3D Printing Webinar and Virtual Event Roundup, August 23, 2020

We’ve got a lot of online events and webinars to tell you about in today’s roundup, with topics ranging from safety and sustainability to AM training and industrial 3D printing.

Autodesk’s Advanced Manufacturing Summit

Tuesday, August 25th through Thursday, August 27th, Autodesk is hosting a free, global, and virtual Advanced Manufacturing Summit, featuring speakers and sessions focused on CAM, injection molding, generative design, additive manufacturing, automation, and other design and manufacturing trends. In addition to networking time and some hands-on learning sessions, and a COVID success story, there will be a keynote presentation each day.

All keynotes will take place at 11 am EDT. On the 25th, Autodesk’s Vice President of Business Strategy for Design & Manufacturing, Srinath Jonnalagadda, and Neil Briggs, founder of UK auto manufacturer BAC Mono, will discuss adapting to and overcoming the challenges posed by manufacturing in a post-COVID world. Autodesk’s Associate Vice President of Engineering, Ian Pendlebury, and Engel’s Head of Process Technologies, Dr. Johannes Kilian, will focus on data connectivity in their keynote on the 26th. Finally, Brian Betty, Ultimaker’s Director of Business Development, Autodesk’s Leanne Gluck, the Manager of Business and Industry Strategy, and Jabil’s Senior Director of Digital Manufacturing, Rush LaSelle, will talk about the role of AM in agile manufacturing. You can register for the three-day summit here.

Safe 3D Printing with Rize

Boston-based additive manufacturing company Rize will discuss safe 3D printing in a webinar at 2 pm EDT on Wednesday, August 26th. The webinar will cover several topics, such as the four stage of safe 3D printing, the company itself and its technology and materials, and the story of how the company fared working remotely during COVID-19.

“Because of our focus on overall 3D printing safety, we were able to adapt and bring our printers home as well as assist the community with the COVID PPE effort.”

You can register for the webinar here. Once you’ve registered, a confirmation email will be sent to you with information on how to join.

Sustainability in Additive Manufacturing

Also on the 26th, from 11 am to 1 pm EDT, Women in 3D Printing (Wi3DP) is hosting its next virtual panel and network event, “Sustainability in Additive Manufacturing & 3D Printing,” sponsored by Link3D. Kristin Mulherin, the Founder and Fresident of AM-Cubed, will be moderating, and the speakers will be HP’s appointed Chief Sustainability Officer Ellen Jackowski, Henkel’s Global Head of Marketing Cindy Deekitwong, and Sherry Handel, the Executive Director of the Additive Manufacturing Green Trade Association (AMTGA).

“We’ll have plenty of time for a live Q&A from the attendees, and networking before and after for an opportunity to “virtually mingle” with people from your local Wi3DP chapters and afar. With men and women participating from all over the world, join us for this global networking opportunity!”

You can register for the event here.

3DEXPERIENCE: A Virtual Journey Continues

Earlier this month, Dassault Systèmes held the first part of its 3DEXPERIENCE: A Virtual Journey, a series of digital programming which is replacing its annual 3DEXPERIENCE Forum. The journey is continuing on Wednesday, August 26th, with “Fueling Innovation for the New Agile Enterprise.” Two tracks—Collaborative Innovation and Supercharge Innovation with the 3DEXPERIENCE Platform—will be available for participants, and each one will be jam-packed with industry experts and other speakers.

“What if your organization could seamlessly connect and bring together multiple streams of data, people, and processes into one single platform?  These senior executives from Dassault Systemes will present how leading enterprises are redefining and enabling a new, more efficient way to innovate and collaborate across internal and external value networks.”

Several subject matter experts will also share how they’re finding new, more efficient ways to innovate and collaborate through their presentations. Episode 2 sessions will be available online at 9 AM ET on the 26th. You can register for 3DEXPERIENCE: A Virtual Journey here, and don’t forget to mark your calendar for the final two sessions on September 23rd and October 14th.

Additive Manufacturing Training with Tooling U-SME

On Thursday, August 27th, The Barnes Global Advisors (TBGA) is presenting an exclusive webinar with educational technology and blended learning nonprofit Tooling U-SME, called “Additive Manufacturing gets Better, Faster and Cheaper with Training!” TBGA ADDvisors Tim Simpson and Chelsea Cummings will join the company’s Founding Director John Barnes to talk about how organizations can use team-based learning to save costs and develop skills in additive manufacturing.

“One goal of AM training is to provide guidance to organizations in recognizing cost savings opportunities. To do this, engineers must begin to design with AM in mind. Without that central shift in development, AM would never make business sense. With that simple shift, it is possible to design out significant cost drivers.”

The webinar will take place at 1 pm EDT, and you can register here.

Mimaki Talks Industrial 3D Printing

This roundup’s final webinar is also on the 27th, and is the last of Mimaki‘s Live events series, which was launched in June. This free Industrial Market Edition will focus on how COVID-19 impacted the industrial and manufacturing sector, and how businesses can recover and reactivate. This exclusive live-stream event will feature several expert guest speakers, who will share with attendees how they can discover their own unique opportunities with both UV and 3D printing technologies.

The webinar will also feature a panel discussion between several of Mimaki’s industrial partners and media suppliers, in addition to opinion polls and the chance to ask questions. The webinar will go from 6-8:30 am EDT, and you can register here. You can check out the recording of the previous Mimaki Live webinar about the textile and apparel market below:

Will you attend any of these events and webinars, or have news to share about future ones? Let us know! 

The post 3D Printing Webinar and Virtual Event Roundup, August 23, 2020 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Interview with Alex McIntosh of Kora 3D on 3D Printing Safety

FDM 3D printers (FFF, Material Extrusion) continue their march into the classroom, businesses and homes. Meanwhile knowledge about 3D printing safety is only slowly spreading. Resin printers for Stereolithography and DLP processes have materials that can be harmful in liquid form. Procedures and tools to help keep people safe are also lacking here. In many industrial firms, PPE is almost absent and employees are exposed to polymer dust for years. We’ve repeatedly brought up safety through talking about if cabinets should become standard, new safety standards, filtration systems, safety certifications for printers, research on dangerous emissions. If we are to make 3D printing an everyday tool then everyday safety must accompany it. Not properly implementing safety is one of the biggest risks to our industry. Only very few firms are specializing in 3D printing safety. We interviewed Alex McIntosh of UK-based Kora 3D about how their company is tackling 3D printing safety.

What is Kora 3D? 

Kora 3D is a UK company who designs and builds its own range of Desktop 3D FFF printers , HSE tested safety cabinets and consumables.

Why do companies do business with you?

They like the fact we design and build our own products here in the UK. Our printers are easy to use but also have the ability to be hackable for advanced builders. We also take health and safety very seriously and help users understand their obligations.

What is holding 3D Printing back? 

Probably the most limiting factor in desktop 3D Printing is the slow speed of larger model prints and the ambiguity over the growing awareness of health risks associated with 3D Printing.

Who needs safety cabinets?

Everyone who owns a desktop FFF 3D Printer and does not comply to current legislation after completing a Risk Assessment.

What materials are dangerous, why?

Many can be, All emit particulates of a size capable of inhalation and or ingestion.

ABS, just one example, gives off VOC’s including styrene and isocyanates.

What about TPU and TPE flexible materials?

In what way are materials dangerous?

VOC’s can be harmful to health. Small airborne plastic particles can easily be inhaled and ingested.

How about if I just use PLA?

PLA emits less VOC’s but still emits significant quantities of particulates of a size capable of inhalation and ingestion.

Do I get better print results with a cabinet?

Yes, random air drafts are eliminated which are notorious for degrading 3D Print quality. More stable ambient printing temperature is achieved with an enclosure. 

What do I need to do to install it?

The Kora SC-01 Safety Cabinet is delivered in part kit form with comprehensive building instructions supplied. Build it and place the 3D Printer inside the Safety Cabinet, lock the door and switch on the Safety Cabinet filtration system. 

What should I do if I’m a high school and want to implement 3D Printing?

Use only PLA filament and install the 3D Printer in a Certified Safety Cabinet. Make sure the printer is CE marked and complete a risk assessment before commencing printing.

What product improvements do you anticipate making?

We will continue to collaborate with Government Agencies to make constant improvements within the 3D Printing industry, maintaining Safety as our primary objective.

What partners do you seek?

The Kora SC-01 Safety Cabinet comes with a Lifetime Warranty, therefore every Customer / Distributor becomes a partner for life. We aim to partner everyone who completes a Risk Assessment and wants to remain compliant with UK Laws.

Should Vented Enclosures Become A Mandatory Safety Standard for FFF 3D Printers?

Timing fume clearance speed by the ECC (Image: Health and Safety Executive)

With innovation always comes unintended consequences. There’s been much-to-do with the possible health repercussions of 3D printing, particularly when it comes to the fine particles and fumes produced by the process.

Some 3D printers on the market now carry HEPA (High Efficiency Particulate Air) filters and come with their own safety enclosures. But their effectiveness has not been studied extensively, and therefore certain universal safety standards have yet to be established.

Now, recent research on the danger of these chemicals and the effectiveness of enclosures could make us someday look at 3D printing without one like we now look at smoking on airplanes.

The Danger of FFF Emissions

The research about fumes from 3D printing filaments is not yet conclusive. However, some studies have shown that ABS (Acrylonitrile Butadiene Styrene) is a particularly bad offender in emitting high levels of styrene, a known carcinogen, into the air.

More research by the National Institute for Occupational Safety and Health (NIOSH) studied the effects of these fumes on rats. As told to 3DPrint.com last October:

Rats exposed for 1 hour to particle and vapor emissions from a FDM 3-D printer using ABS filament (a type of plastic material) developed acute hypertension, indicating the potential for cardiovascular effects.  In another NIOSH research study, lung cells exposed to FDM 3-D printer emissions from printing with ABS and polycarbonate for about 3 hours showed signs of cell damage, cell death, and release of chemicals associated with inflammation, suggesting potential for adverse effects to the lungs if emissions are inhaled.

While the organization cautions that these findings need confirmation with more extensive research, it’s probably self-evident that fumes from hot biochemicals + lungs = bad.

That’s why the Health and Safety Executive (the UK’s version of NIOSH) isn’t waiting around for an official declaration before working toward safer 3D printing standards.

The Effects of a Vented Enclosure System

Features of the exposure control cabinet (Image: Health and Safety Executive)

To study the effectiveness of a vented enclosure system, the Health and Safety Executive team created the Exposure Control Cabinet. The ECC is a small glass chamber in which the 3D printer rests. On the roof of the cube is a small fan which could be set to A) do nothing, B) recirculate the air within the chamber, or C) exhaust the air up and out of the cube.

To measure emission rates and particle concentrations, common additives ABS and Polylactic Acid (PLA) were used, respectively. To measure the efficiency and effectiveness of the chamber’s three settings, the ECC was first filled with smoked then timed until the smoke was completely removed.

ECC emission and reduction rates (Image: Health and Safety Executive)

The results were encouraging to say the least, with the exhaust and recirculation settings clearing 97-99.4% of the smoke over a 20 minute period. In their conclusion, the team suggests that in a controlled environment (like the ECC), the rate at which particles are released into the air by 3D printers is reduced by up to 99%.

The Beginning of New Standards (And A New Industry)?

While it might seem obvious that air control would make workplace air safer, the Health and Safety Executive’s findings are an important step in developing safety standards for 3D printing, both at home and on an industrial scale.

Like how you (hopefully) wouldn’t operate certain power tools without eye protection, this kind of data is a small step in making sure quality air control is as important and basic as not touching a hot 3D printing nozzle or chewing on your filament. Using an ECC (or something like it) could become an important mandatory safety standard to have in place at maker’s labs, high school shop classes, and other places using 3D printers.

And should their use become mandatory in settings like these, vented enclosures could become big business. While there are many DIY recipes for vented 3D printing enclosures online, it’s largely an untapped commercial market.

Until then, or until research proves otherwise, we’ll just have to let common sense prevail and recommend operating printers in open areas with good air circulation.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Source: Health and Safety Executive (ResearchGate)

UL and Georgia Tech Continue Research Into Impact of 3D Printing Emissions on Indoor Air Quality

In 2015, non-profit safety science company Underwriters Laboratories (UL) and its Chemical Research Initiative, the Georgia Institute of Technology (Georgia Tech), and Emory University Rollins School of Public Health, worked together to conduct a two-year study on desktop 3D printer emissions. Over the course of the study, Dr. Marilyn Black, the Vice President and Senior Technical Advisor at UL Chemical Safety, and the rest of the research team found that desktop 3D printer emissions can actually pose a potential health threat.

This month, UL Chemical Safety, a science-directed research group that is part of UL, and Georgia Tech released their previous findings, and announced a new body of research that will look into the impact of 3D printing on indoor air quality. 

Dr. Marilyn Black

Dr. Black stated, “Following our series of studies – the most extensive to date on 3D printer emissions – we are recommending additional investments in scientific research and product advancement to minimize emissions, and increased user awareness so safety measures can be taken.”

The previous study determined that while many desktop 3D printers are in operation, they generate ultrafine particles (UFPs), which are the size of nanoparticles. This is concerning because users can easily inhale these tiny UFPs, which then penetrate deep into the pulmonary system. 

Additionally, the team’s research showed that over 200 different volatile organic compounds (VOCs), many of which are either suspected or known carcinogens and irritants, are also released into the air while 3D printers are operating.

UL has now begun a dedicated campaign to raise awareness of the potential air quality risks of 3D printing, and to educate users on how to minimize their exposure to VOCs and UFPs. Dr. Black is advocating for a complete risk assessment, which could factor in considerations in personal sensitivity and dosage, in order to more “fully understand the impact of the chemical and particle emissions on health.”

[Image: UL Chemical Safety]

“Studies have shown that fused filament fabrication (FFF) 3D printers designed for general public use emit high levels of ultrafine and fine particles. Preliminary tests with in vivo, in vitro and acellular methods for particles generated by a limited number of filaments showed adverse responses,” explained Dr. Rodney Weber, Georgia Tech’s primary investigator of the research.

There are plenty of different factors, from filament type and color to nozzle temperature and even the brand of 3D printer, that can affect the level of emissions, and while there are definitely products out there that purport to make 3D printing safer, there isn’t a lot of available marketplace information just yet.

These findings from Georgia Tech and UL come as 3D printing continues to gain momentum in commercial, consumer, educational, medical, and military applications, and if the issue of harmful emission levels is not addressed, there could be a potential public health risk.

3D printers are being used more and more often in school settings, and as children are the most sensitive population to the impact of contaminants such as VOCs, we need to make sure we’re protecting them by reducing their exposure to emissions.

We can lower the potential risks by following some simple rules:

  • Operating 3D printers in well-ventilated areas
  • Standing away from operating 3D printers
  • Setting the nozzle temperature at the lower end of the suggested range
  • Using 3D printers and filaments that have been tested and verified to have low emissions

Researchers from UL and Georgia Tech recently published two scientific research papers, titled “Investigating particle emissions and aerosol dynamics from a consumer fused deposition modeling 3D printer with a lognormal moment aerosol model” and “Characterization of particle emissions from consumer fused deposition modeling 3D printers,” in the journal Aerosol Science and Technology. Additionally, two more papers regarding the “plethora of chemical emissions” and 3D printer particle toxicity are currently under review.

Particle number (a), surface area (b) and mass (c) emissions for ABS filament d green color on printer A for 3 objects taking about 1 h, 4 h, and 7 h to print. Each bar indicates the emission (TP) from one print object; colors indicate different particle size ranges. Values on the colored bars are the ratios of emissions from such particle size range over total emissions. [Image: Georgia Tech & UL]

Based on the current research, and further collaboration with third-party stakeholders, a new UL/American National Standards Institute (ANSI) consensus standard has been developed for testing and evaluating 3D printer emissions. UL/ANSI 2904 is currently available for review and comment, and the final standard should be ready next month.

What do you think about this? Discuss this research and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

New 3D Printing Safety Enclosure and Filtration System Designed for Ultimaker 3D Printers and XSTRAND

The Ultimate 3D Printing Store (U3DPS), based in Florida, was one of the first resellers in the US to carry engineering-grade XSTRAND 3D printing filament by Owens Corning. This exclusive material is part of the Ultimaker ecosystem, as it can now be used with the Ultimaker S5 thanks to the CC Red 0.6 print core, which Ultimaker just released on Tuesday. But more good news has just been announced for these three, in the form of a single, powerful solution for industrial 3D printing.

“We are thrilled to announce that our exclusive 3Domus Filtration System (3DFS), which we designed specifically for the Ultimaker S5, will be available the same day,” said Roy Kirchner, Founder and President of the Ultimate 3D Printing Store.

The combination of the Ultimaker S5, XSTRAND filament, and the 3DFS safety enclosure is sure to have many industrial users reaching for their wallets. 3DFS is actually the first safety enclosure designed specifically for use with XSTRAND filaments and Ultimaker 3D printers.

“Ultimaker is rightly regarded as making the world’s best FFF 3D printers. And Owens Corning has created a filament that will revolutionize 3D additive manufacturing. Now, our company is debuting the first, and only, safety enclosure for the Ultimaker S5, which we believe not only completes this luxury machine but allows XSTRAND to print to its fullest capacity,” said Kirchner.

The enclosure, with U3DPS says is the first of its kind, was designed so Ultimaker S5 users could 3D print with more exotic filaments, such as XSTRAND, without contaminating their work space or damaging the machine.

The 3DFS safety enclosure, which Kirchner says is also compatible with the Ultimaker 3, Ultimaker 3 Extended, Ultimaker 2+, and Ultimaker 2 Extended 3D printers, comes pre-assembled, so you can take it out of the box and put it right to work. The enclosure comes with an optional activated carbon and HEPA filtration system, and offers “maximum protection” with no screws necessary to attach it to the 3D printer.

Safety and protection during 3D printing is a big deal. When 3D printers are used in places where a lot of people are around, like business and schools, there’s always a danger of inhaling small particles and potentially dangerous fumes. Last month, 3DPrint.com spoke with the National Institute for Occupational Safety and Health (NIOSH), which is the part of the US government that researches the safety of workers in many different professions.

“If a risk cannot be eliminated, engineering controls such as a fume hood or local exhaust ventilation (a system that specifically ventilates the printer rather than the air in a room) with HEPA/carbon filtration would be the next preferred method to reduce emission levels.  Some 3-D printers are now being sold with built-in filtration units,” the group of NIOSH researchers told us last month when asked how people should best protect themselves from potential 3D printing risks.

In one workplace, NIOSH researchers showed that an appropriately designed and operated local exhaust ventilation with HEPA/carbon filtration reduced the amounts of particles and chemicals in air.”

According to Kirchner, U3DPS was inspired to develop a safety-conscious and attractive add-on unit because none of the 3D printers by Ultimaker currently come with their own factory-built enclosures.

Kirchner explained, “Anyone who works with one of these high-end printers, especially in an enclosed environment, should have this enclosure, not only to protect their machine from outside contaminants and to maintain internal thermal management, but also to keep their work environment free of fumes during the printing process.

“Our clear enclosure fits over your Ultimaker printer like a glove, forming a seal, while still allowing full view of the printing process.”

The company’s new Ultimaker safety enclosure can be purchased with or without the activated carbon and HEPA filtration system. Each 33DFS unit comes pre-drilled, so it can easily attached to an Ultimaker 3D printer. But in addition to offering us a safer way to use our 3D printers, the best news is that the safety enclosure is relatively affordable…maybe not for someone like me, who hates spending large amounts of money on fancy equipment (thus, why I do not own a 3D printer), but for those who spend a lot of time 3D printing, it’s worth the cost.

The enclosure can be purchased without the filtration system for a price between $179 and $379, while including the 3DFS with the enclosure will cost, depending on the 3D printer, anywhere from $299 (Ultimaker 2+) to $499 (Ultimaker S5). Additionally, you can also purchase the activated carbon and HEPA filtration system separately for just $129; replacement filters are only $29 each. But if you’re interested, you’d better act fast – the company expects that the limited quantity of enclosures currently available for purchase in its initial production run will sell out fast. Visit the Ultimate 3D Printing Store website to purchase yours today.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below. 

[Images provided by The Ultimate 3D Printing Store]

Researchers Present New System for Handling Particles and Fumes Produced by 3D Printers

One of the concerns presented by desktop 3D printing is the amount of potentially harmful particles that are produced by the process. In a paper entitled “An Intelligent Exhaust Gas Processing System for Desktop 3D Printer,” a group of researchers discuss how they developed a system to perform adsorption and catalysis for desktop 3D printers.

The system consists of a digital universal particle concentration sensor, a microcontroller, and a DC motor. The particle concentration sensor detects whether the concentration of particulates in the 3D printer exceeds the lowest critical value harmful to the human body.

“The concentration of the detected particulates is compared with the preset concentration limits by the circuit,” the researchers explain. “If the concentration exceeds the upper limit, the motor is turned on; if less than The lower limit, the motor is closed, if the user needs manual intervention and adjustment in special circumstances, can be manually controlled through an external switch to achieve air processor switch.”

A temperature acquisition circuit module monitors in real time the internal temperature of the 3D printer. A display circuit module and a motor control circuit module are also included.

“The main task of the microcontroller microprocessor in this system is to complete the control and processing of the data collected by the particle concentration acquisition module and compare it with the preset standard value,” the researchers continue. “When the value is greater than the standard value, the control motor is turned on. The main program first completes the initialization, and then starts the particle concentration acquisition module and performs the corresponding output operation…System software flow is mainly divided into system initialization, data acquisition, data processing three parts.”

For the exhaust of the 3D printer, the adsorption equilibrium constant is small, so it must be cooled before adsorption. After heating the desorption concentrated exhaust gas to a certain temperature, it catalyzes carbon dioxide and water, and discharges after cooling. The exhaust gas treatment equipment includes an adsorption-desorption device and a catalytic burner.

Adsorption pad 3 is filled with a shaped adsorbent, and gas passes through to the adsorption zone for adsorption purification. A small amount of hot air blows through the desorption zone, the volatile organic compounds (VOCs) are forcibly desorbed, and the adsorbent is regenerated. The desorption of the adsorbent is cooled with a small amount of low-temperature airflow to ensure the effect of adsorption of the adsorption zone.

“The exhaust gas produced by the desktop 3D working process contains solid particles and harmful gases, which will cause some damage to the environment and people,” the researchers conclude. “Although it is suitable for FDM desktop 3D printers, this paper can also be used on other desktop 3D printers such as SLA and SLS, and develop an adsorption and catalytic combustion composite reactor based on 51 single-chip microcomputer based intelligent coupling adsorption desorption and catalytic combustion, which can realize 3D printing. The harmless treatment of exhaust gas fills the blank of 3D printing waste gas treatment, and greatly expands the application of desktop 3D printer.”

Authors of the paper include Ligang Cai, Shunlei Li, Qiang Cheng, Zhifeng Liu, Wei Cui and Huirong Fu.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

 

3D Printing News Briefs: October 27, 2018

We’re starting off with some news about products being displayed at the upcoming formnext in today’s 3D Printing News Briefs, and then moving on to business and research news. Clariant and Xaar have both revealed what they will be showcasing at formnext 2018 in Munich next month. Aurora Metals has announced a new partnership, while Lockheed Martin is the first organization to have an additive manufacturing facility certified to UL 3400 for AM hazards. Finally, America Makes has announced its next Directed Project Opportunity.

Clariant Presenting Industrial 3D Printing Materials at formnext

This year’s formnext is coming up in just a few short weeks, and companies all over the world are announcing what products they’ll be bringing with them to the show. Specialty chemicals company Clariant will be showcasing its 3D printing materials and solutions for intelligent industrial manufacturing at the event this year, including featured materials like polyamides for small lot production, customer-tailored colorant and additive guidance, and high impact strength materials that offer electrostatic discharge protection for manufacturing aids.

“OEMs require that 3D printing materials perform at the same level as their injection molded counterparts. This was the significant factor in achieving the acceptance to allow product production with our materials and will continue to be,” said Joanna Marguier, Senior Manager of R&D for Clariant’s 3D printing business. “From the inception of our 3D printing business, Clariant has focused on providing superior 3D printing materials that achieve the customer’s requirements for their specific application. We work closely with them to tailor solutions to meet their needs.”

Marguier will also be outlining the company’s success with flame retardants in a technical presentation at formnext on November 15. formnext runs November 13-16, and you can visit the Clariant team at booth 3.1-H40 in Hall 3.1 at the Messe Frankfurt.

Xaar Showcasing Latest Inkjet Printhead Technology at formnext

Speaking of formnext, digital inkjet technology Xaar will be exhibiting the latest in inkjet printhead technology at the show. Visitors can learn how the company’s award-winning High Laydown (HL) technology, which allows for the jetting of 3D fluids with high viscosity (at least 55cP), coupled with its partnerships with other industry leaders, can help its customers get ahead in volume 3D printing. Xaar will also be displaying samples that were produced with high viscosity photoresins from BASF 3D Printing Solutions

“The formnext show is a major global event for the 3D Printing sector and we are excited to be exhibiting our complete printhead portfolio and HL Technology for volume 3D production. We pride ourselves on providing ongoing support to all our customers’ projects – from early fluid evaluation through to commercialisation. That’s why we are welcoming manufacturers and integrators to visit the Xaar stand and discover how our printhead technology can help them introduce new printers quickly and cost-effectively, thereby delivering a true competitive edge and real value to 3D end- users,” said Simon Kirk, Senior Product Manager at Xaar.

You can visit Xaar at formnext at booth A78 in Hall 3.1

Aurora Labs Partnering with Fortescue Metals Group

Aurora Labs’ managing director David Budge. [Image: Ross Swanborough]

Australian metal 3D printing Aurora Labs has signed a preliminary non-binding term sheet agreement with fellow Australian company Fortescue Metals Group. The agreement comprises an Industry Partner Program, and Aurora Labs will work with Fortescue to demonstrate the potential for application of its Rapid Manufacturing Technology (RMT) in the mining industry. The terms of the agreement are for an initial 12 months and may be extended by mutual agreement, and Aurora believes that the venture could even progress further to developing technology together in order to lower operation and production costs in the mining industry.

“We’re very excited to sign a preliminary agreement with Fortescue, and pursue the opportunity to apply Aurora’s Rapid Manufacturing Technology to the mining sector,” said David Budge, Aurora Labs’ Managing Director. “Fortescue are an ideal industry partner for us and they are at the forefront of technological advancements in the mining sector.”

Lockheed Martin Certified UL 3400

Top global safety science company UL has announced that it has certified the first additive manufacturing facility to UL 3400, a set of safety guidelines published last year that address the hazards associated with AM facilities. UL issued this prestigious certification to Lockheed Martin, and its 6,775-square-foot Additive Design and Manufacturing Center in Sunnyvale, California. UL 3400, also called the Outline of Investigation for Additive Manufacturing Facility Safety Management, considers the three layers of safety: material, equipment, and the facility itself, and references applicable standards from OSHA, ASTM International, the National Fire Protection Association, and others. UL and its 3400 guideline cover the potential hazards and risk mitigation measures that are required for these facilities to function safely.

“Employers, employees, local regulators as well as insurance companies who have to underwrite additive manufacturing facilities, were not fully aware of the inherent material and technology risks. Safety is designed rather than built. Not a single standard or statutory guideline was available that specifically focused on additive manufacturing. Other standards and guidelines were developed for conventional manufacturing processes,” explained Balu V. Nair, UL’s Additive Manufacturing Lead Development Engineer and an important player in developing UL 3400. “We decided to address this industry need by developing a set of guidelines with exclusive focus on additive manufacturing.”

America Makes Announces Next Directed Project Opportunity

This week, America Makes announced its next Directed Project Opportunity, available for its members for AM applied (R&D) projects for Advanced Tools for Rapid Qualification (ATRQ). The goal is to promote and accelerate the development and deployment of cost effective, energy-efficient 3D printing technologies in  order to meet defense and/or commercial needs. Approximately $3.9 million should be made available to fund multiple awards, with at least $1.95 million in matching funds from the winning project teams. The technical requirements of the ATRQ Directed Project Opportunity relate to the America Makes Technology Roadmap, as well as the Integrated DoD AM Roadmap.

“For our partners at the DoD, the anticipated outcomes of the America Makes ATRQ Directed Project Opportunity are of the utmost importance. The DoD’s need for rapid qualification and certification of AM processes and materials is great,” said Rob Gorham, the Executive Director of America Makes. “These projects will be instrumental in resolving the current deterrents that are hindering the wider adoption and deployment of AM technologies within the DoD and its supply chain.”

Technical topics for the ATRQ Directed Project Opportunity are Surrogate Damage Generation for LPBF Defects, Degradation of Polymer Parts Deployed in Harsh Environments, and Corrosion Mechanisms of LPBF Materials. All Project Concept forms are due no later than 5 pm EST on Wednesday, November 28, 2018. To see all of the technical project requirements, as well as other information about the Directed Project Opportunity like non-disclosure agreements, eligibility, and the proposal process, check out the America Makes website.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The NIOSH on 3D Printer Fumes and Health. Your Guide to 3D Printers and Health, Best Practices.

The NIOSH is a part of America’s CDC (Centers for Disease Control). The NIOSH itself is The National Institute for Occupational Safety and Health for the United States. It is the part of the government tasked with researching into the safety of workers in many professions. At 3DPrint.com we noticed a number of very interesting articles come out by NIOSH researchers about 3D printing. Wewere especially impressed with their thoughtful and thorough research on carbon nanotubes in 3D printer filaments. There is also a very informative post about 3D printers and safety on the NIOSH website. We’ve always been worried about 3D printing safety including fine particles and especially fumes from 3D printers. At 3DPrint.com we think that we are potentially creating significant health issues with some 3D printing practices. We, therefore, reached out to the NIOSH for some guidance. A group of NIOSH researchers took the time to respond to us with some best practices for 3D printer safety. We’re very thankful for their well thought out and clear answers to our questions. We must, as they have, qualify their statements as an initial response but we do believe that this is the clearest and most extensive look into 3D printing safety online.

“It is important to note that there is a current lack of data on 3D printer emissions. In addition, the rapidly shifting description of the “workplace/production environment,” the availability of this technology beyond industrial applications, and the tremendous variety of feedstock polymers that are commercially available or can be made by consumers mean that additional research is needed to evaluate these emissions’ possible health effects.” 

1)     If I 3D print with FDM at home should I get a fume hood or HEPA/Carbon filtration just in case?

‘NIOSH focuses on worker health and our research is performed in the laboratory and in occupational settings, which can be quite different from homes.  Consideration of whether to use a fume hood or filtration will depend on several factors, including the design of the 3-D printer, the type of filament being extruded (filaments are materials (plastic, nylon or other) that are fed into the printer in order to create the final object), the size and air movement in the room in which it is being used, and who is occupying the room (children, adults, people with pre-existing health problems).

While there are no occupational exposure limits for the small particles emitted by 3-D printers, there are some exposure limits for specific chemical vapors that are emitted during printing.  For occupational settings, these chemical exposure limits can be used to guide the selection of appropriate controls to reduce exposures to a safe level.  In workplaces, NIOSH research has shown that appropriately designed and operated local exhaust ventilation with HEPA/carbon filtration reduces the amounts of particles and chemicals in air.  It is important to understand that occupational exposure limits are intended to protect adults in workplace settings and, at this time, we do not know what levels of particles or chemical vapors would be safe for children and others in homes.  Given this uncertainty, it is difficult to recommend specific levels that should be achieved when trying to reduce emissions in homes, though use of a printer in a well-ventilated area could help lower emissions.”

2)     What are the risks of 3D printing? 

“For FDM 3-D printers, there are risks related to the printer itself and potentially from the emissions.  Risks related to the printer are similar to those associated with working with other types of machines and may include electrical shock from damaged power cords, burns from touching hot surfaces such as the extruder nozzle, and injury such as cuts from contact with sharp edges or contusions from contact with moving parts.  At this time, our understanding of risks from particle and chemical vapor emissions from 3-D printers is limited.

In one study done by NIOSH, rats exposed for 1 hour to particle and vapor emissions from a FDM 3-D printer using ABS filament (a type of plastic material) developed acute hypertension, indicating the potential for cardiovascular effects.  In another NIOSH research study, lung cells exposed to FDM 3-D printer emissions from printing with ABS and polycarbonate for about 3 hours showed signs of cell damage, cell death, and release of chemicals associated with inflammation, suggesting potential for adverse effects to the lungs if emissions are inhaled.  These in vitro findings need to be confirmed with more extensive in vivo studies.  It is important to understand that exposures used in toxicology studies may not be the same as those encountered by workers or in homes for a number of reasons, including the use of ventilation in workplaces or the amount of fresh air brought into homes by the heating and cooling system.”

3)     How would I best protect myself against 3d printing risks? 

    • “Risks related to the printer itself can often be eliminated by safe work practices and the design of the 3-D printer.  For example, as with any electrical device used at work or in the home, daily inspection of the electrical cord can help to identify if the cord is damaged and should not be used.  After an object is printed, allowing sufficient time for the extruder nozzle to cool down before removing the object from the build chamber will reduce the risk of burns.  NIOSH researchers often observe smaller 3-D printers being used in workplaces that are also purchased by consumers for private use.  Using a 3-D printer with a cover or doors that prevent the user from reaching in while machine parts are moving will help reduce the risk of injury.

    • At this time we do not know what levels of exposure causes adverse health effects, so we can’t recommend safe levels of exposure to 3-D printer emissions whether in the workplace or in homes.  In occupational settings, we use the “hierarchy of controls” to protect workers from risks on their jobs.  The hierarchy of controls specifies, from most preferred to least preferred, the types of controls that should be used to reduce occupational exposures:
      • The most preferred method is to substitute or eliminate the hazard.  For example, in the case of FDM 3-D printing with filaments that contain carbon nanotubes, the emission of plastic-particles that contain carbon nanotubes can be eliminated by not using that type of filament if it is not necessary for the performance of the built object.
      • If a risk cannot be eliminated, engineering controls such as a fume hood or local exhaust ventilation (a system that specifically ventilates the printer rather than the air in a room) with HEPA/carbon filtration would be the next preferred method to reduce emission levels.  Some 3-D printers are now being sold with built-in filtration units.

Alternatively, a printer owner may purchase an after-market fan/filter systems to reduce emissions.  However, NIOSH researchers have not yet evaluated how well these built-in or after-market filtration systems work.  It is important to understand that for engineering controls such as fume hoods or local exhaust ventilation with filtration to be effective, these systems must be properly designed, built and operated.

In one workplace, NIOSH researchers showed that an appropriately designed and operated local exhaust ventilation with HEPA/carbon filtration reduced the amounts of particles and chemicals in air.  NIOSH researchers have also observed that in some workplaces where the ventilation system is not built correctly that the chemicals are released back into the room air.  Additionally, systems that use carbon filters to remove organic chemical vapors need to be monitored over time because the charcoal has a finite capacity to adsorb chemicals.  Once this capacity is reached, the charcoal filter needs to be replaced or it will not capture additional organic vapor emissions.

      • If engineering controls cannot reduce the risk to an acceptable level, administrative controls may be used.  An example of an administrative control is that NIOSH researchers have observed in some workplaces that employees do not enter the room where 3-D printers are operating unless it is necessary (e.g., to perform maintenance or to retrieve a built object).
      • Finally, if none of these controls can reduce emissions to an acceptable level, the least preferred control is the use of personal protective technologies such as respirators or dust masks.  In workplaces, respirators are the least preferred means of control because they do not remove the exposure, they only reduce the amount that might be inhaled;  this depends on the proper selection of filters and cartridges that remove contaminants while breathing.  Additionally, to be effective, respirators rely on the worker to properly wear and use the mask.  To wear a respirator, a user must be medically cleared by a physician and it must be properly fitted and retested each year to ensure fit. The user must be properly trained on how to wear, remove, and maintain the respirator.  NIOSH researchers have observed in some workplaces where 3-D printers are used that some employees with facial hair will put on a respirator, but the hair prevents the respirator from forming a tight seal with their face so the mask does not provide any protection to the worker.”

4)     If I had a 3D printer at a school what should my safety precautions be?

“NIOSH focuses on worker health and our research is performed in the laboratory and in occupational settings, which can be quite different from environments such as homes or schools.  For example, 3-D printers may be used with different frequency in schools and there may be only one printer operating in a large classroom as opposed to many printers in a small workspace.  These differences will influence the types of controls implemented to reduce emissions.

There are no occupational exposure limits for the small particles emitted by 3-D printers but there are some exposure limits for specific chemical vapors that are emitted during printing.  For occupational settings, these chemical exposure limits can be used to guide the selection of appropriate controls to reduce exposures to a safe level.

It is important to understand that occupational exposure limits are intended to protect adults in workplace settings. At this time, we do not know what levels of particles or chemical vapors would be safe for children in schools.  Given this uncertainty, it is difficult to recommend specific levels that should be achieved when trying to reduce emissions in schools.  In workplaces, NIOSH research has shown that appropriately designed and operated local exhaust ventilation with HEPA/carbon filtration reduces the amounts of particles and chemicals in air.  If exhaust ventilation is not feasible, use of a printer in a well-ventilated area could help lower emissions.”

Are Carbon Nanotube Filaments a Health Risk?

For a number of years I’ve been concerned with potential health risks from breathing in fumes from Fused Depostion Modeling (FDM, also called FFF, Fast Filament Fabrication and Material Extrusion) printing. I’ve overseen tests of filament where materials did not correspond to their Material Safety Datasheets and read about possible issues from fumes and UFP’s. I’ve worried about additives and certification. On the whole I think people are rather cavalier about safety in 3D printing. But, you don’t know now what kind of filament that you’ll be using later. And Frankly, especially with low quality filament you never really know what you’re extruding. In most cases you should be OK if you’re in a well ventilated room. But, I say should because there just isn’t any research on long term exposure to these things. You may be printing at too elevated temperature and the material may be releasing any number of fumes in your home or office. Thats why unequivocally you should always place your 3D printer under a fume hood or ensure that it is completely enclosed and that fumes are vented through Carbon and HEPA filters. As an added bonus you shall see that your failure rates decrease and that you will get better 3D prints this way. Please buy or make a fume hood or propper enclosure today.

I applaud more research on 3D printing safety and I’m sad that much of what there has been done is shoddy so far. A new paper by Aleksandr Stefaniak of the US National Institute for Occupational Safety and Health (NIOSH) part of the CDC is a benchmark for how such investigations should be done. In this paper 3Dimensional Printing with Nano‐Enabled Filaments Releases Polymer Particles Containing Carbon Nanotubes into Air, from the publication Indoor Air, Stefaniak and his team of 15 co-authors look at Carbon Nanotubes and Carbon Nanotube filament. Single Waled Carbon Nanotubes are rolled up sheets of carbon rolled up into a cilinder of around 50 nm to 250 nm in size. The carbon sheet itself is called graphene which itself is a matt of carbon atoms, one atom thick, laid out in a hexagonal pattern. These graphene structures can be changed to build many different nanotube structures which all have different properties. These materials have exceptional properties in stiffness, strength, conductivity and give people the option on the atomic level to create materials which have unique performance and propeties. There is a lot of excitement about nanotubes and graphene but also some real worry. Things at the nanoscale are very very small. How small? Your fingernail grows a nanometer per second. A nanometer is a billionth of a meter. So these teeny tiny interesting particles can do amazing things, such as penetrate your nasel barrier and end up inside of your brain. People are saying that nanotubes are a health risk and could be toxic. But, they’re also super hyped and amazing so others go on putting them in anything they can without a care in the world.

In 3D printing the nanotubes they often add very little in actual performance to the filament at the moment but this could indeed change. The NIOSH team looked at commercially available ABS, PLA and PC filaments with carbon nanotubes in them. The result of the study was that “respirable polymer particles” containing carbon nanotubes were released during printing and that “it is estimated that 7.2 % of these respirable particles could deposit in the alveolar region of the lung.” The paper then goes on to say that “If CNT (carbon nanotube) containing polymer particles are hazardous, it would be prudent to control emissions during use of these filaments in industrial or other environments (homes, etc.) to prevent exposure.” So yes you’ll breathe in particles containing carbon nanotubes if you’re in a room with a printer printing out a material containing carbon nanotubes. And yes, you should stop this by controlling the emissions.

The study looked at the regular filaments without carbon nanotubes and saw: “Particles emitted during printing with base polymer filaments were clusters of spherical nanoscale particles that had a soot -like appearance.” Contast this with the “the compact submicron to micronscale particle morphology is a combination of polymer and CNTs.”

“Peak number concentrations up to 10 7 particles/cm 3 were observed in chamber testing, indicating all filaments, regardless of additives, emitted a large number of particles during printing.”

“Figure 6 is scanning electron micrographs of aerosol particles collected during 3 -D printing. Printing with CNT -containing filaments released particles having two distinct morphology and size regimes: diffuse clusters of nanoscale polymer particles similar to thatseen for the base polymer filaments, and larger solid particles in the submicron to micronscale size range, some of which contained CNTs (Figure 6a , c, and e).”

“Figure 7 is scanning electron micrographs of the surfaces of printed objects. All objects printed using CNT -containing filaments had CNTs visible on the surfaces whereas objects printed with ABS, PLA, and PC filaments did not.”

Additionally:

“As shown in Figure 7, objects printed with CNT -containing filaments had CNTs protruding visibl y onto their surfaces. If these objects were further processed by abrasive processes, it could present an inhalation hazard if not performed properly under controlled conditions. For example, it is well known that disturbing composite surfaces by sanding or grinding or disrupting the inner volume by drilling or machining can generate aerosol that contains CNTs”

The team then looked at “particles having sizes of about 0.5 to 1 µm” which was the size of the clusters of polymer carbon nanotubes.

“For all filaments, the proportion of CNT -containing polymer particles that could deposit in the respiratory tract …from 0.523 to 1.037 µm was 6.51% (range: 4.12 – 9.96%), 5.74% (range: 5.70 – 5.86%), and 7.15% (range: 6.11 – 8.92%) for the head, tracheobronchial, and pulmonary regions, respectively.”

“The fraction of CNT -containing polymer particles that could deposit in the lung is predicted to range from 6.11 to 8.92% for the pulmonary region, which is important because clearance from this region is generally very slow and deposition there would permit prolonged persistence.”

“Once deposited, free CNTs that are not cleared are known to be biopersistent in the lung and may induce inflammatory and fibrotic alterations and changes in RNA expression.”

Before the paper comes to the conclusion that:

“While 3 -D printing and nanotechnology are converging to create new possibilities in polymers, our data indicate that material extrusion printing with CNT -containing filaments can release polymer particles that contain CNTs into air. If CNT -containing polymer particles are shown to be hazardous, it would be prudent to control emissions during use of these filaments. “

Inflamatory alterations sounds a bit vague and not terrible. But particle depostions in the lung can cause edema, asphyia, cancer and emphysema. The particles in the lung hazard that you most probably have heard of is asbestosis. Asbestosis is the disease, no known treatment, that you get from breathing in particles of asbestos. Another scenario, fibrotic alterations are scar tissue on your lungs that make it harder for you to breathe, for a while. Clearly we should find other materials to make our filament conductive. We should all 3D print using enclosures as well. But, even if we do these nanotubes may become disloged and have other subsequent effects. Carbon nanotubes may yet be the best whiz bang thing but its very doubtful that we should be adding them to filament.