Next Chapter Manufacturing: Redesigning Injection Molding with 3D Printing

Additive manufacturing (AM) is already making strong inroads into the injection molding industry due to its ability to reduce the cost and improve the performance of molds used in the process. What we are now starting to see is an increasing number of companies and services aimed specifically at leveraging AM and computer aided engineering to disrupt the injection molding market. One such company is Next Chapter Manufacturing (NXCMFG).

Prior to founding NXCMFG, Jason Murphy worked in the mold making industry, using traditional processes like CNC machines, milling and drilling to craft tooling for injection molding. He eventually established a mold making company that he ran for about 10 years before selling it. Murphy then moved onto the plastics side of the industry, where he worked in plastics processing for another 10 years. He believes that the mold making industry has become somewhat set in its ways, forgetting to look for innovation in the space. For that reason, he established NXCMFG.

NXCMFG is a tooling company that uses AM to produce metal inserts and tooling for use in plastic injection molding and metal die casting, as well as jigs, fixtures and other tools. While it may not perform high volume production itself, NXCMFG makes the parts that make the parts made through high volume production technologies. Clients range from small businesses to Fortune 500 injection molding companies.

The hardware consists of Farsoon metal Direct Metal Laser Sintering (DMLS) systems, which have the performance, resolution and the cost necessary for a relatively small businesses like Murphy’s to produce entirely new molds or inserts for existing molds. And, while typical projects consist of one-off prints, the firm typically builds multiple parts for multiple projects at a single time. According to Murphy, his is in the only company in the U.S. that is able to print H13 tool steel and 420 stainless steel using a metal DMLS process.

A mold with conformal cooling. Image courtesy of NXCMFG.

However, probably the most interesting aspect of NXCMFG’s work is the use of conformal cooling and generative design to optimize injection molds and inserts. Unlike traditional CNC processes used to integrate cooling channels into molds, NXCMFG is able to include channels that conform to the shape of the mold, which reduces the time it takes for the mold to cool and a new injection molding job to begin. According to Murphy, his company is able to introduce a 20 to 80 percent improvement in cycle time.

While conformal cooling is becoming increasingly deployed by a number of additive companies in the space, NXCMFG is designing cooling vents for molds. Murphy explained, “Before you inject the plastic in, there is air inside of the mold so that, when you inject the plastic, that air has to go somewhere. You can’t have a hole in the mold because all of the plastic would come out. So, you have these thin slots that are about one-third of the width of a human hair that all of that gas has to escape out of.”

A mold with conformal cooling. Image courtesy of NXCMFG.

Using AM, Murphy’s company can incorporate slits that measure up to one-thousandth of an inch. Moreover, NXCMFG is working on new methods of design that actually change the density of the steel molds they are printing so that the areas in contact with the liquid plastic are porous like a sponge. This would result in quick and even gas displacement, as well as more rapid cooling for improved cycle times. The firm also uses generative design to reduce the weight of molds, resulting in organic-looking tooling with material only where it needs to be for proper strength and performance.

A generative design study. Image courtesy of NXCMFG.

NXCMFG isn’t only utilizing these unique design features in new molds, but also inserts that can be used to modify older tooling. Murphy’s team is able to incorporate cooling channels and venting into a single mold insert, placing a porous steel design alongside a cooling channel for maximum performance with legacy tooling. This saves customers the money that would be used for creating an entirely new mold

A 3D-printed insert. Image courtesy of NXCMFG.

All of these features end up being profitable for their customers in a variety of ways. By cutting cycle times, injection molders can make more parts more quickly, thus reducing machine hours and labor. The process also reduces plastic scrap because conformal cooling and venting reduces defects in plastic parts.

“We’re the only people in the industry 3D printing molds with a million shot guarantee. We offer a guarantee that says, ‘Look, our tooling is so robust that it’ll last a million cycles in production, which is industry standard for traditional tooling,” Murphy said.

What NXCMFG demonstrates is that the tooling sector is only beginning to feel the impact of AM. As one of the most innovative firms in the space, Murphy’s is ahead of the curve in terms of where molds are headed. By the time others follow suit, NXCMFG may be on to even newer and more unique methods for improving mass manufacturing practices.

The post Next Chapter Manufacturing: Redesigning Injection Molding with 3D Printing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing for Molds and Dies, Part 2

In part one of this series, we gave an overview of how 3D printing is used to fabricate molds and dies for injection molding and die casting. In particular, additive manufacturing (AM) can be more cost effective for small batches of parts; however, in some cases, the technology can provide some benefits that are unique to 3D printing, regardless of batch size. This is particularly true of 3D-printed metal molds and dies that can survive much longer than plastic molds discussed in part one.

The biggest benefit that 3D-printed molds and dies offer, regardless of batch size, is the ability to integrate conformal cooling channels (air passages that follow the shape of the mold/die cavity and core) that would be impossible with traditional technologies. Channels are integrated into molds and dies so that they dissipate heat more quickly, reducing the cooling time needed for the part and the tool. This makes it possible to crack open the mold or die and inject more material for faster production.

Traditional methods for complex cooling strategies.

As it stands, molds and dies are typically made with CNC machines, with cooling channels usually drilled in secondary machining operations. As a result, heat dissipates more unevenly, leading to internal stresses and warpage within the part itself. More complex cooling strategies can be achieved through the addition of features called bafflers, bubblers and isobars, which obviously increase the labor and cost of the part. If necessary, tooling might have to be made in segments for more intricate channels to be incorporated. The mold/die is then soldered together, which naturally shortens the life of the tooling.

With AM, cooling channels can be printed in any shape and closer to the part than possible with subtractive techniques. This in turn can improve part consistency, while also reducing cooling times, which in turn cuts down the time it takes to make a new part (referred to as “cycle times”). Fewer defective parts also means less material scrap.

There are numerous examples where 3D-printed molds have improved the injection molding process. Czech tool manufacturer Innomia cut cycle time by 17 percent, ultimately also reducing production time to market from 18 to 13 days. Polish tooling and injection molding company FADO reduced cycle times by 30 percent. Linear Molds, of Michigan, reports that 20 to 30 percent of its tooling sales are 3D-printed inserts. Oyonnax Cedex was able to reduce the temperature of its tooling by 20°C, resulting in a 20 second drop in cooling times. Laser Bearbeitungs Center was able to cut its cycle time by 60 percent and scrap rate from 50 percent to zero.

A 3D-printed tool insert featured conformal cooling to cut cycle time by 17 percent, while improving the quality of the arm-rest part it was used to manufacture. Image courtesy of Innomia, Magna.

The introduction of conformal cooling channels is really just the beginning of the benefits that 3D printing brings to the fabrication of molds and dies. The use of simulation software makes it possible to optimize the cooling pathways to reduce cooling and cycle time that much more. Topology optimization, generative design, and other simulation-based modeling techniques can be further applied to reduce the material used to fabricate the tooling, thus making the part lighter and easier to move, as well as cutting cooling time even more.

A mold optimized using Altair software and 3D printed by PROTIQ. Image courtesy of Altair.

Companies such as PROTIQ and NXCMFG are specifically dedicated to 3D printing molds, dies, and inserts using simulation tools and topology optimization. In one use case, PROTIQ was able to reduce the weight of a mold by 75 percent. This made it so that the tool could not be lifted by hand, while conformal cooling cut cooling time from 9 or 10 seconds to just 3.2 and cycle time by one third.

In the above cases, the metal 3D printing technology in use was metal powder bed fusion (PBF). Though not capable of the same geometric complexity, directed energy deposition (DED) and hybrid manufacturing systems (which usually combine DED with CNC) have their own benefits that can be brought to toolmaking.

In particular, DED and hybrid systems that use DED are capable of combining disparate metals or depositing metals to existing parts. For molds and dies, this means taking advantage of the physical properties of multiple materials.

Multi-material applications and graded materials can be realised with DMG Mori’s LASERTEC 3D hybrid machines.

Hybrid machine manufacturer DMG Mori, for instance, discussed fabricating a die casting mold by 3D printing a mold core out of bronze, which dissipates heat quickly, and then printing the outer mold from tool steel, chosen for its corrosion resistance properties.

Alternatively, a mold could be made in which one material, such as steel, is deposited onto an existing block of base material, such as copper. Due to the thermal conductivity of copper, the base could act as a heat sink, reducing cooling time. Finally, unlike PBF, DED can then be used to repair a mold or die over time.

The post 3D Printing for Molds and Dies, Part 2 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: August 11, 2019

We’re starting off this 3D Printing News Briefs edition with some good news from Xometry – this week, it announced the availability of Carbon DLS technology as one of its process options. Moving on, Markforged published a case study and Aeromet announced new properties for its A20X powder. Finally, HP has launched a design competition.

Xometry Offering Carbon DLS Technology

Just this week, custom on-demand manufacturing network Xometry announced that it will be offering Digital Light Synthesis (DLS) technology by Carbon as one of its available 3D printing process options, in addition to SLS, SLA, FDM, DMLS, PolyJet, and HP’s Multi Jet Fusion. Through its Instant Quoting Engine, Xometry customers can get quotes, design feedback, and lead times for production-grade parts 3D printed with Carbon’s DLS. You can learn more about how to get the most out of this technology, and the Xometry platform, during a live webinar on Wednesday, August 14, from 12 – 1 pm; each attended will be entered to win a pair of Adidas Futurecraft 4D shoes with 3D printed soles by Carbon.

“We are very excited to add Carbon’s cutting-edge DLS technology to Xometry’s capabilities. Our additive customers have been asking us for it due to its reputation for speed and quality,” stated Bill Cronin, Xometry’s Chief Revenue Officer.

Aeromet Announces New Properties for A20X Alloy 

 

 

announcement covering new record-breaking properties achieved by the A20X alloy after a research project involving Rolls-Royce, Renishaw and Aeromet.

A20X™ cements its status as a leading aluminium powder for additive manufacturing after breaking the critical 500 MPa UTS mark.

6th August 2019: A20X, the aluminium alloy developed and patented by UK foundry specialist Aeromet International, has cemented its status one of the strongest aluminium additive manufacturing powders commercially available after surpassing the key 500 MPa UTS mark.

As part of a recent research project involving aero-engine giant Rolls-Royce and additive manufacturing equipment specialist Renishaw, heat-treated parts produced using A20X™ Powder have achieved an Ultimate Tensile Strength (UTS) of 511 MPa, a Yield Strength of 440 MPa and Elongation of 13% – putting the powder at the forefront of high-strength aluminium additive manufacturing.

Crucially, parts additively manufactured with A20X™ Powder maintain high-strength and fatigue properties even at elevated temperatures, outperforming other leading aluminium powders.

Mike Bond, Director of Advanced Material Technology at Aeromet, commented: “Since bringing the A20X™ alloy to market for additive manufacturing 5 years ago we have seen significant adoption for high-strength, design-critical applications. By working with Rolls-Royce, Renishaw and PSI we have optimised processing parameters that led to record-breaking results, opening up new design possibilities for aerospace and advanced engineering applications”.

The HighSAP project, backed by the UK’s National Aerospace Technology Exploitation Programme (NATEP), was led by Aeromet and involved Rolls-Royce, Renishaw and atomisation experts PSI. A20X™ Powder for additive manufacturing is derived from the MMPDS-approved A20X™ Casting alloy, the world’s strongest aluminium casting alloy, which is in use by a global network of leading aerospace casting suppliers.

 

 

 

  • Aeromet announces new properties for A20X powder
  • Case study: Dunlop uses Markforged technology to save thousands
  • HP launches 3D Print Design Competition

The post 3D Printing News Briefs: August 11, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

RMIT: 3D Printed Milling Cutter That Cuts Titanium Alloys, Thanks to Jimmy Toton

3D printing is walking its path slowly but surely into the field of aerospace and defense manufacturing. Due to the demands of high performance and rigorous precision, every step given in this direction has to be crafted to the detail to achieve perfect execution.

Jimmy Tonton, a PhD candidate from RMIT University of Melbourne, Australia, has achieved important progress in this field by developing high-quality cutting tools than can now be 3D printed. For this research, Toton has partnered with the Australian Defence Materials Technology Centre (DMTC) and industry partner Sutton Tools. The outcome of this collaboration is a set of steel milling cutters able to cut through Titanium alloys with the same or at times better results than conventional steel tools.

Picture of the high performance milling cutter

This is the high-performance steel milling cutter 3D printed by RMIT researchers. Credit RMIT University

Because the high resistance of metals used for aerospace and defense, creating an efficient cutting tool is quite challenging and expensive. The strength and high-quality execution required to perform those cuts let us imagine the numerous difficulties that Toton had to overcome to achieve a successful design. The milling cutting tool has to be strong enough to cut through metal while keeping the layers resulted from 3D printing unified and all its parts built strong enough to avoid cracks. It also must be finished to a very smooth surface roughness in order to remain functional. 

The set of milling cutters represent the first convincing demonstration of 3D printed steel cutting tools that can cut strong metals. Toton’s work is a clear demonstration of the technology´s potential achievement for the development of 3D printing tools. Consequently Toton has been awarded the 2019 Young Defence Innovator Award and $15,000 prize at the Avalon International Airshow.

Jimmy Toton inspecting his tool

Jimmy Toton inspects a 3D printed steel milling cutter. Credit RMIT University

The technology used to make the milling tools is  Laser Powder Bed Fusion, also called Laser Metal Deposition, Selective Laser Melting  and Direct Metal Laser Sintering. Which is an additive manufacture process in which metal powder is fed onto a metal base and a laser beam melts the material added forming a metal pool that layer by layer forms the object. This technique lets the object to be built with complex internal structures and demanding external surfaces. Although as we know metal 3D printing processes require several finishing and post finishing steps in order to work well. These may include tumbling for several days, HIP, precipitation hardening, shot peening and other steps. These kinds of cutting tools do not magically appear out of the machine but are a result of a number of process steps. 

Some of the potential that this project holds are improvements in productivity, time-saving in tool making, costs savings, reduction of material waste and the possibility of creating tools that fit a very specific purpose and in so doing overcoming supply chain constraints. This is all good news for manufacturing. Toton is now working towards establishing a print-to-order capability for Australia’s advanced manufacturing supply chains.

In his own words:

Manufacturers need to take full advantage of these new opportunities to become or remain competitive, especially in cases where manufacturing costs are high,”

“There is real opportunity now to be leading with this technology.”

DMTC Chief Executive Officer, Dr Mark Hodge, said:

“Supply chain innovations and advances like improved tooling capability all add up to meeting performance benchmarks and positioning Australian companies to win work in local and global supply chains,” he said.

“The costs of drills, milling cutters and other tooling over the life of major Defence equipment contracts can run into the tens, if not hundreds, of millions of dollars. This project opens the way to making these high-performing tools cheaper and faster, here in Australia.”

Sutton Tools Technology Manager, Dr Steve Dowey, said:

“This project exemplifies the ethos of capability-building through industrial applied research, rather than just focusing on excellent research for its own sake,”

RMIT’s Advanced Manufacturing Precinct Director and Toton’s supervisor, Professor Milan Brandt, said:

“Additive technology is rising globally and Jimmy’s project highlights a market where it can be applied to precisely because of the benefits that this technology offers over conventional manufacturing methods,”

Tooling and cutting tools may not be the first thing that you think of when coming up with 3D printed products. This showcase of their use indicates just how versatile 3D printing can be. Toton has shown us that parts that are not traditionally thought of as high value are still mission critical enough to 3D print in costly metal printing processes. We expect many more people to apply metal 3D printing to metal and polymer consumables and tools in the coming years.

US Army Learning About and Using 3D Printing to Improve Military Readiness

The REF Ex Lab at Bagram Airfield produced these items after Ex Lab engineers worked with Soldiers to develop solutions to problems they encountered.

The US Army has long been putting 3D printing to good use. In an article published in the latest edition of Army AL&T Magazine, senior editor Steve Stark takes a deep dive into just how this branch of the military is using 3D printing, and what barriers stand in its way.

Stark wrote that 3D printing “is a natural fit for the Army” as the military branch works to upgrade its manufacturing technologies. Dr. Philip Perconti, director of the US Army Research Laboratory (ARL), says the technology “is at a pivotal stage in development.”

At the opening of the new Advanced Manufacturing, Materials and Processes (AMMP) manufacturing innovation center in Maryland this fall, Dr. Perconti said, “The Army wants to be at the forefront of this advancement in technology.”

Dr. Perconti believes that mobile production of various replacement parts and components is on the horizon, and he’s not wrong: the Navy, the Air Force, and the Marines are already taking advantage of this application.

3D printing can be used to improve readiness, which is a fairly wide-ranging category that covers everything from buildings and repairs to logistics and sustainment. The overarching goal is to send units out with just the right amount of equipment to establish a mobile unit for on-demand 3D printing.

Mike Nikodinovski, a mechanical engineer and additive expert with the Army’s Tank Automotive Research, Development and Engineering Center (TARDEC), explained that various places around the Army, like its Research, Development and Engineering Command (RDECOM) and the Aviation and Missile Research, Development and Engineering Center (AMRDEC), are currently enhancing readiness, and speeding up the sustainment process, by experimenting with the 3D printing of plastic and metal parts.

“We’ve been repairing parts for the M1 Abrams. … We’ve done projects cross-Army and with the Marine Corps where we printed things like impeller fans. A lot of the things we’ve been doing are just basic one-for-one replacement,” Nikodinovski said. “What can you do with additive for a part that’s traditionally manufactured? A lot of that gets at sustainment, and that’s what we’re trying to stand up at Rock Island—give them the capabilities so they can print metal parts, especially if you want … long-term procurement for parts where you only need a couple, vendors are no longer in business and it doesn’t make a lot of sense to spend a lot of money to set up tooling. Can additive be used to supplement the sustainment process, where I can just, say, print three parts and save all the time it would take to find vendors or set up the tooling?”

A 3D printed 90° strain relief offset connector, which was designed and fabricated by REF engineers at Bagram Airfield, Afghanistan to prevent cables from breaking when attached to a piece of equipment.

Additive manufacturing is very different from subtractive manufacturing, which means that critical training is involved.

“That’s a huge undertaking. We need to not only train the people who are going to touch and run the machines, but train the troops and the engineers on the capabilities of and how to design for AM,” explained Edward Flinn, the Director of Advanced Manufacturing at Rock Island Arsenal.

“You’ve got to train the Soldier on the capabilities of the technology along with how to actually use the machine. Then there’s how to teach the design community themselves the benefits of additive so they can start designing for it.”

Ryan Muzii, REF support engineer, cuts metal for a project.

Megan Krieger, a mechanical engineer at the Army’s Engineer Research and Development Center (ERDC), explained that the use of makerspaces in the MWRs (morale, welfare, and recreation facilities) at libraries is a helpful way to get military personnel more familiar with 3D printing. She explained that this way, “if people are passionate about making things, they’ll learn it a lot better than if they’re just thrown into it.”

Outside of actually learning how to use the technology, the Army is also working to develop new materials and design tools for 3D printing.

Dr. William Benard, senior campaign scientist in materials development with ARL in Maryland, said, “The Army’s near-term efforts are looking at readiness, and in research, one of the simpler things is to just design new materials that are easier to print with, more reliable to print with, [the] properties are well understood—that kind of thing as a substitute, sort of a more direct approach to support of existing parts.

“One of the areas of investment that ARL is making to support this, and I know others in the RDECOM community are looking at it as well, is, really, new design tools for additive.”

The Army also needs to determine the specific economics of adopting 3D printing. While cost is less of a factor when you’re up against a tight deadline, this reverses when manufacturing reproducibility and cost are more important in a project. Additional factors include how critical the need for the part is, how quickly developments are being made, what else depends on the particular project, and where exactly the Army is spending money.

Tim Phillis, expeditionary additive manufacturing project officer for RDECOM’s Armament Research, Development Engineering Center’s Rapid Fabrication via Additive Manufacturing on the Battlefield (R-FAB), explained, “We as scientists and engineers can talk about material properties and print bed temperatures and print heads and all this kind of stuff, but the senior leadership is looking at, ‘So what? How does this technology improve readiness? How can I keep systems and Soldiers ready to go?’ And that’s what we’re learning.”

Soldiers used R-FAB during a Pacific Pathways exercise in 2017 to print a camera lens cover for a Stryker vehicle in four hours. [US Army photo]

Stark wrote that the Army is mostly “focusing its efforts on its modernization priorities,” and leaving further development up to academia and industry. If our military wants to use 3D printing for real-world applications, this development needs to speed up – these parts must stand up under plenty of stress.

Dr. Aura Gimm, who was managing the Army’s MIT-affiliated research center program at the Institute for Soldier Nanotechnologies at the time of her interview, said, “It’s one thing to create decorative parts, but it’s something else if you’re trying to create a loadbearing or actuating parts that could fail.

“The standardization and making sure that we have metrology or the metrics to test and evaluate these parts is going to be quite critical, for [items made with additive] to be actually deployable in the field. Because one thing that we don’t want is to have these parts … not work as expected.”

Dr. Perconti concurred:

“Ultimately, the goal for us is to enable qualified components that are indistinguishable from those they replace. Remember, when you take a part out of a weapon system and replace it with an additive manufactured part, you’re putting lives on the line if that part is not fully capable. So we have to be very sure that whatever we do, we understand the science, we understand the manufacturing, and we understand that we are delivering qualified parts for our warfighters.”

UH-60A/L Black Hawk Helicopter [Image: Military.com]

For example, AMRDEC has been working with General Electric Co. to 3D print parts for the T700 motor, which powers both the Apache and Black Hawk helicopters. However, these motor parts are not in use, as they have not yet been tested and and qualified at the Army’s standards. Kathy Olson, additive manufacturing lead in the Manufacturing Science and Technology Division of the Army’s Manufacturing Technology program at Redstone Arsenal, Alabama, said this project is “more of a knowledge transition” to show that it’s possible to 3D print the parts with laser powder bed fusion.

In order to qualify 3D printed parts for Army use, the materials must first be qualified.

“Then you have to qualify your machine and make sure it’s producing repeatable parts, and then qualify the process for the part that you’re building, because you’ll have likely different parameter sets for your different geometries for the different parts [that] you’re going to build,” Olson explained.

“It’s not like you can just press a button and go. There’s a lot of engineering involved on both sides of it. Even the design of your build-layout is going to involve some iteration of getting your layout just such that the part prints correctly.”

One solid application for Army 3D printing is tooling, as changes in this process don’t need any engineering changes.

Dr. Patrick Fowler, right, former lead engineer of the Ex Lab in Afghanistan, works with a Soldier on an idea for a materiel solution.

“You can get quick turnaround on tooling,” Flinn explained. “The design process takes place, but the manufacturing can take place in days instead of weeks…For prototyping or for mainstream manufacturing, I can have a tool made [additively] and up and running in 24 hours.”

If applied correctly, 3D printing will allow soldiers deployed all over the world to make almost anything they need in the field.

“What missions can we solve? We’re finding all kinds of things,” said Phillis. “Humvees are being dead-lined because they don’t have gas caps. Or the gas cap breaks. When they order it, they’ve got to sit there for 30 days or 45 days or however long it takes to get that through the supply system.

“If we can produce it in a couple of hours, now we’ve got a truck that’s ready for use while we’re waiting for the supply system to catch up.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images: US Army photos by Jon Micheal Connor, Army Public Affairs, unless otherwise noted]

Transportation Company Saves Time and Money with Roboze 3D Printer

CNH Industrial is a global leader in capital goods, employing more than 63,000 people in 66 manufacturing plants and 53 research and development centers in 180 countries. It oversees 12 brands, including Iveco, which is dedicated to the creation of safe, efficient and sustainable vechiles. Like so many manufacturing companies, Iveco recently turned to 3D printing, particularly for the fabrication of jigs and fixtures. About a year ago, the company acquired a Roboze One+400 3D printer,

Roboze has introduced several new 3D printer models since the One+400, but that particular model has been a reliable point of pride for the company. Released in 2016, the One+400 was the first affordable desktop 3D printer capable of printing with high-performance, industrial-grade polymers like PEEK and PEI. Other 3D printer with those capabilities have come out since then, but the Roboze One+400 will always be known as the first, and its reliability has kept it a popular choice even in an increasingly competitive field. Only months later, Roboze introduced a revamped, industrial version of the 3D printer, and then a year after the original was released, the company upgraded it to print with even more high-performance materials.

“We decided to invest in the Roboze One+400 among other solutions of the same kind because it allows us to choose a wide range of technical materials and consequently permits to realize equipments that can be used in contact with paints or in ovens that can reach very high temperatures,” said Eng. Grazia Cappiello, engineer at the Manufacturing, Equipment and Tooling department at CNH Industrial. “Moreover, Roboze’s materials can be used in direct contact with aesthetic parts of the vehicle, not releasing any residues and/or abrasions.”

One year after acquiring the Roboze 3D printer, CNH Industrial is happy to announce that it has significantly cut costs and sped up production at its Iveco plant. The printer has allowed the company to produce parts with extreme precision, adapting them to different shapes, ergonomics and weight needs – and to do so faster and at less cost than traditional production techniques. It now produces these parts on demand, reducing the need for inventory space, and also produces them more sustainably, as 3D printing creates less waste than other production techniques.

Roboze and CNH Industrial will be providing more details about how 3D printing has changed Iveco’s manufacturing practices for the better in an upcoming webinar on January 10th at both 10:00 AM and 5:30 PM CET. You can learn more about the webinar and how to register for it here.

“We decided to make our end users closer to the real advantages of Roboze technologies, on a specific application, such as tooling, that is fundamental in all manufacturing companies of the world,” said Ilaria Guicciardini, Marketing Director at Roboze. “Working with Roboze 3D printing solutions today means creating critical competitive advantages in a medium-long term. Speeding up the response to market with, at the same time, a significant reduction of manufacturing costs becomes possible and accessible. The CNHi case is a tangible evidence.”

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

 

Tooling Systems Manufacturer Wilson Tool International Introduces New 3D Printing Division

More and more these days, we’re seeing applications for 3D printing in the tooling sector. Minnesota-based Wilson Tool International, the largest independent manufacturer in the world of tooling systems for press brakes, punch presses, and punch and die components for the stamping and tableting industries, has been a top provider of tooling solutions since 1996. The company has additional manufacturing facilities in five other countries, including Italy and China, and its extensive network of sales engineers and international distributors operate in every industrialized nation.

This week, Wilson Tool announced that it had just added a new division, called Wilson Tool Additive, to help the prolific tooling company adopt additive manufacturing capabilities. The new division will allow Wilson Tool to provide its many customers with 3D printed, made-to-order bending tools and fabrication support parts in just hours, as opposed to the days or even weeks it would ordinarily take with standard steel tools made with conventional manufacturing techniques. These reduced lead times also mean that a large inventory of parts is not needed, which saves on space and cost.

“We see this division as an investment in your future success, as it’s poised to increase your productivity in a way you’ve never imagined — through the Power of 3D. Quite simply, you will now have the ability to make made-to-order bending tools and support parts, much on your own terms,” Brian Robinson, the CEO of Wilson Tool Enterprises, said in a brochure the new division published.

The division’s website states that its 3D printed tools are best made out of materials such as 14-gauge cold rolled or less, and well-suited for low run jobs up to about 1,000 hits. In addition to reducing lead time and the need for a large inventory, 3D printing makes it possible to eliminate tooling, as only one or two machines are needed to make finished products instead of several

The new Wilson Tool Additive division includes two new product lines – Bend3D and Solv3D – the first of which helps to lower lead times for press brake tooling. Solv3D is perfect for quick 3D printed production of support items, like fixtures, molds, and prototypes.

According to the website, “Both lines supply the quality you expect from Wilson Tool.”

The Bend3D line of 3D printed bending tools also work as air-bending and forming tools, as well as mark-free bending solutions. The pieces possess the same strength and quality as the traditional steel press brake tools that manufacturers use to bend sheet metal. The 3D printed support parts in the Solv3D line can be used to replace end-use parts that are traditionally made of plastic or steel. They can also be used as prototypes, and to replace jigs or fixtures, or shop items that would typically require the fabrication of a costly mold to replace.

“Wilson Tool International currently builds additive products using two types of processes,” Wilson Tool Additive wrote. “Determined through rigorous testing of stress resistance and longevity, these two processes offer customers a full spectrum of high-quality product possibilities.”

The first of these two 3D printing processes is fused deposition modeling (FDM). The plastic used is strong from two directions, and is a solid choice for fixtures and select types of tooling. The second process, grown plastic, uses light curing to build parts out of resin, and is good for finished parts that are near the quality of a mold. 3D printed tooling created with this process has limited design restrictions, in large part because it is strong in all directions.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

[Images: Wilson Tool Additive]

Building Conformal Cooling Channels Using 3D Printing To Reduce Warpage and Cooling Time

Bottom view of the parts produced by both conventional mould tool (left) and AM mould tool (right)

In injection molding, parts are cooled by building channels throughout them. Those channels are typically straight lines, which can result in uneven cooling. Much more even, efficient cooling can be achieved with conformal cooling channels, which conform to the shape of the part. However, these types of channels are difficult to produce by conventional methods, making 3D printing an appealing alternative for the creation of injection molding tools. In a paper entitled “Conformal cooling by SLM to improve injection moulding,” a group of researchers use Selective Laser Melting to build conformal cooling channels in injection molding tools.

Specifically, the study aims to produce tooling for a support for pipette tips used in the medical industry. The main problem with conventional production of the part, the researchers explain, is a long cycle time, related to cooling difficulties on the thickest areas of the part.

“Furthermore, the high quantity of ejector pins on the core side creates additional problems since minimum distances must be kept from cooling channels,” the researchers continue. “To evaluate the impact of conformal cooling, numerical simulations were performed, providing excellent prospects concerning cycle time reduction.”

The plastic part they created for the study was a support for pipette tips, a rectangle with 12×8 housings for the tips, divided by thin walls. The part was designed to be stacked, with stronger outer storage walls. Trials were carried out with conventional manufacturing techniques, and certain thick spots at the intersection of the inner walls and the outer walls caused hot spots, where the material cooled slowly. This in turn caused sink marks and warping on the inner walls.

The researchers then re-engineered the mold to be produced with additive manufacturing, using a LaserCusing machine from Concept Laser. The two goals with the re-engineering were the reduction of cycle time and the prevention of warping. Using conformal cooling channels enabled them to reduce the cooling time from 35.5 seconds to 18 seconds.

“The second but not less important goal is to reduce temperature difference in order to prevent warpage,” the researchers state. Numerical results show that, with this design approach, temperature difference is significantly lower. The comparison between several nodal temperatures on different areas of the part shows that the highest temperature difference is now 10.6ºC.”

Overall cycle time had a significant reduction of 34.2%. The researchers also looked at the economic feasibility of producing injection mold tooling through 3D printing, and found that SLM costs as well as lead time were higher. However, manufacturing costs could be optimized if the cavity and core inserts were built in a single process. The researchers also foresee several other benefits to using additive manufacturing for the 3D printing of injection molding tools, including energy savings, scrap reduction, productivity and overall efficiency.

This study is not the first to confirm the effectiveness of using 3D printing to produce injection molding tools. Injection molding is an effective manufacturing technology in itself, but it has room for improvement, and additive manufacturing – rather than replacing injection molding completely – can improve it in a way that makes it even more efficient.

Authors of the paper include N. Reis, F.M. Barreiros, and J.C. Vasco.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

 

3D Printing Studied as a Way to Produce Tooling for Injection Molding

Injection molding is one of the more traditional manufacturing technologies that 3D printing is striving to replace – at least in some applications. 3D printing will likely never fully replace it, but will rather be used alongside it as a complementary technology. Already 3D printing has shown its value to injection molding as a cheaper, faster way to create tooling, for example. In a thesis entitled “Tooling for Injection Molding Using Laser-Powder Bed Fusion,” a University of Louisville student named Mohith Ram Buxani takes a closer look at using 3D printing to create tooling for injection molding.

The injection molding industry has always suffered from high costs and long lead times for tool making. 3D printing is an alternative method of creating tooling, saving time and money.

“There are various studies that approach the 3D printing route for the fabrication of tooling for injection molding,” says Buxani. Additionally, there are studies that involve the use of simulations for the evaluation of part-design. However, there were minimal studies found that integrated these perspectives together and evaluated the performance of L-PBF (laser-powder bed fusion) fabricated molds. Therefore, this study has taken on the challenge of integrating the individual expertise of each industry to create a supply chain collaboration.”

Buxani’s research group 3D printed multiple tools for injection molding using a variety of materials and machines that achieved good mechanical properties. The study focuses on evaluating L-PBF fabricated molds using experiments and simulations examining several categories: post-machining, part design, material design and conformal cooling channels. The first part of the study uses injection molding experiments and computer aided simulations to understand the effects of single-sided L-PBF fabricated mold cavities on injection molded part quality and molding material composition. The next part of the study uses experiments and simulations to evaluate L-PBF fabricated core-and-cavity tooling with conformal cooling channels.

In the first part of the study, a mold cavity was selected in the form of an elliptical-shaped keychain. 17-4 PH stainless steel was used to 3D print the mold. Trials were run with the a version of the mold as printed, as well as one that had been machined, using both physical injection molding processes and computer simulations. The injection molded parts were greatly improved using the machined mold. The experiments also concluded that parts with thin walls tend to cool more quickly and achieve better part quality in terms of sink marks and warpage. The location of sink marks and warpage could be accurately predicted in computer-aided simulations, but their magnitude was not well described.

Another conclusion was that 3D printed molds can help identify improvements in part design, material composition of polymers, and simulation methods more quickly than traditionally manufactured molds.

In the second set of experiments, conformal cooling channels were 3D printed into the tools.

“In traditional manufacturing, conventional cooling channels are straight-hole passages built into the injection mold insert to decrease cooling time and increase temperature uniformity for part quality,” Buxani states. “However, design constraints in traditional manufacturing do not always allow conventional cooling channels to cool down a complex part uniformly.”

Additive manufacturing enables the production of mold inserts with conformal cooling channels, which are cooling passage holes that follow the part’s geometry, cooling the part in a much more uniform manner. The research team 3D printed two cavity-side molds with conformal cooling channels at different depths: 8 mm and 4 mm. These molds were evaluated using experiments and mold-filling simulations. The simulations indicated that the conformal cooling channel design influenced the surface temperature distribution of the part. However, simulations indicated no alleviation by conformal cooling channels in the center temperature of the thickest region. There was not a significant difference in part quality or cooling with the incorporation of conformal cooling channels for these particular mold designs; additional designs need to be tested.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.