Sustainable Cabin Built on 3D-Printed Concrete Stilts from Infested Ash Wood

Our house had several ash trees in the front and back yard while I was growing up, and we lost three of them due to various acts of nature. Ash is a very soft wood, which is how we lost one to high winds, and another split at the top because it wasn’t well-supported at the bottom. The third was removed because it had been infected by the invasive Emerald Ash Borer beetle, a nasty little bugger that’s not even native to the US but is here wreaking havoc anyway.

Obviously, ash trees that have been infected and destroyed by the EAB aren’t often used for construction purposes, both because sawmills can’t process the wood, and due to their odd, irregular shapes. These trees are then usually burned or left to decompose, neither of which is a great option.

“Unfortunately, both scenarios release carbon dioxide into the atmosphere, and so the advantage to using compromised ash for construction is that is that it both binds the carbon to the earth and offsets the harvesting of more commonly used wood species,” said Sasa Zivkovic, the Co-Principal of New York-based architecture studio HANNAH.

The Ithaca studio—founded in 2014 by Zivkovic, along with fellow co-principal Leslie Lok, Alexander Chmarin, and Alexander Graf—worked with a group of Cornell University students to create the tiny but striking Ashen Cabin, located off the grid in upstate New York. The collaborative project was meant to be a small-scale study regarding sustainable construction, and combined EAB-infested ash wood with 3D printing to build the cabin.

“By implementing high precision 3D scanning and robotic based fabrication technology, HANNAH transforms Emerald-Ash-Borer-infested “waste wood” into an abundantly available, affordable, and sustainable building material. From the ground up, digital design and fabrication technologies are intrinsic to the making of this architectural prototype, facilitating fundamentally new material methods, tectonic articulations, and forms of construction,” the studio’s website states.

As architects are looking to construct houses more sustainably, these kinds of small, off-grid residences are becoming more popular housing options, and Ashen Cabin definitely fits the bill. The tiny residence, featuring walls made of infested ash wood, is elevated by 3D-printed concrete stilts, which form the angular base of the cabin and its heavy, hulking extrusions.

HANNAH stated, “The project aims to reveal 3D printing’s idiosyncratic tectonic language by exploring how the layering of concrete, the relentless 3D deposition of extruded lines of material, and the act of corbelling can suggest new strategies for building.”

All of the cabin’s 3D-printed concrete shapes, including the tall, curved chimney and fireplace, furniture, textured floor, and prismatic legs, have a distinct linear pattern that features jagged edges. By using 3D printing, HANNAH was able to lower its carbon footprint and reduce waste by using less material than would normally be required, as a concrete mold was unnecessary.

Lok explained, “By using 3D printing, we eliminate the use of wasteful formwork and can deposit concrete smartly and only where structurally necessary, reducing its use considerably while also maintaining a building’s integrity.”

Concrete was also used to 3D print a unique seating platform, which can be opened up to use for storage. A bench made of marine-grade plywood, painted black to offer a pleasing contrast to the light siding, extends out from the seat in order to form a single bed.

A robotic arm with a band saw attachment cut the irregular ash logs into curving boards of different thicknesses. Both the exterior and interior of Ashen Cabin are covered with the wavy timber panels, which also define the structure’s four, black plywood-framed windows and were used to create other architectural features, like surfaces and shelving, inside.

The studio explained, “The curvature of the wood is strategically deployed to highlight moments of architectural importance such as windows, entrances, roofs, canopies, or provide additional programmatic opportunities such as integrated shelving, desk space, or storage.”

Focusing on the aesthetics of the cabin, the wood boards will naturally turn grey over time, so that the siding will eventually match the color of the concrete. Its 3D-printed concrete floors feature interlocking designs, and the windows are all oriented so they face the surrounding wooded landscape. The scenery makes it look like any residents of Ashen Cabin will be in their own little world.

Speaking of off-grid living, Ashen Cabin does not have power or running water. The temperature is regulated through its wood-burning fireplace and foam insulation, while a small camping sink, also 3D-printed out of concrete, provides the water.

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

(All photos taken by Andy Chen, HANNAH)

The post Sustainable Cabin Built on 3D-Printed Concrete Stilts from Infested Ash Wood appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Penn State Creates a Breakthrough 3D Printing Technology for the NASA Housing Challenge

In 2017, just a few months before his death, theoretical physicist Stephen Hawking said humanity only has about 100 years to escape Earth. Even though we have seen the signs alerting us that life on this planet is ailing, with plastic conquering the oceans, thousands of animal species becoming extinct and a shortage of water that affects every continent, the conversion towards a fully sustainable lifestyle that could revert the feeble state of our home is just not happening. So, many are actually paying attention and heeding Hawkins advice, trying to look for other “celestial bodies”, to conquer. One of the first to announce they were looking for volunteers to travel to the red planet was Mars One back in 2013, with over 200,000 people from 140 countries applying for a one-way ticket to join a human settlement on Mars by 2023. Millions of dollars later, Mars One went bankrupt showing us all how challenging developing the technology for Mars would be. Happily, they are not the only ones, four years ago, NASA outlined a plan to land humans on the surface of Mars by 2030, and world-renowned investor Elon Musk already has a timeline for colonizing Mars. The race is on to develop the technology, space shuttles, and medicine that will take the first settlers. One key challenge is housing of course, which is why NASA hosted the 3D printing habitat challenge, a four-part massive event that began in 2015 and created a competition among citizen inventors to use readily available and recyclable materials to print habitats useful for Mars colonization. Additionally, these discoveries in science and technology can also be adapted to improve life on Earth. During the final phase, runner up team Pennsylvania State University of University Park, was awarded $200,000 for their work. The interdisciplinary team of students and faculty from the Colleges of Arts and Architecture, Engineering, Agricultural Sciences, and the Materials Research Institute, have worked arduously during the last few years on this challenge and in the process, they engineered a breakthrough that moves forward 3D printing construction research and pushes the team closer to the goal of creating sustainable housing on Earth.

The four-phase competition requires entrants to develop advanced 3D printing technology, including the mechanical elements of the printer and a cement mixture using indigenous materials, to produce a structurally sound habitat that can be 3D printed by NASA’s space explorers on Mars. During the final phase, which took place on the first week of May, and after 30 hours of 3D printing, with nearly 200 spectators gathered at Caterpillar Edwards Demonstration and Learning Center in Peoria, two teams competed side by side, PennStateDen@Mars (the only university team in the competition) and AI SpaceFactory, culminating with the final print of each team’s structure. And although the Penn State team didn’t win phase-three of the competition, they returned to University Park having developed 3D printed home construction technology that could impact construction or help rebuild areas ravaged by natural disasters.

The Penn State team during the third phase of the NASA challenge (Image: NASA)

“Printing an enclosed roof has never been done before,” said José Duarte, Penn State team leader and director of the Stuckeman Center for Design Computing. “It was an amazing feeling and the success really highlighted the collaborative nature of the team. We had big dreams and because of everyone involved, they became a reality. We definitely feel a sense of social responsibility with this research. We are dealing with an environment quite different than ours.”

NASA’s encounter has generated many experiments, challenges and innovative results, helping 3D technology advance into uncharted territory, and Mars or any other planet humans intend to inhabit in the future will be a difficult endeavour. Mars is a rocky planet with volcanoes, canyons, limited access to water and a very thin atmosphere made of carbon dioxide, nitrogen, and argon. It’s similar to Earth in some ways, but you might need to suit up before wandering around the terrain, let alone try to build your own home. According to NASA it’s a tough place to live, but thanks to the knowledge and understanding gained through these competitions, we might get a little bit closer to conducting live printing experiments on site.

Associate professor of architecture and fellow team leader, Shadi Nazarian, also believes that the technology could be life-changing for many people:

“Imagine an area that was devastated by a tornado; this type of technology could be sent to that area and shelters can be immediately printed for those who lost everything. This thinking drives our research and feels much more attainable with our latest achievement. The applications of the materials and techniques that we and our competitors have developed are many, including immediate possibilities for building with materials that are gentler to the environment, use indigenous and recyclable materials, and withstand harsh conditions here on Earth and beyond,” Nazarian suggested.

The Penn State team, led by Duarte and Nazarian, was originally selected to take part of the competition from an initial entry pool of 77 teams. PennStateDen@Mars was one of only five teams who qualified to participate in the Centennial Challenge. In both phases of the contest, the participants had to 3D print structural habitat pieces in no more than four days, that were evaluated and then crush-tested on site, using some of Caterpillar’s most overwhelming construction machines. During the event, the team faced the challenge of creating robots to build the habitat. The team was very successful, finishing in second place in phase two and second and third place in construction levels one and two of phase three of the competition, generating nearly $300,000 in prize money.

The Penn State team during the second phase of the NASA challenge (Image: NASA)

The PennStateDen@Mars entry to the competition was based on previous research aimed at developing functionally graded materials and verifying the possibility of designing and constructing seamless buildings, which can have a significant impact on architectural language and building processes. They further developed additive-manufacturing technology to 3D print habitats using a specially formulated concrete made from materials that can be found on Mars. But Penn State being selected for this challenge has also a lot to do with their experience and innovation in 3D printing. They have many 3D printing labs on campus, like the Maker Commons, which houses a large-scale printing installation of 32 desktop 3D printers as well as the Invention Studio; university researchers delved into 4D Printing with Wood Composites for architectural applications, while a Penn State startup, Trimatis LLC, hopes to help the planet with recycled filament and the university also created VenturePointe, a new startup incubator for urban campus Penn State Shenango, complete with 3D printers. Both Nazarian and Duarte have been doing research with materials and 3D printing in the past, resulting in the development of innovative and graded material interfaces, which would enable the design of seamless shelters and impermeable bonds between glass and geopolymer concrete to protect individuals and the climate inside the habitat.

“The Mars competition has given us the opportunity to expand our understanding of 3D printing in ways we didn’t consider,” Nazarian said. “The result has been breakthroughs that can fundamentally change concrete construction. For example, 3D printing does not require formwork, which consumes much of the cost and labor in this industry. I’m excited about how this research helps advance the construction technology that is needed to create sustainable housing options.”

Team members focused their efforts in developing a novel concrete formulation, advancing 3D printing processes, and designing the overall 3D printing system necessary to print large structures. According to Penn State, the production of the geopolymer binder used in the formulation of the concrete designed by the team does not emit carbon dioxide into the atmosphere, unlike the production of the most common types of cement. Last year, assistant professor of civil engineering at Penn State, Alexandra Radlinska, along with NASA launched an experiment, the Microgravity Investigation of Cement Solidification – Multi-use Variable-gravity Platform (MICS-MVP), to examine cement samples aboard the International Space Station, which could have significant benefits for humans living on Earth and, eventually, the moon and Mars. Processing the samples provided with the fundamental baseline and insight regarding cement solidification in extraterrestrial bodies such as Mars.

Caterpillar’s Edwards Demonstration and Learning Center in Peoria (Image: NASA)

The 3D Printed Habitat Challenge will resume next year and PennStateDen@Mars team is ready to advance the additive construction technology needed to create sustainable housing. In the meantime, they are looking to showcase their breakthrough in 3D printing for housing on campus, where a 3D printed tiny house could be constructed, which, according to the university, will be a fully sustainable building and offer a glimpse into the future of home construction.

Additive Manufacturing is being used widely to develop sustainable housing options. With countries like Singapore busy at work 3D printing public housing, as well as INNOPrint 3D, a French 3D printer that (unrealistically) claims it can print emergency housing in 30 minutes, looking to print homes for the first settlers to colonize Mars seems like the right direction for the technology. Many innovators, companies and governments are passionate about life on other planets, and Mars has qualities that experts consider similar to Earth, with challenges picking up the pace of 3D printing technologies used in construction, it might not be long before 3D printers are being shipped to Mars for some of the first construction experiences in outer space.

WASP Launching Long-Term ‘3D Printing for Sustainable Living’ Construction Project

In September, WASP, or the World’s Advanced Saving Project, debuted its new Crane construction 3D printer, in Italy. It’s actually a modular 3D printing system, or “infinity 3D printer,” with different configurations to choose from, and was presented to the public in Massa Lombarda, where the 3D printed village of Shamballa is being constructed.

In October, a two-day program was held, starting with a conference titled “A call to save the world,” surrounding the introduction of WASP’s Crane 3D printer and its innovative 3D printed Gaia Module. The livable, tiny 3D printed house is the first structure that the WASP Crane 3D printed, and was made out of actual raw earth, with straw and rice husks added to the interior for insulation.

“Everyone in the world will have a fine, healthy, sustainable, self-sufficient and ecological home for birthright,” WASP wrote in a press release. “The earth is our witness, took form in Gaia.”

Now that the 3D printed architectural Gaia model is complete, WASP is beginning a brand new technological phase “in view of Expo 2020,” and kicking things off in 2019 with a long-term program called “3D Printing for Sustainable Living.”

GAIA represents an important case study for understanding just what’s possible when using 3D printing in the construction industry. The 3D printed earth module is an important part of WASP’s new program, which focuses on developing construction process using digital fabrication and 3D printing in an effort to move towards an all-new concept of building houses.

“As already announced in the conference “A Call to save the World”, WASP runs for a collaboration with partners belonging to every sector, from architectural design to the university research, from humanitarian associations to national ministries, able to fully share the project,” the company wrote. “It proposes a strategic program of constructive activities, expressly designed for on-site 3D printing and developed through the use of local raw materials.”


The program centers around an advanced, eco-sustainable model of construction, especially due to the lower cost and higher interior comfort the walls in the Gaia model provide with their combination of raw earth and natural waste as construction materials.

Some of the partners expected to work with WASP on its new project include a few universities, humanitarian associations, banking institutions and foundations, both public and private authorities, and several ministries, including Education, Health, Environment and Protection of Land and Sea, Infrastructure and Transport, Labor and Social Policies, Foreign Affairs and International Cooperation, Food and Forestry Agricultural Policies and Tourism, and Economic Development.

The project is based on six main macro-areas, starting with the promotion of human and material resources from the territory. This area features the capitalization of human knowledge, the use of renewable energy sources and materials found on site, the democratization of technology for the purposes of production, and using local manpower, rather than people with advanced training.

The second project area is sustainable construction processes with low environmental impact, including such items as lowering construction costs, CO2 emissions, the use of concrete, and transport operations, as well as using natural waste and better planning out the construction life cycle. Recycled materials, like natural waste from the agricultural chain and rubble, make up the third area, while the fourth is centered around the digitalization of the construction site through features such as digital data acquisition through 3D scanning, site monitoring, using on-site measuring to lower the amount of mistakes, and constantly defining the correct spatial coordinates.

Multi-purposes construction is the fifth project macro-area, which includes coordinating the use of multiple methods of digital fabrication like CNC technology, embedding supply facilities during initial construction rather than after, adding natural ventilation and thermal insulation right onto the walls, and using controlled material deposition to achieve high performance construction. Digital design is the final project area, and will focus on features including integrated design with BIM software, sharing digital contents available on the Internet, using a material optimization algorithm for construction, and making construction projects fully digital.

With this new project, WASP hopes to become a leader in the housing market, due also to its network of collaborators that will help to foster and share the project. The company knows that are some real opportunities in the future for green building, and also plans to develop a new eco-district in order to implement its “3D Printing for Sustainable Living” project goals and set up new constructive strategies that can be replicated in multiple environments.

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Images provided by WASP]

Contour Crafting Will Develop Concrete 3D Printer for Disaster Relief, Thanks to DoD Contract

One of the very first methods of large-scale 3D printing that the world witnessed was the technology of Contour Crafting Corporation, which uses large but lightweight robotic 3D printers to quickly put down layers of building material in order to rapidly create entire buildings onsite in just days.

Last week, we learned that the US Department of Defense (DoD) had recently awarded California-based Contour Crafting a $3 million research and development contract, effective July 25th, 2018, in the large-scale, construction 3D printing domain. Contour Crafting will use this Rapid Innovation Fund (RIF) to build a concrete 3D printer for the purposes of Rapid Response Construction – quickly constructing buildings for disaster relief, an application that often makes use of 3D printing.

According to the company’s website, “The outcome of this funded R&D program is expected to be a technology which, among other applications, will effectively respond to disaster relief situations with expedient, safe and sustainable structures and buildings.”

The RIF was awarded to Contour Crafting based on its proposal, titled “Autonomous Construction Equipment and Sensing (ACES).” I assume this ACES is not to be mistaken for the US Army’s other ACES program, but as the location on the Federal Business Opportunities page is listed as CERL in Champaign, Illinois, one can’t be too sure.

Regardless, this contract award to Contour Crafting confirms that the DoD is interested in seeking outside help for its construction 3D printing goals, as opposed to just keeping things in-house…never a bad idea.

Speaking of construction 3D printing goals, Contour Crafting is on a mission to commercialize disruptive construction technologies, and this funding award from the DoD should definitely help the company on its way to achieving it.

In 2015, Dr. Behrokh Khoshnevis, who developed the company’s Contour Crafting technology at the University of Southern California and is its CEO and founder, predicted during an interview with 3DPrint.com that 3D printed homes would be widespread within five years. While the 3D printed housing sector is certainly hard at work, we are definitely not there yet. However, 3D printed construction technology does seem to be the perfect answer for smaller structures, like an army barracks and emergency housing, so it’s smart to focus on these while continuing to build up the technology until it’s ready.

While I did not learn too much more about the company’s newly awarded DoD contract, perhaps due to a non-disclosure agreement or something similar, Dr. Khoshnevis was kind enough to answer some questions for me in regards to Contour Crafting’s construction 3D printing technology, as well as the company’s plans for the future.

How does Contour Crafting’s technology compare to other construction 3D printing?

Contour Crafting Transformational Impact

“As the attached [sic] chart (published by an independent Dutch firm) shows, Contour Crafting is the pioneering technology in large scale 3D printing. Over the last 23 years we have developed a large set of related technologies in practically all related subfields including large-scale robotics, material delivery systems, and materials with numerous patented inventions in each subfield. We have conducted research in various application domains including building construction, infrastructure construction and planetary construction. In most fields of our activities no other 3D printing group or company is active so I have no basis for comparison in those fields.”

What do you think the future of 3D printing buildings will be like?

“I think construction by 3D printing will gradually gain popularity but we should not expect that this approach will become the dominant way of building construction. Frist, 3D printing can at best only build the building shell. There is much more to a building than just the shell, which encompasses about 1/3 of the building cost. Second, many buildings will continue to be built with stick frame, steel, etc. and 3D printing is not likely to make any of these alternative approaches obsolete.”

What kind of structures are ideal for 3D printing?

Dr. Behrokh Khoshnevis

“Given that so far the economic attractiveness of construction by 3D printing is still unproven, the only ideal application remains to be construction of buildings that have exotic features, primarily curved walls, which would be potentially more expensive to build by manual methods. In case of concrete printing, even curvatures are limited to 2.5D features, thus giving an upper hand to manual methods over 3d printing approach.”

What are the next steps for your company?

“CC Corp is currently pursuing both construction and non-construction application domains. The latter has the main advantage of not being subject to regulatory restrictions and the complex and potentially costly process of obtaining approval of regulatory authorities for conformance to building codes, which incidentally is different for different localities because of varying factors such as extent of seismic activities and climatic conditions.

“In the field of construction we are advancing more cautiously as we are exploring potential implementation problems and solutions. We are doing many experimentations in-house and are preparing for some field tests as well.

“We have maintained our interest in the field of planetary construction as our prior accomplishments in the field, which include two NASA international competition Grand Prizes, have been noteworthy. We are developing new technologies for in-situ material usage for construction of a variety of useful infrastructure elements such as landing pads, blast protection walls, shade walls, radiation shielding walls, hangars, and roads.”

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

3D Printing News Briefs: August 10, 2018

We’ve got some business news to start things off with in today’s 3D Printing News Briefs, followed by a little research and a really cool 3D printed costume. The Department of Defense has awarded a contract to Contour Crafting, and Sutrue is celebrating its tenth anniversary. Facebook has made the decision to ban blueprints for 3D printed guns, and a Siggraph paper takes an in-depth look into near-eye displays. Finally, several companies helped the non-profit organization Magic Wheelchair make a really cool 3D printed wheelchair costume for a big Star Wars fan.

Contour Crafting Receives Department of Defense Contract

One of the first methods of large-scale 3D printing, Contour Crafting, uses large but lightweight robotic 3D printers, which can quickly put down layers of building material to rapidly create entire buildings onsite in just days. The California-based corporation itself is on a mission to commercialize disruptive construction technologies, and we recently learned that the US Department of Defense (DoD) has awarded Contour Crafting a $3 million research and development contract to build a concrete 3D printer for the purposes of building construction for disaster relief.

According to the company’s website , “Effective 25 JUL 2018, the Department of Defense has awarded Contour Crafting Corporation with a Rapid Innovation Fund contract in the domain of large and construction scale 3D printing. The outcome of this funded R&D program is expected to be a technology which, among other applications, will effectively respond to disaster relief situations with expedient, safe and sustainable structures and buildings.”

This information confirms that the DoD is not putting all of its eggs into one basket, so to speak, and is seeking outside help for its construction 3D printing goals.

Sutrue Celebrates Ten Years

Medical device startup Sutrue first started working on a 3D printed suture stitching device to help prevent needle stick injuries back in 2014, and became the first company to successfully 3D print a suture device. But Sutrue’s story actually began back in August of 2008, when its founder Alex Berry was stuck at home with a broken ankle and watched a documentary that provided some insight into robotic suturing. In an effort to keep busy during his recovery, Berry, who had some basic CAD knowledge, got to work.

After moving to the UK, Berry officially started Sutrue in 2012, meeting some influential people along the way who helped him get closer to achieving his goal of creating a 3D printed suture device. The startup completed a £30,000 crowdfunding campaign in 2014, submitted another patent, developed a few mutually beneficial relationships with other companies, and secured further funding for continued device development. Now, Sutrue is celebrating the 10th anniversary of Berry’s initial idea.

The startup wrote in a post, “It’s been ten years of ups and downs, filled with much uncertainty particularly in the first five years in which Berry didn’t even know for sure that the device would work. He has maintained the progression of the device through having a healthy dose of insanity, extreme resourcefulness, and an inquiring and problem-solving mind. He’s gone against many societal norms to have created two working prototypes of his automated suturing device – the robotic and the handheld, but as the route to market becomes closer and closer, he’s glad to have fought against the odds to see the project through to completion.”

Facebook Bans 3D Printed Gun Blueprints

Gun with 3D printed parts. [Image: CNET]

There’s been an increased amount of conversation on the topic of 3D printed guns recently, after news broke of a settlement between the US State Department and Texas open source 3D printed gun designer Defense Distributed, run by Cody Wilson. The settlement states that Wilson and his non-profit organization can publish files, plans, and 3D drawings of guns in any form, and are also exempted from export restrictions; additionally, the government will be paying nearly $40,000 of Wilson’s legal fees. This means that people who weren’t legally able to purchase firearms before, such as felons and domestic abusers, can 3D print their own guns without serial numbers. As you can imagine, many are not happy with this decision. This week, Facebook, the world’s largest social network, said that it will ban any websites that host and share blueprints of 3D printed guns, though the designs have already been available online for years.

According to BuzzFeed News, a Facebook spokesperson said, “Sharing instructions on how to print firearms using 3D printers is not allowed under our Community Standards. In line with our policies, we are removing this content from Facebook.”

MSN reports that Facebook did not “immediately respond to a request for comment regarding the Ghost Gunner” 3D printed gun.

Siggraph Paper on Optical Design for Augmented Reality Near Eye Displays

This year’s annual conference on computer graphics, SIGGRAPH 2018, starts this Sunday, August 12th, in Vancouver. One of the papers published for the conference, titled “Steerable application-adaptive near eye displays,” discusses see-through near eye displays (NED), which are currently being used in the Hololens, among other things. According to the Stanford Computational Imaging Lab, most NEDs work by using a stereoscopic image pair to optically drive the visual system’s vergence state to “arbitrary distances,” but drives the focus (accommodation) state towards a fixed distance.

The technology is a bit of a long shot, due to people getting motion sickness or their eyes getting tired, but if we can get it to work, I bet every movie theatre in the world will employ it.

The abstract of the paper reads, “The design challenges of see-through near-eye displays can be mitigated by specializing an augmented reality device for a particular application. We present a novel optical design for augmented reality near-eye displays exploiting 3D stereolithography printing techniques to achieve similar characteristics to progressive prescription binoculars. We propose to manufacture inter-changeable optical components using 3D printing, leading to arbitrary shaped static projection screen surfaces that are adaptive to the targeted applications. We identify a computational optical design methodology to generate various optical components accordingly, leading to small compute and power demands. To this end, we introduce our augmented reality prototype with a moderate form-factor, large field of view. We have also presented that our prototype is promising high resolutions for a foveation technique using a moving lens in front of a projection system. We believe our display technique provides a gate-way to application-adaptive, easily replicable, customizable, and cost-effective near-eye display designs.”

Co-authors of the paper are NVIDIA Corporation‘s Kishore Rathinavel, Praneeth Chakravarthula, Kaan Akşit, Josef Spjut, Ben Boudaoud, Turner Whitted, David Luebke, and Henry Fuchs from UNC Chapel Hill.

3D Printed Star Wars Wheelchair Costume

Here’s something fun and heartwarming to kick off your weekend – non-profit organization Magic Wheelchair, which makes free, bespoke wheelchair costumes for kids, created a 3D printed Poe Dameron X-Wing Fighter wheelchair costume for a 13-year-old, wheelchair-bound Star Wars fan named Vedant Singhania to wear at last month’s Comic-Con International. Project partners included Pixologic, which used its ZBrush digital sculpting software to provide the design and modeling work, and Dangling Carrot Creative, which used the high print speeds of the Massivit 1800 3D printer to make 50 separate costume pieces in a little over two weeks. Massivit also donated 3D printing materials, and Monster City Studios assembled the large wheelchair costume.

“We connected with Magic Wheelchair because we knew our technology and modelling expertise could assist them with the fantastic work they are doing for children in wheelchairs,” said Pixologic’s 3D Product Development Manager Paul Gaboury. “After we designed the costume, Dangling Carrot Creative was the final piece to the puzzle. The company allowed us to 3D print life-size to help remove the need for molds or casting which saves substantial time and money.”

Discuss these stories, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below.