Replacement Parts for Assault Amphibious Vehicle 3D Printed with HP’s Metal Jet

In 2018, HP announced that it was entering the metal side of the additive marketing industry with the introduction of its Metal Jet technology. While Metal Jet has been used for applications in the automotive industry, the United States Marine Corps is now adopting it to make parts for a very different kind of vehicle: the 26-ton, bulletproof AAV, or Assault Amphibious Vehicle. Nicknamed the AmTrac, AAVs have been carrying over 20 humans and a storehouse of supplies safely back to shore since 1972, chugging through the water at eight mph. There are over 1,000 vehicles in the fleet, all of which will be phased out of operation in the next two decades.

An AAV (Assault Amphibious Vehicle)

Unfortunately, because the AAVs are set to retire, private manufacturers that have long made replacement parts for the vehicles are less enticed to do so now. This is causing a negative effect on the USMC supply chain: AAVs are sitting around unused, and Marines may even go to battle without them.

Kristin Holzworth, chief scientist for the Marine Corps Systems Command’s Advanced Manufacturing Operations Cell, stated, “This is a critical part of our future, ensuring readiness of those in uniform.”

HP Metal Jet

That’s why the AAV program is turning to HP’s Metal Jet technology to 3D print replacement parts by the hundreds, like bolts and brackets, couplings and cranks, at California manufacturing company Parmatech.

“We go into some pretty remote areas and the supply chain is just not available to us yet. So, the ability to make our own parts at the point of need is critically important,” said Scott Adams, a civilian member of the USMC.

Most of these parts were previously made with subtractive manufacturing, but, by using metal 3D printing, they can be mass produced much more quickly. Metal Jet printers can place up to 630 million nanogram-sized drops of liquid binder per second onto the powder bed, and a polymer binds the metal particles together during the process to make high-strength parts.

“Being able to clasp (what used to require) 50 different, subtractive-manufacturing lines into a couple of prints, you almost can’t even put words to that. The efficiencies that are likely to come from that are absolutely astronomical,” said USMC Col. Patrick M. Col. Tucker, commanding officer of Combat Logistics Regiment 15 at Camp Pendleton, California, where marines train in AAVs.

Examples of replacement parts 3D printed for AAVs.

A Marine Corps analysis conducted in April found that many AAVs have to wait, on average, 140 days for replacement parts, some of which have been back-ordered for over a year.

“It takes those Assault Amphibious Vehicles offline. As of (April 1), here at Camp Pendleton, we had 41 of our 214 vehicles in maintenance. It’s a very important platform to our combat readiness,” explained Col. Tucker, who served in the Iraq War and helps manage the Metal Jet program.

Additionally, Metal Jet 3D printing allows the soldiers to fabricate assemblies of multiple pieces as a single part, rather than welding them together.

Sgt. Jonathan Anderson, part of the 1st Supply Battalion at Camp Pendleton, said, “It gets rid of welds period, which is absolutely amazing. A weld is always a weak point. We are actually increasing the life cycle of these parts and potentially increasing the life cycle of the vehicle.”

At the moment, fewer AAVs can be used for training at Camp Pendleton, and even out in the field at distant bases, due to current part shortages.

Col. Tucker noted, “In extreme times where we have a kinetic operation, you could foresee that we may have to send (Marine) units without that.”

Soon, the 3D-printed AAV parts in the Metal Jet program will enter the first testing phase to make sure that they function properly in test vehicles and have accurate size and weight. Holzworth says that it’s “promising work” and that all parts tested so far have passed. In the second part of testing, the parts will be installed into the test AAV, which will then be driven in order to test the reliability.

One of the 1,024 AAVs the US Marine Corps hopes to outfit with 3D-printed replacement parts

Once the testing is complete, the retiring AAV fleet will be serviced much more quickly.

“It’s all about equipment readiness, and about our ability to deploy into an area or to sustain ourselves while we are there,” said Adams, who is on the team working to equip AAVs with 3D printed parts.

Col. Tucker states that the AAV is a “good Guinea pig tester,” but notes that the team is also looking into other USMC platforms that may benefit from the use of Metal Jet technology. Additionally, the program could have further reaching ramifications for the entire US military.

Because the Marine Corps is so small, it has what Col. Tucker calls a “shallow” supply chain, which means that the parts it needs aren’t as big as what the US Army uses. And just like with the AAV replacement parts, industrial manufacturers aren’t as inclined to use their machines to make the parts. Also, because the USMC works to defend our country’s interests all around the world, this small supply chain is often strained as well.

“That’s why something like rapid metal is so interesting. This capability would allow us to move around that problem,” Col. Tucker said.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

(Source/Images: HP)

The post Replacement Parts for Assault Amphibious Vehicle 3D Printed with HP’s Metal Jet appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

US Army Takes RFAB 3D Printing Facility to South Korea

The US military has been using 3D printing for quite a while in all of its branches, and now in South Korea the Army is field testing 3D printed concepts through a newly established facility called Rapid Fabrication via Additive Manufacturing on the Battlefield, or RFAB. This is the fourth deployment of the $250,000 facility, but unlike other deployments that lasted only a month, this one will last an entire year, operated by a team of six soldiers.

The Army chose South Korea as the newest location for the facility because of its near-deployment nature.

“We’re trying to validate the use of additive manufacturing in the future of the [Army],” said Chief Warrant Officer Dewey Adams.

The facility, which has five 3D printers, can quickly produce parts for tanks, trucks, rifles, and many other things the Army might need. While the parts produced by 3D printing may be small, the impact of the technology on the Army has the potential to be great. Some of the most critical parts have been extremely small, said Adams. For example, a fire suppression cap for a Mine-Resistant Ambush Protected vehicle costs only $2.51 – but it takes 126 days to ship from the United States, and if it is missing or broken, it can put the entire vehicle out of commission. 3D printing a replacement takes less than a day.

The Army isn’t just producing spare parts, either. It also 3D printed about 75 training mines and mortars. There are limits to the program, however; the 3D printed replacement parts are just temporary until permanent ones arrive, and the 3D printers in the RFAB can only produce plastic and some carbon-reinforced materials. The team also can’t 3D print parts that would cause serious harm if they were to fail, such as rifle firing pins or parts for helicopters. The program still does the Army plenty of good, however, with its quick turnaround times and ability to be transported from location to location.

“We want the asset as close to front line as we can,” said Adams.

James Zunino, a materials engineer with Armament Research Development and Engineering Center, at Picatinny Arsenal, N.J., discusses a 3-D printed grenade launcher during Lab Day, May 18, 2017, at the Pentagon. (Image: Sgt. Jose Torres)

So far, Adams’ unit has produced about 65 different parts and about 500 pieces of equipment in three months with a success rate of about 65 percent. Even failed parts are valuable, too, as they offer insight into the limits of the technology that can be used at the Army Armament Research, Development and Engineering Center (ARDEC) in Rock Island, Illinois.

Parts that succeed are also sent to ARDEC, where they are saved as blueprints to a military-wide data cloud that can be accessed by any branch – an ever-growing library of digital parts that can be downloaded and 3D printed instantly.

Zunino discusses 3-D printed parts for tracked robotic vehicles, during Lab Day, May 18, 2017, at the Pentagon. [Image: Sgt. Jose Torres]

Adams said that the US Marines and Navy are further ahead of the Army when it comes to 3D printing, but the Army is working to catch up. According to Billy Binikos, an ARDEC representative who works with Adams, the Army could adapt RFAB facilities for regular use by 2025.

“The only limitation is our imagination,” Adams said about the potential of 3D printing in the field.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

3D Printing Keeps Navy Ships Up and Running for Minimal Cost

3D printing has become a bigger part of life in the United States Navy, and indeed in all branches of the military, as servicepeople come up with ingenious ways to use the technology to save time and money and overall make life easier. Last month, the USS Chung-Hoon Arleigh Burke-class guided-missile destroyer ran into some trouble when a bolt from a hangar bay roller assembly became stressed to the point of breaking. The damaged bolt meant that the door could not open and close properly. Instead of being able to replace one simple part, the Chung-Hoon would need to order an entirely new roller assembly, which the ship didn’t have time to wait for.

Luckily, the Chung-Hoon was close to another ship: the Nimitz-class aircraft carrier USS John C. Stennis, whose machine shop had a 3D printer installed by Naval Sea Systems Command in April as part of a Deputy Chief of Naval Operations for Fleet Readiness and Logistics (OPNAV N4) additive manufacturing acceleration initiative.

When the John C. Stennis’ Chief Engineer, Cmdr. Kenneth Holland, received the request for a new bolt from the Chung-Hoon, he saw it as a great opportunity to test out the capabilities of the new 3D printer.

“The printers are being used right now to resolve issues while they’re small problems,” said Holland. “It’s used to help manufacture parts that you can generally only get if you buy the higher assembly.”

Machinery Repariman 1st Class Clinton Barlow received the broken bolt from the Chung-Hoon, who designed a new part using CAD software. Before he could create a new part, however, he and his team had to be trained in the use of the new 3D printer.

“Representatives from NAVSEA came out to sea with us during one of our recent underways and helped teach us how to use the printers,” said Machinery Repairman 3rd Class Blaine Matthews. “This was on top of the one-day training that we received in Keyport that got us familiarized with the equipment. When they came underway with us, it was our chance to get the machines dirty and see what they were made of.”

Once he had been trained, Barlow 3D printed a replica of the bolt and sent it back to the Chung-Hoon so that they could test it and make sure it met the requirements of the door. After that replica was approved, a new bolt could be made using conventional metal machining technology.

“We can replicate that bolt, send it to the ship, ask if it fits length wise, thread wise, and is this what you guys need us to make,” said Barlow. “Instead of spending the time of cutting all that metal away, which can take up to six hours to do, I can print one and make the changes on the go. It saves time and it saves money.”

Holland and his team have 3D printed several other small but important parts for other Navy colleagues, as well.

“For example, one of AIMD’s (Aviation Intermediate Maintenance Department) calibration machines didn’t work because they didn’t have any knobs for it,” said Holland. “We were able to manufacture a simple plastic knob and by creating that knob, although small, we were able to get that machine back up and running.”

The 3D printed part saved a significant amount of money for the department.

“They would’ve had to order a brand-new console which would’ve cost $5,300,” said Barlow. “They brought me the knob, I designed it, put it on there and now they can use that piece of equipment which they use for hundreds of calibrations. They could’ve spent $5,300 on a new system or the six cents of material that it took to make that knob.”

Holland and his team are constantly looking for ways that they can use 3D printing to save money and time.

“It gives us another effective tool to keep the ship in the fight,” said Holland. “It’s also a tool to help us get first-time quality in the repairs for the ship. If you have something that works and it fits, forms, and functions, then you can deliver the final component and know that it’ll fit.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below

[Source: American Security Today/Images: US Navy/Grant G. Grady]

 

 

Thesis Provides Proof of Concept for Using 3D Printing to Improve Design of Internal Pressure Relief Valve

Test pumps installed on 75 HP dynamometer: Test Setup Discharge Port at 90°

Over the years, 3D printing has proven to be a pretty handy technology to have in one’s toolbox when it comes to making replacement and mechanical parts, like hand water pumps, transmissions, gears, and valves. For his Master’s of Science thesis this year, titled “3D printed relief valve analysis and validation,” John Anthony Dutcher, III, a student at the University of Northern Iowa‘s Department of Technology, used SLA 3D printing to fabricate prototypes of the internal pressure relief valve of a positive displacement pump.

The abstract states, “Additive Manufacturing allows for faster, lower cost product development including customization, print at point of use, and low cost per volume produced. This research uses Stereolithography produced prototypes to develop an improvement to an existing product, the internal pressure relief valve of a positive displacement pump. Four 3D printed prototype assemblies were developed and tested in this research. The relief valve assemblies consisted of additive manufacturing produced pressure vessel components, post processed, and installed on the positive displacement pump with no additional machining. Prototype designs were analyzed with Computational Fluid Dynamic simulation to increase flow through the valve. The simulation was validated with performance testing to reduce the cracking to full bypass pressure range of the valve. By reducing this operational range of the valve, the power requirement of the pump drive system could be reduced allowing for increased energy efficiency in pump drive systems. Performance testing of the 3D printed relief valves measured pump flow, poppet movement within the valve, and discharge pressure at operational conditions similar to existing applications. The Stereolithography prototype assemblies performed very well, demonstrating a 56% reduction in the pressure differential of the cracking to full bypass stage of the valve. This research has demonstrated the short term ability of additive manufactured produced components to replace existing metal components in pressure vessel applications.”

The gear found inside positive displacement pumps, developed over a century ago, was able to overcome existing performance limitations, but it was by no means perfect. These pumps need an internal relief valve, which provide protection against too much pressure; if there’s a reduction in discharge flow, the over-pressure system could fail.

“The primary focus of this research is to investigate the performance of an internal relief valve for a positive displacement pump, propose an improvement to flow conditions in the cracking to full bypass pressure range of the valve based on flow simulation and validate the performance improvement with 3D printed prototypes,” Dutcher wrote.

SLA Part Production

Over the years, the design of the internal relief valve in these positive displacements pumps has not changed much. But by using computer simulation, the design can be revised and optimized to make the part more efficient. As he wrote in his paper, Dutcher’s research validates the 3D printed prototypes, using Computational Fluid Dynamics simulation and perfrmance testing, “in the design development of an improvement to an existing product,” and also shows that costs and time can both be reduced by using 3D printing to manufacture the valve.

“Additive manufacturing has the benefit of customization, allowing for design changes,” Dutcher wrote.

“Developing customizable end use components that can manufactured at the point of use, allows for application specific products to be produced for pressure vessel applications.”

The valve prototypes, 3D printed using SLA technology, were shown to reduce the amount of cracking in order to fully bypass the stage differential pressure that’s necessary to operate the internal relief valve. FDM 3D printing was used to make mounting brackets to attach an LVDT sensor to the valve prototypes; this sensor measures the movement of the poppet (internal device in the relief valve that seals its surface) during testing.

Assembled Reference Valve Extended

In his thesis, Dutcher wanted to determine if 3D printing could successfully be used to produce components of a test valve for the positive displacement pump, if the valve’s geometry was able to be optimized to reduce cracking based on flow conditions, and if the 3D printed prototype valves would perform at the same level as existing ones made with conventional methods of manufacturing. Ultimately, while he did answer these questions and demonstrated that 3D printing does indeed have applications in developing new products, his research provided a viable proof of concept for improving the existing design of a product.

“The 3D printed prototypes were developed to reduce cost and delivery lead time for prototype testing,” Dutcher wrote.

“The flexibility in design permutations that additive manufacturing allows with customization provides the opportunity to validate multiple product designs in parallel.”

SLA Support Structures

By using 3D printing to create the prototypes, Dutcher was able to develop several different design concepts at the same time, without getting caught up by the normal barriers that come with traditional manufacturing methods. SLA 3D printing also makes it possible to produce parts with “the dimensional tolerances of machined components,” which helps speed up the development of prototypes.

“This research has demonstrated the SLA 3D printing’s ability to reproduce existing machined metal components,” Dutcher concluded. “While extended performance testing was not the intent of this research, the 3D printed pressure vessel valve components performed very well in performance testing. The development of the design variations in timely manor would not have been possible without Additive Manufacturing. Testing has shown an improvement in the valve performance by reducing the cracking to full bypass pressure from 52.0 psi to 22.8 psi. The successful performance test to improve an existing product demonstrated the validity of the SLA 3D printed prototype assemblies.”

Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Desktop 3D Printing and Functional Replacement Parts

3D printing is seeing increasing use in the manufacture of components for bikes, and sometimes even the bikes themselves. Bikes with 3D printed parts don’t just look cool, either – they perform just as well as, and sometimes even better than, regular bikes.

Open source advocate and 3D printing educator at Michigan Tech Dr. Joshua Pearce recently published an Ultimaker blog post about how to use your desktop 3D printer to create functional, inexpensive replacement parts for complex machines that require mechanical integrity – like bicycles.

Dr. Pearce’s team partnered up with the research group of John Gershenson. Dr. Pearce, Gershenson, Nagendra Tanikella, and Ben Savonen completed a study on the use of open source 3D printers for making components for the popular Black Mamba bicycle.

Dr. Pearce wrote, “Specifically, we chose to start tests with pedals that fail often and have clear standards namely the CEN (European Committee for Standardization) standards for racing bicycles for 1) static strength, 2) impact, and 3) dynamic durability.”

First, the teams used parametric open source FreeCAD to design a custom CAD model of a replacement pedal; the model and STL files are available for download from Youmagine. The pedal was made using the most common 3D printing material – biodegradable, inexpensive PLA.

Static strength test

The pedal was first subjected to a 1,500 N vertical downward force under the CEN static strength test, which found no fractures. Then, the pedal was tested to a 3,000 N compression load applied pedal uniformly – this is actually twice the required amount, which meant that the pedal well exceeded the standard, and, as Dr. Pearce put it, was able to “clear the first hurdle!”

A mass of 15 kg was dropped onto the pedal from 400 mm up, 60 mm from the mounting face, for the CEN bicycle pedal impact resistance test. While the test resulted in a minor dent, there weren’t any fractures – another test passed.

In order to simulate a real-world bicycle, with a person on the pedals, the CEN developed its dynamic durability test for bike pedals. For this test, the research groups had to spin the spindle at 100 rev/min for 100,000 revolutions; at the same time, the pedal also had a mass of 65 kg suspended only by a string. Just like with the static strength test, the pedal’s dynamic durability was designed to exceed the CEN standard under normal conditions.

Impact resistance

Rather than using a rig, the team attached the 3D printed pedal to a bicycle for direct testing, and went 200,000 revolutions with a person’s 75 kg weight being carried solely by the pedals. Again, this was twice the CEN standard, and passed again – I’m sensing a theme here.

Dr. Pearce wrote, “Our humble 3D printed pedal is now good enough for European [racing] bikes…but wait it is actually better!”

The 3D printed pedals are nearly a third of the moss of the Black Mamba stock pedals, which is performance-enhancing as well as cost-effective…if raw PLA pellets or recycled materials, like ABS, nylon, or PET, are used, that is.

Dr. Pearce also provided some easy, DIY guidelines to achieve lab-worthy results for the 3D printed pedals, so you won’t have to redo any bike part experiments.

First, look into expertise already available through a study that researched the parts you were interested in, such as this one regarding the viability of distributed manufacturing of 3D printed PLA bike pedals. Then, determine the material’s mechanical requirements – check out this study for a handy open access list of most of the commonly available tensile strengths of the more common 3D printing materials.

Sub-optimal layers

Print the component in the right material, and with required infills, to achieve your application’s desired mechanical properties. Then, make sure to check out the print’s exterior for any sub-optimal layers from under-extrusion – if the part is under-extruded, fix your 3D printer and try it again.

Finally, weigh the part to make sure there isn’t any under-extrusion inside that you’re not able to see; Dr. Pearce explained that a digital food scale has “acceptable precision and accuracy” for most prints done on extrusion-based 3D printers.

“This mass is compared to the theoretical value using the densities from this table for the material and the volume of the object,” Dr. Pearce said.

The previously mentioned study with the list of tensile strengths was able to find a linear relationship between a 3D printed part’s ideal mass and the maximum stress able to be undertaken by samples. You can just check the study to see how far off from the ideal your part is, and then determine if it needs to be reprinted before figuring out the high probability of your needed properties.

According to mechanical studies completed on many extrusion 3D printers, open source machines produce stronger prints than proprietary systems, mostly thanks to the setting limitations of the latter.

“But be aware that there is a range and the properties of your parts will depend a lot on your machine and the settings you use,” Dr. Pearce warns. “In general printing at the high end of the extruder temperature range for your material will result in a higher strength.”

Just use that weighing technique, and compare your part’s mass to the ideal, to find out where it will most likely lie on the strength range.

You can read Dr. Pearce’s full rundown at Ultimaker.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

 

 

3D Printing News Briefs: June 29, 2018

In today’s 3D Printing News Briefs (the last one this month, how is the summer going by so quickly?!), a few companies are announcing special honors and recognitions, and then we’re sharing stories stories about some interesting new 3D printing projects, and finally wrapping things up before the weekend with some business news. Renishaw’s Director of R&D has been honored by the Royal Academy of Engineering, while MakerBot earned an important designation for its 3D printing certification program for educators and Renovis Surgical Technologies received FDA approval for its new 3D printed implant. Festo is introducing three new bionic robots, one of which is partially 3D printed, and CINTEC is using 3D printing for its restoration of a famous government house. GE wants to use blockchains for 3D printing protection, and ExOne announced a global cost realignment.

Royal Academy of Engineering Honors Renishaw’s Chris Sutcliffe

Earlier this week, the Royal Academy of Engineering (RAE) awarded a Silver Medal to Professor Chris Sutcliffe, the Director of Research and Development of the Additive Manufacturing Products Division (AMPD) for global metrology company Renishaw. This award is given to recognize outstanding personal contributions to British engineering, and is given to no more than four people a year. The Silver Medal Sutcliffe received was in recognition of his part in driving the development of metal 3D printed implants in both human and veterinary surgery, and also celebrates his successful commercialization of 3D printed products with several companies, including Renishaw, and the University of Liverpool.

“Throughout my career I’ve worked hard to commercialise additive manufacturing technology. As well as AM’s benefit to the aerospace and automotive sectors, commercialisation of AM and associated technologies has been lifechanging for those with musculoskeletal diseases,” said Sutcliffe. “The award celebrates the successes of the engineers I have worked with to achieve this and I am grateful to receive the award to recognise our work.”

MakerBot’s Certification Program for Educators Gets Important Designation

One of the leaders in 3D printing for education is definitely MakerBot, which has sent its 3D printers to classrooms all over the world. Just a few months ago, the company launched a comprehensive, first of its kind 3D printing certification program, which trains educators to become 3D printing experts and create custom curriculum for STEAM classrooms. An independent review of the program showed that it meets the International Society for Technology in Education (ISTE) standards, and it has earned the prestigious ISTE Seal of Alignment from the accreditation body. In addition, a survey conducted over the last three years of over 2,000 MakerBot educators shows that the percentage of teachers reporting that MakerBot’s 3D printers met their classroom needs has doubled in just two years.

“This data shows that MakerBot isn’t just growing its user base in schools. We’re measurably improving teachers’ experiences using 3D printing,” said MakerBot CEO Nadav Goshen. “Much of this impressive teacher satisfaction is thanks to the effort we’ve put into solving real classroom problems—like the availability of 3D printing curriculum with Thingiverse Education, clear best practices with the MakerBot Educators Guidebook, and now training with the new MakerBot Certification program.”

Earlier this week, MakerBot exhibited its educator solutions at the ISTE Conference in Chicago.

FDA Grants Clearance for 3D Printed Interbody Spinal Fusion System 

California-headquartered Renovis Surgical Technologies, Inc. announced that it has received 510(k) clearance from the FDA for its Tesera SA Hyperlordotic ALIF Interbody Spinal Fusion System. All Tesera implants are 3D printed, and use a proprietary, patent-pending design to create a porous, roughened surface structure, which maximizes biologic fixation, strength, and stability to allow for bone attachment and in-growth to the implant.

The SA implant, made with Renovis’s trabecular technology and featuring a four-screw design and locking cover plate, is a titanium stand-alone anterior lumbar interbody fusion system. They are available in 7˚, 12˚, 17˚, 22˚ and 28˚ lordotic angles, with various heights and footprints for proper lordosis and intervertebral height restoration, and come with advanced instrumentation that’s designed to decrease operative steps during surgery.

Festo Introduces Partially 3D Printed Bionic Robot

German company Festo, the robotics research of which we’ve covered before, has introduced its Bionic Learning Network’s latest project – three bionic robots inspired by a flic-flac spider, a flying fox, and a cuttlefish. The latter of these biomimetic robots, the BionicFinWave, is a partially 3D printed robotic fish that can autonomously maneuver its way through acrylic water-filled tubing. The project has applications in soft robotics, and could one day be developed for tasks like underwater data acquisition, inspection, and measurement.

The 15 oz robot propels itself forward and backward through the tubing using undulation forces from its longitudinal fins, while also communicating with and transmitting data to the outside world with a radio. The BionicFinWave’s lateral fins, molded from silicone, can move independently of each other and generate different wave patterns, and water-resistant pressure and ultrasound sensors help the robot register its depth and distance to the tube walls. Due to its ability to realize complex geometry, 3D printing was used to create the robot’s piston rod, joints, and crankshafts out of plastic, along with its other body elements.

Cintec Using 3D Printing on Restoration Work of the Red House

Cintec North America, a leader in the field of structural masonry retrofit strengthening, preservation, and repair, completes structural analysis and design services for projects all around the world, including the Egyptian Pyramids, Buckingham Palace, Canada’s Library of Parliament, and the White House. Now, the company is using 3D printing in its $1 million restoration project on the historic Red House, which is also known as the seat of Parliament for the Republic of Trinidad and Tobago and was built between 1844 and 1892.

After sustaining damage from a fire, the Red House, featuring signature red paint and Beaux-Arts style architecture, was refurbished in 1904. In 2007, Cintec North America was asked to advise on the required repairs to the Red House, and was given permission to install its Reinforcing Anchor System. This landmark restoration project – the first where Cintec used 3D printing for sacrificial parts – denotes an historic moment in structural engineering, because one of the reinforcement anchors inserted into the structure, measuring 120 ft, is thought to be the longest in the world.

GE Files Patent to Use Blockchains For 3D Printing Protection

According to a patent filing recently released by the US Patent and Trademark Office (USPTO), industry giant GE wants to use a blockchain to verify the 3D printed parts in its supply chain and protect itself from fakes. If a replacement part for an industrial asset is 3D printed, anyone can reproduce it, so end users can’t verify its authenticity, and if it was made with the right manufacturing media, device, and build file. In its filing, GE, which joined the Blockchain in Transport Alliance (BiTA) consortium in March, outlined a method for setting up a database that can validate, verify, and track the manufacturing process, by integrating blockchains into 3D printing.

“It would therefore be desirable to provide systems and methods for implementing a historical data record of an additive manufacturing process with verification and validation capabilities that may be integrated into additive manufacturing devices,” GE stated in the patent filing.

ExOne to Undergo Global Cost Realignment

3D printer and printed products provider ExOne has announced a global cost realignment program, in order to achieve positive earnings and cash flow in 2019. In addition to maximizing efficiency through aligning its capital resources, ExOne’s new program will be immediately reducing the company’s consulting projects and headcount – any initial employee reductions will take place principally in consulting and select personnel. The program, which has already begun, will focus first on global operations, with an emphasis on working capital initiatives, production overhead, and general and administrative spending. This program will continue over the next several quarters.

“With the essential goal of significantly improving our cash flows in 2019, we have conducted a review of our cost structure and working capital practices. We are evaluating each position and expense within our organization, with the desire to improve productivity. As a result, we made the difficult decision to eliminate certain positions within ExOne, reduce our spending on outside consultants and further rely on some of our recently instituted and more efficient processes,” explained S. Kent Rockwell, ExOne’s Chairman and CEO. “Additional cost analyses and changes to business practices to improve working capital utilization will be ongoing over the next several quarters and are expected to result in additional cost reductions and improved cash positions. All the while, we remain focused on our research and development goals and long-term revenue growth goals, which will not be impacted by these changes, as we continue to lead the market adoption of our binder jetting technology.”

Discuss these stories, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

 

3D Printing Replacement Parts for a Nuclear Warhead

The W80 nuclear warhead is a small American thermonuclear warhead designed for deployment on cruise missiles. A program has been implemented to extend the life of the warhead, called the W80-4 LEP, or life extension program. Recently the National Nuclear Security Administration (NNSA) gave passing grades to the plans to refurbish certain components as well as to the proposed approach to developing component cost estimates.

The warhead, once refurbished, will be paired with a new cruise missile that is being developed by the US Air Force. Lawrence Livermore National Laboratory (LLNL) is the lead nuclear design agency and is working with Sandia National Laboratories, the lead non-nuclear design agency. The work being done on the warhead is to satisfy military requirements to pair the warhead with the new delivery system and improve the weapon’s safety, security and operational logistics, as well as to maintain effectiveness without the need for additional explosive tests. The first production of the W80-4 is scheduled for 2025.

The national laboratories are now focused on making sure that the W80-4 meets requirements. The next step is a detailed weapon development cost report.

Firing Tank Operator Drew Carlson (foreground) safeguards the mouth of the 10kg spherical firing tank at LLNL’s High Explosives Applications Facility as Electronic Technician Raya Yy (background, left) and Ramrod Shawn Strickland wire a high explosive charge for an experiment. The experiment will provide data important to certifying that a refurbished nuclear warhead will work without conducting a full-scale explosive nuclear test.

“Costs are a pretty big deal for us,” said Alicia Williams, LLNL engineering design lead for the LEP. “We go through these detailed reviews of the costs associated with our scope to help management make informed decisions about whether course correction is needed. The net result with this milestone was confirmation that we’re on the right track.”

There are certain challenges associated with refurbishing the warhead. Some aged components and materials cannot be replaced in the same way that they were initially manufactured. The main explosive charge needs replacement, for example, but the original high-explosive constituents are not available and must be reconstituted. Several of the replacement parts are being 3D printed to improve quality and reduce cost – not the first time 3D printing has been used to construct warheads. Researchers at the labs are engineering specific material properties into these replacement parts by controlling the microstructure of the 3D printed material.

To verify that the 3D printed parts will perform as expected, the researchers have already performed a pair of hydrodynamic (full-scale non-nuclear) experiments, back in 2016. The data returned from those tests is being used to ensure that supercomputer simulations accurately represent reality. Thorough material-aging and compatibility experiments are also being undertaken to ensure that the 3D printed material will meet performance requirements for the lifetime of the system.

Those supercomputer simulations and other non-nuclear experiments are crucial to the success of the program. In addition to refurbishing the warhead, the researchers must make sure that it is safe and won’t go off by itself, secure in that it can’t be set off without formal permissions, and effective – all without conducting a full-scale explosive nuclear test. A supercomputer called Sierra is located at LLNL and will play a major role in certifying the replacement warhead. Code advances have also enabled a shift from 2D to 3D modeling, with a special focus on uncertainty quantification, alleviating the reliance on approximations as was required during the nuclear testing era.  Hundreds of tests and experiments are currently underway at LLNL and its experimental test site, Site 300.

“This LEP is driving significant innovation at LLNL,” said Des Pilkington, Weapon Physics and Design Program Director. “I’m seeing some really creative work in the options, focused on meeting established performance requirements and to minimize costs, always with an eye to what we can ultimately certify will work. That’s where the experimental and code innovations we’ve made under the Stockpile Stewardship Program come into play. They will be critical to the success of our certification plan.”

Electronic Technician Raya Yy (left) inspects the work of Ramrod Shawn Strickland as he wires a high explosive charge for an experiment.

Five of the 25 major milestones in the LEP are complete so far. Requirements are being refined by the DoD and NNSA, design concepts have been developed, business systems are being put in place to track schedule and budget, and NNSA has invested in the infrastructure at LLNL that will be needed to certify the warhead. In addition, LLNL is leading the effort to reconstitute the capability to manufacture the required insensitive high explosives. Manufacturing of production-scale quantities of the new explosives is proceeding on schedule.

The W80-4 program is scheduled to go into the development engineering phase in 2019. In this phase, researchers will test individual components to ensure that they will meet military requirements. The next phases are production engineering, first production, and full-scale production. To meet the needs of the program, LLNL has taken on significant hiring efforts; more than 100 scientists, engineers and technicians have been hired in 2018 already.

“Even with our Lab hiring at an accelerated rate, and even with the infrastructure improvements NNSA has made here, we could never complete this LEP alone,” said Tom Horrillo, W80-4 LEP Manager. “Our sister lab across the street (Sandia National Laboratories) is playing a central role in this, as are the production plants that are producing components across the country. The Air Force has been a great partner in defining requirements, and NNSA has been indispensable in helping us to roll out the infrastructure and processes we need to get the job done. I’m not overstating things when I say that there would be no LEP without the contributions of everyone on the team.”

The LEP is a collaboration between the DoD and NNSA, with LLNL working with all of the NNSA laboratories and production sites, as well as the Air Force and its missile vendors. Collaborators include Sandia, Kansas City National Security Campus, Y-12 National Security Complex, Pantex Plant, Savannah River Site, Los Alamos National Laboratory, NNSA Livermore Field Office, Albuquerque NNSA W80-4 Program Office, the missile program office at Eglin Air Force Base and Nuclear Weapons Center Kirtland Air Force Base.

“It is so important that we succeed with the W80-4 LEP,” Williams said. “These weapons need to be tremendously safe, secure and effective. We have to meet those expectations just as much as we need to meet the cost and schedule expectations. All told, I can’t help but feel that this is a very exciting time to work at the Lab.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Source/Images: LLNL]