Finland: 3D Printing Patient-Specific Doses of Warfarin for Children

Finnish researchers reach further into the potential of 3D printed medications, outlining their findings in the recently published ‘Towards Printed Pediatric Medicines in Hospital Pharmacies: Comparison of 2D and 3D Printed Orodispersible Warfarin Films with Conventional Oral Powders in Unit Dose Sachets.’

Researchers continue to seek ways to prevent error in the dispensing of medications, along with offering more patient-specific, on-demand services in healthcare—with an even further sense of urgency to find better ways to treat children. In this study, the scientific team compared traditional techniques in preparing doses of warfarin—a commonly used blood thinner—at HUS Pharmacy in Finland with two new methods for dealing with pediatric dosage.

Experimenting with both semisolid extrusion 3D printing and inkjet printing, the researchers created samples of orodispersible films (ODFs) for a range of prescription strengths, at 0.1, 0.5, 1, and 2 mg.

Treating children can be challenging due to the obvious differences in size and weight, and the seriousness of an overdose. The dosages presented for the study are meant for infants aged 6 to 23 months and preschool children aged 2 to 6 years, with the ODFs composed of thin films that disintegrate quickly upon sticking to the tongue, with no water required. This is one benefit to making medication more enticing to kids, but aesthetic preferences are a considering too—especially for children—in terms of color, size, and taste.

“The different sizes for the EXT ODFs were designed to increase in volume in the same ratio as the dose escalation in order to enable the use of the same printing solution for manufacturing of all sizes. The final sizes of the IJP ODFs were designed to be equal to the sizes designed for the EXT,” stated the researchers.

Designed geometries for the ODFs

The team used a Biobots 1 printer to fabricate both placebo and drug-loaded ODFs, with films created on transparent sheets. The films were printed in three different batches, evaluated daily. For inkjet printing, the team used a PixDro LP50 piezoelectric printer with 128 nozzles, and a camera to monitor the jetted droplets.

“One printing run resulted in 32 printed films of a certain size that were allowed to dry in ambient conditions overnight and subsequently cut with a scalpel according to a template in order to obtain the final size,” stated the researchers.

Individual sachets were created, weighing 200 mg each, with three batches per dose size produced over three days. Drug concentration depended on the ‘wet weight’ of printed placebos and target doses. The samples and dosages were weighed after EXT printing, offering QA methods that could be used in a hospital setting.

“One discovered drawback with the used EXT printer was that it was difficult to attain the set pressure and even during printing of a single ODF the pressure would typically fluctuate. As pressure is one of the most important parameters to determine how much material is deposited per unit time, it may result in ODFs with fluctuating drug amount,” discussed the researchers. “Other factors to consider when using an EXT 3D printer is that the distance between the syringe tip and the build platform will have an impact on the amount of solution that is being deposited. Furthermore, the length of the tip and the amount of solution in the syringe was seen to influence the pressure required and the amount of solution being deposited. Consequently, at least all of these factors should be standardized or monitored to achieve ODFs with similar properties.”

IJP ODFs were also created in three steps using a modified, high concentration ink, with target doses created in a single layer.

“To achieve the target dose by printing a single layer, the dpi was calculated as described in the methods section,” explained the researchers. “No clogging of the nozzles was observed during printing with the described ink formulation, even though recrystallization during printing of high concentration inks containing solvents that are easily evaporated may be of concern for IJP.”

Manufacturing times for EXT ODFs and IJP ODFs. The manufacturing time includes the actual printing time, not premanufacturing steps nor drying times of films. For inkjet printing 51 ± 9 nozzles were used for target doses 0.1, 0.5, and 1 mg and 45 ± 7 nozzles for a target dose of 2 mg.

All the prepared ODF samples possessed suitable mechanical properties and were ‘superior’ in comparison to traditionally made counterparts, in terms of uniformity, leaving the research team confident about the possibility of printing them in a hospital, fabricating patient-specific doses.

(A) EXT drug-loaded ODF imprinted with a QR code containing information about the dosage form and (B) the same EXT ODF rolled up to visualize the flexibility of the film. (C) IJP drug-loaded ODF with a printed QR code and (D) the flexible ODF is subsequently coiled up for illustrative purposes.

“This study, among other recent studies in the field, have shown the feasibility and potential of using printing techniques for manufacturing of flexible doses, contributing to safer and improved treatments for various patient groups in the future,” concluded the researchers. “In order to produce personalized on-demand dosage forms for children in a hospital pharmacy setting, special attention should be paid to the safety of used excipients, implementation of suitable non-destructive and fast quality assurance methods. Furthermore, the possibility to use disposable parts instead of time-consuming cleaning procedures and short turnaround time for the complete manufacturing process including printing solution preparation and drying time of final dosage form should be ensured in order to successfully implement printing methods as a part of the manufacturing techniques used in a hospital pharmacy.”

Stability of the manufactured dosage forms with a target dose of 2 mg at time points 1, 7, 14, 21, and 28 days. The gray columns represent the target dose of 2 mg. Data shown as average ± SD, n = 10.

As 3D printing continues to make countless impacts in the medical field, medication is definitely an area where there will be long-lasting changes, from creating accelerated doses to DIY drugs and medication dispensers.

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

Pictures of the prepared dosage forms: (A) EXT ODFs; (B) IJP ODFs; (C) oral powder; and (D) OPS.

[Source / Images: ‘Towards Printed Pediatric Medicines in Hospital Pharmacies: Comparison of 2D and 3D Printed Orodispersible Warfarin Films with Conventional Oral Powders in Unit Dose Sachets’]

 

The post Finland: 3D Printing Patient-Specific Doses of Warfarin for Children appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing Plasticizer-Free Hydrophilic Matrices for Drug Delivery Systems

International researchers have been performing what could be very important work in relation to 3D printed medications, with their findings outlined in the recently published ‘Plasticizer-Free 3D Printed Hydrophilic Matrices: Quantitative 3D Surface Texture, Mechanical, Swelling, Erosion, Drug Release, and Pharmacokinetic Studies.’

The focus of their study is hydroxypropyl methyl cellulose (HPMC), a hydrophilic polymer which could have enormous potential for fabrication of matrix tablets. Here, the research team analyzed plasticizer-free 3D printed hydrophilic matrices with drug-loaded filaments, examining their performance level in both in vitro and in vivo applications.

And while pharmaceutical companies worldwide may already be able to manufacture medication in the appropriate dose and shape—sometimes affordably so—with 3D printing they can offer patients what undeniably is the future of medicine with patient-specific treatment. This has already been documented with the FDA approval of Spritam, the first 3D printed epilepsy drug, and much discussion over how such technology will be harnessed in the future with the potential for DIY drugs.

Specifications of different hydroxypropyl methyl cellulose (HPMC) grades used in this study

“Although the current methods are common and cost-effective, they offer little opportunity for personalization and on-demand manufacturing as the change in size, shape and dose of a tablet require alterations at each manufacturing step and retooling of tableting machines,” said the researchers. “Consequently, a technology capable of producing dosage forms with a variety of strengths, such as three dimensional (3D) printing, is required to accomplish the personalized therapeutic needs of individuals.”

Previous researchers have tried to create 3D printed medications using a variety of different filaments, and with different composites and hardware. Polymers are an extremely common choice for such medications, with combinations such as plasticizers used to make extrusion easier. Such additions could, however, affect drug absorption negatively. For 3D printing via FDM, the materials must be strong and ‘mechanically robust’ enough to endure the fabrication process. Seam-line issues may arise, as well as problems with too much porosity. To compensate for previously known obstacles, the research team avoided the use of plasticizers. They also tested and evaluated the surface texture, employing both mercury intrusion porosimetry and white light optical profilometry.

“Glipizide which is an anti-diabetic drug of the sulfonylurea class indicated to treat type-2 diabetes was used as a model drug. Glipizide is a weak acid (pKa = 5.9), practically insoluble in water and acid, and is highly permeable (biopharmaceutics classification system, BCS II),” stated the researchers. “It appears to be an effective insulin secretagogue which reaches a peak plasma concentration within 1–3 h after a single oral dose with an elimination half-life of about 2–4 h. Such rapidly absorbed drugs having fast elimination rates with short half-life make it a suitable candidate to be considered for sustained delivery.”

The research team was successful in 3D printing the HPMC materials without using plasticizer.

(a) Hot melt extruded filaments and (b) 3D printed hydrophilic matrices.

“Overall, XRD spectra of glipizide and drug loaded HPMC filaments were consistent with the DSC profiles, thus, both methods showed that glipizide has a crystalline structure, whereas HPMC and drug loaded filaments have amorphous nature. This may potentially enhance dissolution but could negatively impact stability,” stated the researchers.

Ultimately, the loaded filaments did produce 3D printed hydrophilic matrices that were all similar in thickness, diameter, and weight; however, the 3D printed surfaces were found to be ‘considerably rougher.’

Geometrical and morphological characteristics of 3D printed hydrophilic matrices (n = 5, standard deviations are in parenthesis).

“… it can be concluded that the viscosity of HPMC has a noticeable impact of the swelling, erosion, HPMC dissolution, drug release and pharmacokinetic properties. The highest viscosity grade (K100M) tends to have a higher degree of swelling, decreased HPMC dissolution, low matrix erosion, decreased drug release and extended drug absorption profile,” stated the researchers. “Overall, this study confirmed the successful fabrication of 3D printed matrix tablets which have functionalities analogous to matrix tablets fabricated using conventional technologies. Moreover, the current study has also demonstrated the usefulness of the FDM technique, providing a simple solution to develop personalized pharmaceutical formulations in a time and cost-effective manner addressing challenges confronted by conventional manufacturing processes.”

What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: ‘Plasticiser-Free 3D Printed Hydrophilic Matrices: Quantitative 3D Surface Texture, Mechanical, Swelling, Erosion, Drug Release, and Pharmacokinetic Studies’]

 

The post 3D Printing Plasticizer-Free Hydrophilic Matrices for Drug Delivery Systems appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Hebrew University and Yissum Developing Novel Technology Platform for 3D Printing Personalized Medicine

Yissum, which is the Hebrew University of Jerusalem‘s technology transfer company and handles the patenting and commercialization of any inventions produced there, has had a hand in many unique 3D printing innovations, such as Nano Dimension’s conductive nano-inks and a process to generate hybrid machine elements. Last year, the company, which was founded in 1964 and has licensed over 900 technologies and registered over 10,000 patents covering 2,800 inventions, introduced a novel technology platform for 3D printing personalized food, and has now moved on to 3D printing personalized medicine.

The company, which is only the third of its kind, builds a bridge between academic research and its worldwide community of entrepreneurs, investors, and industry. It’s responsible for spinning more than 135 total companies. Yissum recently announced a novel technology platform for fabricating 3D printed drug capsules, and presented it today at the university’s 2nd annual 3D Printing and Beyond conference, which is sponsored by Yissum, the university, and the Jerusalem Development Authority.

Professor Shlomo Magdassi, head of the university’s 3D and Functional Printing Center and a member of the Center for Nanoscience and Nanotechnology and Institute of Chemistry, worked with Dr. Ofra Benny, a researcher at the university’s Institute for Drug Research, to develop the innovative drug 3D printing technology platform.

“Professor Magdassi and Dr. Benny’s research is an excellent example of the  kind of interdisciplinary transformational inventions that originate  from the Hebrew University,” said Dr. Yaron Daniely, CEO and President of Yissum. “This technology is bringing us closer to a future in which the medical field can offer personalized, patient-centered care.”

The technology is based on custom 3D printed hydrogels with delayed release characteristics, and allows for a complex design of drug delivery systems that is not currently available in the more traditional pharmaceutical manufacturing techniques.

Dr. Magdassi already has plenty of experience with 3D printed hydrogels and other unique 3D printable materials. 3D hydrogels are hydrophilic polymeric networks that are cross-linked by either chemical covalent bonds, physical interactions, or a combination. Because of these crosslinks between polymer chains and their hydrophilic nature, hydrogels can actually swell up to a hundred times, or even a thousand, of their dried mass without needing to be dissolved in water, and they are an ideal material for biomedical applications.

Yissum’s company mission is to take transformational technologies and innovations and convert them into commercial solutions that address the most urgent challenges in our world, in order to benefit society. I’d say this new 3D printing platform fits the bill – the approach makes it possible to 3D print customized medications out of hydrogel objects that can change shape, expand, and even activate on a delayed schedule.

The novel new 3D printing platform can not only achieve complex release profiles and structures of drugs, but it can also personalize prescription medicines, so doctors can more accurately tailor the dosage levels and exposure of medications for different patients. Thanks to 3D printing, medication may not have to be one-size-fits-all.

Professor Magdassi and Dr. Benny presented their work at the 3D Printing and Beyond conference today, which Professor Magdassi helps organize with Dr. Michael Layani. The conference brings together a range of researchers and industry leaders from around the world to discuss and learn more about the latest advances in defense-related technologies, electronics, and pharmaceuticals, in addition to 3D printed innovations like automotive parts and food.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.