Cranfield University Researchers Use WAAM Process to Produce Large-Scale Parts in Unalloyed Tungsten

Large-scale unalloyed tungsten linear structure deposited via WAAM (a-b). Picture of the fracture from the outer surface (c) and SEM picture of the fractured surface (d).

Cranfield University is continuing its work with Wire and arc additive manufacturing, or WAAM: a novel process that uses an electric arc as the heat source, and high-quality metal wire as the feedstock. A trio of researchers with the university’s Welding Engineering and Laser Processing Centre (WELPC) published a paper, titled “Development of Wire + Arc Additive Manufacturing for the production of large-scale unalloyed tungsten components,” which demonstrates that WAAM can produce large-scale parts in unalloyed tungsten by complete fusion. This is a possible alternative to using powder metallurgy for manufacturing tungsten.

The abstract reads, “The manufacturing of refractory-metals components presents some limitations induced by the materials’ characteristic low-temperature brittleness and high susceptibility to oxidation. Powder metallurgy is typically the manufacturing process of choice. Recently, Wire + Arc Additive Manufacturing has proven capable to produce fully-dense large-scale metal parts at relatively low cost, by using high-quality wire as feedstock. In this study, this technique has been used for the production of large-scale tungsten linear structures. The orientation of the wire feeding has been studied and optimised to obtain defect-free tungsten deposits. In particular, front wire feeding eliminated the occurrence of pores and micro-cracks, when compared to side wire feeding. The microstructure, the occurrence of defects and their relationship with the deposition process have also been discussed. Despite the repetitive thermal cycles and the inherent brittleness of the material, the as-deposited structures were free from internal cracks and the layer dimensions were stable during the entire deposition process. This enabled the production of a relatively large-scale component, with the dimension of 210 x 75 x 12 mm.”

Microstructure of the linear structure deposited using front wire feeding (a). Details of elongated grains at the center of the structure (b, d). Detail of microstructure of the upper part (c) and base of the linear structure (e).

Tungsten is a major candidate for manufacturing components in the energy sector, which require materials with high heat resistance, neutron load-capacity, and excellent mechanical properties. Because tungsten has the highest melting point of all metals, along with low tritium retention, relatively high thermal conductivity and density, and good resistance to sputtering and erosion, it can be used in in future fusion reactors as a plasma-facing material. But, due to the metal’s high recrystallization temperature and low fracture toughness, it’s not that easy to manufacture tungsten components.

“Currently, there are three main manufacturing operations that are being studied, when referring to tungsten components for nuclear fusion environment: the industrial production of large-scale components; the joining of these parts with other materials; and their efficient repair and maintenance,” the researchers explained, noting that additive manufacturing can be used to manufacture the alloy.

“AM could definitely address some of the manufacturing issues related to tungsten components, and possibly enable the development of new designs approaches.”

WAAM is able to directly fabricate large, fully-dense, metallic, near-net-shape components at a higher deposition rate than other metal 3D printing processes. So the team wanted to apply WAAM for the first time to unalloyed tungsten, paying special attention to creating large-scale components that were free of defects.

“The study and monitoring of the metal transfer, and the characterisation from the microstructural point of view are discussed,” the researchers wrote. “A structure of realistic scale has also been produced to understand the issues related to scaling up, and ultimately assess the feasibility of WAAM’s implementation as an innovative way to produce unalloyed tungsten parts.”

Setup for development of WAAM process for unalloyed tungsten when using side wire (a) and front wire feeding (b).

The above image depicts the apparatus the team used for deposition. For the side wire and front wire feeding configurations, tungsten layers were deposited progressively onto the substrate, in a constant direction, with a single bead. The cross-section perpendicular to the direction of the deposition was ground up, polished, and etched, in order to examine defects and the microstructure. Once the researchers landed on the optimal parameters, they used the WAAM process to build a tungsten wall that was 120 mm in length, 75 mm high, and 12 mm thick.

Time-resolved images of the deposition performed using side wire feeding configuration.

While there were no signs of spatter during deposition for the front wire feeding, there were some spattered particles during the side wire feeding configuration, mainly caused by two main ejection mechanisms.

“The droplets or macroscopic mass losses, localised predominantly along the melted surface, arose because of the Kelvin–Helmholtz instability,” the researchers explained. “This phenomenon occurs when there is a difference in velocity across the interface between two fluids. Furthermore, it has been reported that the Kelvin–Helmholtz instability can also lead to the evolution of shock waves along the surface of the fluid causing a breakup of the melt surface into droplets.”

This lack of spattered particles on the front wire feeding directly correlates to a lack of fusion and pores in the structure, so it’s important to avoid spatters if you want to keep the WAAM-deposited tungsten structure strong.

With both side- and front-fed deposit, the microstructure contained fine equiaxed grains near the bottom layers, with larger, more coarse grains near the top. The team explained that the tungsten’s high thermal conductivity at room temperature, along with rapid solidification, promoted the equiaxed grains.

“This possibly represents the first fully-dense large-scale structure in unalloyed tungsten produced using AM. The unique aspects of this structure were the absence of any large network of grain boundary cracks within the volume deposited, the almost absence of discolouration and oxidation from the fusion process, and the consistency in the layers’ geometry,” the team stated.

Tungsten linear structure deposited using side wire feeding (a).

The study showed that, while WAAM technology can produce “large-scale refractory metal components by complete fusion” out of high-purity tungsten, the orientation of the wire feeding can majorly influence the deposit’s microstructure, along with creating structural defects and pores.

Co-authors of the paper are G. Marinelli, F. Martinaa, S. Gangulya, and S. Williams.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

A Look at the Properties of 3D Printed Tungsten

Tungsten is a dense, robust metal that has a number of valuable applications, particularly in the chemical industry thanks to its corrosion resistance. Its hardness and extremely high melting point, however, have made it a difficult material to 3D print. In a paper entitled “Effect of processing parameters on the densification, microstructure and crystallographic texture during the laser powder bed fusion of pure tungsten,” a group of researchers addresses those challenges.

“This work looks to extend its [laser powder bed manufacturing’s] use to refractory metals, such as those considered in this paper where the behaviour of pure tungsten powder is investigated,” the researchers explain. “A strategy for fabricating high density parts was developed by creating a process map in which the effect of laser energy density was studied. The process quality was assessed using different techniques including light optical microscopy, XCT, SEM and EBSD. The results showed that the laser energy density was adequate to process tungsten to produce functional parts.”

Depending on the process conditions, the bulk density and optically determined densities of the tungsten ranged from 94 to 98%, but the parts showed micro cracks and defects due to micro- and macro-scale residual stress.

“Analysis of the microstructure and local crystallographic texture showed that the melt pool formed under the laser beam favoured solidification in a preferred orientation by an epitaxial growth mechanism,” the researchers continue. “The EBSD local texture analysis of the tungsten specimens showed a <111>//Z preferential fibre texture, parallel to the build direction.”

Two types of tungsten specimens were 3D printed, and were analyzed using scanning electron microscopy. Although the parts were prone to cracking, the researchers determined that the density and quality of the specimens produced in the 3D printing process were sufficiently high for use in applications such as medical radiation shielding and nuclear imaging, and in other plasma facing environments. They also concluded that the parameters for laser powder bed fusion could be tailored to fabricate tungsten parts with relatively high densities.

“Analysis of the microstructure, global and local crystallographic texture showed a columnar grain structure generated by an epitaxial re-growth mechanism, as noted in other AM processes with pure metals,” they add. “Using a laser energy density of up to 348 J/mm3 led to samples showing an unusual strong <111>//Z fibre texture. It is postulated this may be related to the deeper melt pool shape than normally seen in LPBF because of the high thermal conductivity and surface tension of tungsten, combined with the 67° raster direction rotation employed between deposited layers in the Renishaw AM machine.”

3D printing tungsten allows for new applications for the material, as it can produce parts with high levels of accuracy and complexity. Tungsten 3D printing has been studied before by other researchers, and 3D printed tungsten components have even been commercialized. Despite its challenges, tungsten has shown itself to be a valuable 3D printing material that many experts are excited about for its heat resistant properties in particular.

Authors of the paper include A.T. Sidambe, Y. Tian, P.B. Prangnell and P. Fox.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Wolfmet 3D 3D Prints 100% Tungsten Using SLM Showcases Its Products at TCT Birmingham 2018

Wolfmet 3D is the commercialization of 3D Printing methods developed at M&I Metals to 3D print tungsten. The company is a service bureau that makes tungsten 3D printed components for industry. Tungsten is not completely new to 3D printing with us having written about a study looking into the parameters of 3D printed tungsten and looking at Philips subsidiary Smit Rontgen 3D printing tungsten.

Now, Wolfmet 3D will try to conquer the world with this very special very dense material that for our industry is very exotic. To introduce their product the Wolfmet3D team is exhibiting at the TCT show in Birmingham and we interviewed them about 3D printing tungsten. Curious about them? Check them out at stand G41.

What is Wolfmet 3D?

Wolfmet 3D is the revolutionary additive manufacturing process whereby we produce 3D printed parts via SLM. It allows us to make parts which would either be impossible or not economical using traditional subtractive techniques.

What are the applications for 3D printed tungsten?

Extensive! It really is a very exciting time. Medical and industrial imaging in many ways are at the forefront of recent developments, but we are making new advances all the time in other areas too. To give just one example, we are in discussions with clients interested in tungsten’s heat resistant properties, which opens up another field of possible applications.

Tungsten is a very heavy metal. We almost always think about lightweighting things using 3D printing. But your material is used to make things heavier?

As you indicate, tungsten has a very high density (approx. 60% denser than lead). In the applications we have discovered so far for Wolfmet 3D, it is valued for its radiation attenuation properties, derived from the density, and also its heat resistance. The weight is really incidental.

What do you see as future applications for 3D printing tungsten?

Future opportunities are perhaps only limited by our own imagination, so our specialists work in partnership with leading research institutes and universities to ensure we are at the forefront of new developments across the globe.

How is tungsten used in vibration damping?

Tungsten’s high density enables it to act as a vibration weight in various dynamic applications.

Why does one want to 3D print a collimator?

The collimator’s function in an imaging system is to focus beams of radiation (gamma or x-ray) onto a detector and to filter out stray beams which might distort the signal. The detector’s software converts the signals into a 3D image of the subject. Until the arrival of Wolfmet 3D, most collimators were made from lead. Lead has several disadvantages – it is toxic and has to be handled with care and it is relatively soft. Most importantly, from the point of view of imaging systems, its density is much lower than that of tungsten. As a result, lead collimators are much less effective in screening out stray beams and, therefore, give inferior image quality.

What is the DEPICT system?

The DEPICT system was developed by a consortium which included Kromek and the University of Liverpool. Its function is to measure the amount of radioactivity issuing from a thyroid cancer patient during radiation therapy. This enables the medical staff to personalise the dosage of each treatment according to the patient’s physique and metabolism. The DEPICT team acknowledged early on that a tungsten collimator would give much more accurate readings than a lead one and we are very proud to have worked with them on this project.

Do you see many more applications in MRI or imaging generally?

Yes absolutely, Wolfmet 3D helps to make the innovations of our clients possible. Wolfmet tungsten has been shown to be MRI compatible in terms of its magnetic properties. This, together with the advantages that using tungsten can bring, makes it an exciting prospect for the future.

Are imaging apertures also a good application for your technology?

“In principle, yes, if the design is complex, as is increasingly the case.”

Isn’t shrinkage a huge problem with tungsten?

There is no shrinkage with the SLM technology which we use. I believe that this is not always the case with other Additive Manufacturing methods.

What kind of part properties can you get with this material?

The density is typically 94 – 96%. We have a continuous improvement programme designed to optimise the physical properties.

What kind of alloys are available?

At present we offer 100% tungsten components but as this is such a rapidly developing market, we are of course looking at other options. We have clients who are interested in developing other tungsten-based materials, but I’m afraid that I am also prevented from saying more due to our confidentiality agreements.