each of which are highly variable with very little room for error. On the other hand, hip surgery may be less focused on patient specificity since there is arguably a larger room for error in most of those cases.
What 3D printing materials are would you like to see developed?
Currently, too many 3D printing companies have their own proprietary materials which are the only ones available on some of their high end printers. Unfortunately, proprietary information, while lucrative to individual companies, can limit the growth of the field in general.
We need more work on materials that are FDA approved for use in the body. Silicone is an obvious choice as we have decades of experience implanting this in human beings. A huge number of implants currently incorporate silicone as a component (including artificial joints, facial implants/prostheses and even breast implants used not only for augmentation but to help reconstruct women after breast cancer surgery), allowing for easier adoption versus other proprietary materials.
 
A 3D printed artificial bone substitute would also be a great material to have. Ideally, we would want materials that would get incorporated into the human body, with tissue in-growth, rather than metals or plastics that are separate.  Such “non-autogenous” materials have higher chances of infection and failure than living human tissue. Further, the body has an incredible ability to heal itself. On the other hand, a metal implant has a limited shelf life before it is expected to fail. This is why many people are so excited about the field of bioprinting and regenerative medicine.
How do 3D printed surgical models help you?
I use 3D models for multiple purposes. Anatomical models help us to understand complex 3D geometry far better than anything we can see on the screen. The surgeon is then able to use many more senses to get an intuitive understanding of complex spatial relationships. We can also cut the models and practice our surgeries or use the models to custom design or fit patient-specific implants or prostheses.
These models are also sometimes critical to help patients and their families understand what is going on so that they can make informed medical decisions. Moreover, 3D models have incredible potential for medical education. Sometimes, unique deformities present only once in many years. Obviously, medical students and trainees will not be the ones doing those operations. But imagine if they could – on a model. Wouldn’t that be worth it to train the next generation of doctors?
We often say that a 2D picture is worth a thousand words. If so, how much is a 3D model worth? There is little wonder why virtually every conjoint twin separation and face transplant surgery performed in the last decade has utilized 3D printing in some manner to help with the procedure. 
This is going to sound crazy but seriously, let’s arm surgeons with 3D printing pens? They’re really good at cutting things away how about letting them add material to patients?
This is certainly worth a discussion. To be honest, I would say that we are still a ways out from this just yet. But I’d be happy to chat further about it with people who see the value of it.
We’ve seen comparatively little work on custom post-operative braces and things like that?
Yes, this is largely due to cost and materials. While there has been huge interest and advancements in 3D printed “robotic” hands, notably less work has been done with lower extremity prostheses. This is because of the extreme load that artificial legs put onto the 3D printed structures. While standard consumer FDM materials can handle the load on a hand, they cannot provide reasonable support for legs. As a result, the pool of those with the resources to help in this arena is dramatically smaller. This will likely not improve until accessibility to metal printers or higher grade materials has been democratized.
We also see few developments in 3D printed surgical tools. For many kinds it wouldn’t make sense but would you see a need for more custom surgical tools?  
It is funny that you mention this as I have worked with industry to help develop some of these tools. One of my projects is a custom bone bending instrument and multiple iterations were printed on an FDM machine before a functional instrument was created out of stainless steel. Unfortunately, there is little market for creation of speciality tools as these instruments do not make companies money. You buy one tool and have it for a decade. Implants, however, are put in every single day. As a result, many companies do not see a great ROI on development of specialty tools and only do so if they feel that it is critical to keeping their current business of selling the implants themselves.
How do we best educate hospitals on what 3D printing can and can not do?
This is an interesting question. I would suggest that it is critical for 3D printing companies to get physicians who actually perform the procedures involved. I have seen numerous efforts fail when companies have not done this as there is frequently no one to translate the world of 3D printing into the medical environment. On the flip side, physicians are notoriously wary of speaking to company reps or salespeople. Personally, I equate them somewhere on the level of used car salesmen. No one can understand the unique hospital environment and the challenges facing surgeons than another surgeon. As a result, I would posit that physician champions will be critical to the further adoption of 3D printing in medicine.
If I’m a doctor and want to learn how to use 3D printing in my practice where and how can I learn about this?
Ahh, there’s the rub. This can be an exceedingly difficult and frustrating endeavor. While extensive resources exist for companies and individuals who have the wherewithal to invest tens of thousands of dollars a year in custom software licenses, few options are available for an enthusiast or those who simply want to learn more with limited resources. Thankfully, one standout software package is 3D Slicer, a free and open-source platform for analyzing medical image data developed in part through funding from the National Institutes of Health (NIH). Training is also extremely difficult to come by. Regarding development of 3D printing programs, the best I can suggest would be to contact those who have successfully done so to ask for advice. Unfortunately, the activation energy to do this remains fairly high. 

3D Printing Presentations, Exhibits, Networking, and More at Additive Manufacturing Strategies in Boston

Last winter, experts in the fields of 3D printing, medicine, and dentistry gathered together to attend the first annual Additive Manufacturing Strategies Summit, titled “The Future of 3D Printing in Medicine and Dentistry.” The increasing amount of 3D printing applications in the medical and dental fields were covered during the event, which was so successful that 3DPrint.com and SmarTech Markets Publishing, the industry’s leading provider of market research reports and industry analysis, are co-hosting a second AMS summit this January.

First things first: the 2019 AMS event, “The Future of 3D Printing in Medicine and Dentistry,” will be held in Boston, Massachusetts from January 29-31 at the Hynes Convention Center. In addition to general medical and dental applications for 3D printing, additional topics that will be covered at the show include prosthetics and wearables, 3D bioprinting, IP and legal, materials science, and venture capital and investing. This year, Ultimaker is going to be sponsoring the event.

The 2018 event saw attendees from 10 countries and 30 different states, and I’d say we’re on track to do even better this second time around. In addition to a startup competition with a $15,000 cash investment from Asimov Ventures at stake, an exhibit floor, and two pre-conference workshops, over 30 speakers who are experts in academic, commercial, government, and practitioner organizations will be presenting at this peer-driven event.

Just some of the many speakers who will be featured at this year’s AMS summit include:

  • Carolyn DeVasto, Global Vice President of Communications, BIOMODEX
  • Scott Dunham, SmarTech’s Vice President of Research
  • Maria Esquala, a leader and volunteer with e-NABLE
  • Michael Gaisford, Director of Medical Solutions, Stratasys
  • Laura Gilmour, Global Medical Business Development Manager, EOS
  • Greg Kowalczyk with Additive Orthopaedics
  • Alyssa Glennon, Materialise Principal Engineer
  • Rik Jacobs, Vice President and General Manager of Dental Solutions, 3D Systems

AMS will feature two separate tracks – one for medical and a separate one for dental – and is meant for business attendees who are or will be using 3D printing in their enterprises.

At this year’s event, attendees should expect to get more clarity on how intellectual property (IP) will impact the development of 3D printing, as well as gain insight on the potential 3D printing has for revenue in the medial and dentistry industries, as SmarTech analysts will be presenting several sessions complete with current forecasts of revenue generation and penetration. The event will also teach attendees how 3D printing is transforming procedures, and disrupting the traditional supply chains, at doctor and dental offices, hospitals, and labs.

Attendees will learn what specific markets that 3D bioprinting firms will be making money in, along with the products that will likely succeed for many years to come. In addition, sessions at the event will provide attendees with a better understanding of the many regulatory requirements that affect 3D printing in the medical and dental fields.

Exhibitors include TRUMPF, Structo, and Arfona, among others, and attendees will have several valuable opportunities to network with these exhibitors, along with other people attending the event, during meals, coffee breaks, and at the cocktail hour that will be held in the exhibit hall before the Startup Showdown at 6:15 pm on January 30th.

Various levels of registration for this can’t-miss event are still ongoing, and if you register for the 2019 AMS summit by December 13th, you can save 35%.

Discuss this event and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Sterne Bringing Silicone 3D Printing to COMPAMED Trade Fair

Sterne Elastomere, a company located in the south of France, specializes in manufacturing items out of silicone materials for industries such as food and drink, mass transit, medical, nuclear, and pharmaceuticals and cosmetics. Two years ago, Sterne made its move into the 3D printing world and debuted its SiO-Shaping 1601 silicone 3D printer at K 2016, a top plastics and rubber trade show, for the first time.

In order to provide its clients with 3D printed silicone prototypes that possessed properties similar to that of the final product, Sterne developed its technology so it could deposit filaments of 100% UV-cured silicone. It’s definitely not easy to 3D print with silicone, due to properties that make it unable to be heated and extruded in the same way that typical thermoplastic materials can be, but companies like Sterne, Wacker Chemie, and Fripp Design Research have been making great strides over the last few years.

Over the last two years, Sterne, which has over 20 years of experience in the silicone industry, has been working hard to refine its 3D printing silicone technology, so it can be a viable alternative option for customers looking to meet their technical needs. Now the company is bringing its SiO-shaping 3D silicone printing method to COMPAMED 2018, a trade fair for medical suppliers and manufacturers which begins in a little over a week in Düsseldorf, Germany.

According to a release by the company, “Sterne is able to manufacture little to medium series on projects dedicated to 3D printing. An approved solution for pieces with a need situated between molding and extrusion technics, on specific applications both medical and short term implantable. Now, it is only in one step that devices with complex and atypical forms can be produced. A research and development department composed of 3D specialists and engineers, go with clients on project development and monitoring, perpetuating new concepts and ideas. A quick manufacturing on competitive deadlines since no design or validation of tools is necessary.”

The company’s SiO 3D silicone printing has been further refined since it was first introduced. In 2016, it promised a minimum 3D print layer height of 0.25 mm, but can now achieve a minimum of 0.1 mm (100 microns). Its SiO-Shaping 1601 silicone 3D printer offers a maximum print volume of 205 x 200 x 100 mm, along with hardness from 30 to 60 Shores A.

Sterne’s silicone 3D printing can help all of its customers with their fast prototyping needs. But its specialty is manufacturing thin, accurate silicone products for the medical sector that meet the necessary aesthetic and technical needs.

“Whether High Consistency Silicone Rubber (HCR) or Liquid Silicone Rubber (LSR), Sterne masters a large range of manufacturing process such as extrusion, molding, making, over-molding inside ISO 6, ISO 7 and ISO 8 cleanrooms,” the company’s release states.

In addition, Sterne’s SiO silicone 3D printing also offers a full panel of colors, including phosphorescent, translucent, and opaque, which is available for colors like red, yellow, black, and green. However, these colors are only available for materials that meet the necessary quality requirements according to the FDA or USP class VI medical grade.

You can see the company’s silicone 3D printing prowess for yourself at COMPAMED from November 12-15 in the Düsseldorf exhibition center. To rediscover, or see for the first time, Sterne’s range of products for the medical sector, visit the company at Stand L02 in Hall 08b.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.