The Brittle Spear Part III: Digital Kintsugi and 3D Printed Spare Parts

In this series, previously we looked at how we’re creating a system designed to spit out less able things and that these things may be better but will be less robust and more challenging to repair. As the tip of the spear grows ever sharper, it also becomes more brittle. We have more things, but they will last longer (in the natural environment), and we will find it easier to throw them away. Rather than individual firms designing certain things for planned obsolescence, we are, all of us, participating in a system that produces more fragile items with shorter life spans. We cannot fight this system head-on, but we may be able to subvert it, change it and help us all. The path to extricating ourselves from a disposable world is Digital Kintsugi.

Kintsugi is a Japanese method of repairing broken pottery with gold and lacquer. A fractured ceramic piece is then proudly restored with a clear remnant of the breakage visible to all. 

“Not only is there no attempt to hide the damage, but the repair is literally illuminated… a kind of physical expression of the spirit of mushin….Mushin is often literally translated as ‘no mind,’ but carries connotations of fully existing within the moment, of non-attachment, of equanimity amid changing conditions. …The vicissitudes of existence over time, to which all humans are susceptible, could not be clearer than in the breaks, the knocks, and the shattering to which ceramic ware too is subject. This poignancy or aesthetic of existence has been known in Japan as mono no aware, a compassionate sensitivity, or perhaps identification with, [things] outside oneself.”

— Christy Bartlett, Flickwerk: The Aesthetics of Mended Japanese Ceramics

In terms like “mono no aware” and “wabi-sabi” and the related “kintsugi”, we have a potential philosophical and cultural counterweight to contemporary consumer culture. By accepting transience and transformation, by being okay with imperfection and seeing a repaired thing as somehow improved, we can get passed our shrink-wrapped existence. And its Japanese, too, like manga and sushi. 

We live in a world where we lust after things. Indeed, many of our ambitions and desires are for things, and we give our lives for stuff. The moment one acquires the desired something, it fades, slips into being spurned, is then forsaken, and begins somehow to rot. A thing will never fulfill us, but we don’t realize this and instead lust after new newer things. We’re chasing a thing-related high that doesn’t exist.

Kintsugi will help us to break through these barriers. What’s more, we’re no longer making or recycling for making’s sake, nor are we doing it for some grand sustainability goal, we are doing it also to celebrate this thing. Rather than focus our attention on the unattainable new, kintsugi places it on the mindful now of things we already have. 

A patina on some steels or worn leather and just-right jeans are already examples of wear and tear that are celebrated. We just have to extend scratches on polymer and other everyday damage to the realm of the beautiful. 

With 3D printing, we can make things last longer. We can make spare parts and create out-of-production spares to extend the life of many everyday objects. Many more people will need to be able to design for this to take on meaningful proportions of all the things. Perhaps, if our phones became 3D scanners or if it were easier to take 2D and make it 3D, we could radically extend the life of many things.

In particular, small spare parts are very inexpensive when 3D printed on desktop machines and even through services. If the alternative is for the user to throw away the good, then any single repair using a 3D printed part would be extremely valuable for the environment. Imagine if one CAD file leads to 1,000 coffee makers not being thrown away. Now, digital spare parts are part of grand EU initiatives—or the plans of single individuals running into a part that they need—but a more organized approach would be very valuable. 

If we looked at the sum total of e-waste and what were the most popular items to see how they could be repurposed or extended, then we could in, and organized way make the world a lot more sustainable through 3D printing. There are many spares already being made, from Playmobil skateboard wheels, to bass guitar parts to switches for venerable La Pavoni espresso machines. On platforms like Thingiverse or YouMagine we can already see that spare parts are a lively and very popular category. 

Organically and without a business model, it is already growing. From handles for Mokka Makers to the incredibly popular vacuum cleaner parts category to the super-specific, such as a faceplate for a joystick used in forestry equipment, we are currently making a mark.  

Guided development, easier CAD, and better 3D scanning will help but a philosophical edge, and new coolness will do wonders also. Patagonia’s worn wear is a great example of obviously repaired clothing that gives everyone involved a good feeling while extending the life of things. 

In the 3D printing community, we are repairing things because we can, but we need to see if we can make this cool, even desirable. Obviously-repaired objects proudly displaying their scars needs to be an established practice that adds sparkle and history to otherwise quotidian things—especially in a world with so few things that last any effort to extend the life of things, a little bit will do wonders for us all. 

The Japanese don’t use transparent lacquer; they mix in gold to heighten the repair, give it luster, and get one to notice it. What could we do to make 3D printed repairs beautifully obvious? Could we use Bronzefill, a particular purple, or make the 3D printed layers more obvious? What do you think?  

Creative Commons Attribution: Ervaar Japan, Ervaar Japan, Steenaire.

The post The Brittle Spear Part III: Digital Kintsugi and 3D Printed Spare Parts appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Mathematical Model Determines Which Spare Parts Should or Should Not be 3D Printed

A major potential AM application for many industries is using the technology to fabricate spare parts on-demand in an effort to get rid of warehouses that are stocked full of spare parts just waiting to be used. Obviously, this could help save both time and money, but just how feasible is this solution?

(Image: Spare Parts 3D)

Companies now have an important choice to make – continue stocking spare parts, or only 3D printing them when they’re needed. Sounds simple, right? Maybe not. According to Jeannette Song, an operations professor at Duke University’s Fuqua School of Business, parts suppliers realize they need to keep spares handy, but since they’re not psychic, and don’t know what will break and when it will do so, they also know that they need a range of parts, in large quantities no less, available in inventory at any given moment.

“It takes up space and capital, and there is the risk of spoilage and damage,” Song said, explaining how inefficient and costly this decision can be.

Having a digital inventory of 3D printable spare parts means that manufactorers can forget about keeping a wide variety of parts on hand just in case they’re needed. However, this approach comes with its own set of issues.

“But that means you don’t have what you need on hand exactly when you need it, because 3D printing takes time. So there’s a trade-off,” she explained.

Song determined that a hybrid approach of the two – printing some parts when necessary, but continuing to keep others stocked – is the most useful way to proceed, but it’s tough to know which parts should be kept in inventory and which ones should be 3D printed. To help manufacturing firms determine the pros and cons of 3D printing on-demand spare parts versus storing spare parts, she came up with a useful mathematical model.

The model is based on an equipment manufacturer that’s moving into a new international market – the utility industry, which relies heavily on spare parts. When parts wear out, or power fails, these companies need to get replacements out to the field quickly in order to restore or maintain service, and not just a few at a time, either. For example, a transformer is typically made of up to 36 different molded parts.

Jeannette Song, R. David Thomas Professor, Duke University’s Fuqua School of Business

“For utilities, when you don’t have spare parts on hand, it’s a huge disruption. They have to have reliable and responsive supply of spare parts,” Song explained. “Traditionally a firm in this position would have a huge warehouse in every market. But now 3D printing is a viable alternative, so you have two options.”

The manufacturing firm she based her model on will be providing spare parts to utility companies that don’t have the necessary infrastructure to house them. Together with Yue Zhang, currently an assistant professor at Pennsylvania State University who helped with the research during her time working toward her PhD at Duke, Song published a paper describing the mathematical model, titled “Stock or Print? Impact of 3D Printing on Spare Parts Industry,” in the Management Science journal.

“We present a general framework to study the design of spare parts logistics in the presence of three-dimensional (3-D) printing technology. We consider multiple parts facing stochastic demands and adopt procure/manufacture-to-stock versus print-on-demand to highlight the main difference of production modes featured in traditional manufacturing and 3-D printing. To minimize long-run average system cost, our model determines which parts to stock and which to print. We find that the optimal 3-D printer’s utilization increases as the additional unit cost of printing declines and the printing speed improves. The rate of increase, however, decays, demonstrating the well-known diminishing returns effect. We also find the optimal utilization to increase in part variety and decrease in part criticality, suggesting the value of 3-D technology in tolerating large part variety and the value of inventory for critical parts,” the abstract states.

“We also derive various structural properties of the problem and devise an efficient algorithm to obtain near optimal solutions. Finally, our numerical study shows that the 3-D printer is, in general, lightly used under realistic parameter settings but results in significant cost savings, suggesting complementarity between stock and print in cost minimization.”

Completely getting rid of spare parts inventory is often too chancy, but 3D printing some of the parts on-demand can help keep costs down, which is a hybrid approach is often the best. Companies can use Song’s mathematical model, which can effectively calculate which specific spare parts they will most likely need more often, how many of these should be kept in inventory, and which parts aren’t as vital, so they can be 3D printed on-demand when needed.

“If you are operating on a large scale, you still need to keep inventory on hand. But a little flexibility goes a long way,” Song said.

“The big decision is how you rationalize all these parts, which ones to stock and which ones to print. In most cases we find a 3D printer would not be used very much at all, but the firm saves a massive amount of inventory.”

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

(Images: Duke University, unless otherwise noted)

The post Mathematical Model Determines Which Spare Parts Should or Should Not be 3D Printed appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

POLYLINE Project: Developing Digital Production Line for 3D Printing Spare & Series Automotive Parts

Because 3D printing can ensure complex structures and geometry, mass production of individualized products seems closer than ever. But, since standards are somewhat lacking across process chains, and automated levels of handling and transport processes are low, it’s only possible to achieve horizontal and vertical AM integration in production lines on a limited basis. Additional obstacles include limited monitoring and a lack of transparency across the process chain, due to a non-continuous digital data chain at lots of interfaces. But the potential benefits of integrating AM into assembly and series production lines in the automotive industry are great, which is why the POLYLINE project was launched.

With 10.7 Mio. Euro in funding by the German Federal Ministry of Education and Research (BMBF), this “lighthouse project” is bringing together 15 industrial, science, and research partners from across Germany with the shared goal of creating a digital production line for 3D printed spare and series automotive parts.

The three-year project officially began at a kick-off meeting of the consortium partners this spring at the Krailling headquarters of industrial 3D printing provider EOS, which is leading the project. The other 14 partners are:

BMBF is funding POLYLINE as part of the “Photonics Research Germany – Light with a Future” program in order to set up AM as a solid alternative for series production. The resulting next-generation digital production line will 3D print plastic automotive parts in an aim to complement more traditional production techniques, like casting and machining, with high-throughput systems.

The project is looking to disrupt the digital and physical production line system, and is using an interesting approach to do so that, according to a press release, “takes a holistic view and implements all required processes.” To succeed, all of the quality criteria and central characteristic values from the CAD model to the printed part need to be recorded and documented, and individual production sub-processes, like the selective laser sintering, cooling, and post-processing, will be automated and added to the production line. For the first time, all technological elements of the SLS production chain will be linked as a result.

Schematic representation of a laser sintering production line

Per the application partner’s requirements, the production line will be realized with “a high degree of maturity,” and uses cases for POLYLINE will include large amounts of both serial and customized components.

Each partner will add its own contribution to the POLYLINE project. Beginning with the leader, the EOS P 500 system will have real-time monitoring and automated loading of exchange frames added to its features; the printer will also be embedded in an automatic powder handling system. Premium automotive manufacturer the BMW Group, already familiar with 3D printing, has a massive production network of 31 plants in 15 countries, and is creating a catalog of requirements for the project to make sure that the new line will meet automotive industry standards. Additionally, the demonstrator line will be set up near its Additive Manufacturing Campus, and cause-and-effect relationships will be jointly researched.

Iterations of a BMW Roof Bracket made with 3D printing. (Image: BMW Group)

Industrial process automation specialist Grenzebach will be responsible for material flow and transport between AM processes, as well as helping to develop automated hardware and software interfaces for these processes. 3YOURMIND is setting up a data-driven operating model, which will include “qualified digital parts inventories, orders processing, jobs and post-processing planning and execution, material management, and quality control,” while software solutions developer Additive Marking is focusing on quality management optimization and resource efficiency.

Post-processing specialist DyeMansion will develop a process for certified, UV-stable automotive colors, create Industry 4.0-ready solutions for cleaning and mechanical surface treatment with its PolyShot Surfacing (PSS) process, and contribute its Print-to-Product platform’s MES connectivity. Bernd Olschner GmbH will offer its customer-specific industrial cleaning solutions, Optris will make fast pyrometers and special thermal imaging cameras adapted for plastic SLS 3D printing, and air filter systems manufacturer Krumm-tec will work to upgrade the manual object unpacking process.

(Image: DyeMansion)

Along with other project partners, Paderborn University is “working on the horizontal process chain for the integration of additive manufacturing in a line process,” while the Fraunhofer Institute for Casting, Composite and Processing-Technology IGCV is developing a concept for POLYLINE production planning and control, which will be tested in a simulation study for scalability. The Fraunhofer Institute for Material Flow and Logistics IML will work on “the physical concatenation of process steps,” paying specific attention to flexibly linking the former manual upstream and downstream AM processes.

TU Dortmund University will help apply deep learning, and implicit geometric modeling, for data preparation and analysis, along with online monitoring and quality management, in order to achieve sustainable automation and efficiency for the project. The University of Augsburg’s Chair of Digital Manufacturing works to integrate AM processes into current production methods, and will apply its expertise in this area to the POLYLINE project, helping to develop strong vertical process chains. Finally, the University of Duisburg-Essen will focus on creating quality assurance for the material system, and its laser sintering process.

The consortium of the POLYLINE project (Image: EOS GmbH)

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post POLYLINE Project: Developing Digital Production Line for 3D Printing Spare & Series Automotive Parts appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Additive Industries & ArcelorMittal Using MetalFAB1 3D Printer to Make Spare Steel Parts

One of the world’s leading steel and mining companies, ArcelorMittal, is partnering with Dutch company Additive Industries to investigate the use of metal 3D printing to make large spare parts for the steel industry. Additive manufacturing is used to fabricate spare parts for plenty of applications and industries, including maritime, railways, the military, consumer appliances, automotive, and many more. It makes a lot of practical business sense, as 3D printing spare parts offers companies, like ArcelorMittal, flexibility, a reduced production cycle, and on-demand manufacturing; if this happens onsite, it can even save on shipping costs.

3D printed spare parts used in ArcelorMittal facilities: (A) Example of part consolidation application with 316L original part on the left and 3D printed part on the right; (B) example of functional large parts with internal lattice structure made with 316L above 500 mm; and (C) lightweight (hollow) functional spare parts made with Maraging Steel with ArcelorMittal’s optimized parameters.

By collaborating with Additive Industries on metal 3D printing over the last few years, and using the technology to build on-demand spare parts, ArcelorMittal has improved its quality and process performance – allowing the company to print large, complex components that are ready to use.

“Additive Manufacturing is an exponential technology, moving very fast. Our collaboration with Additive Industries is a clear demonstration of our ability to remain at the cutting-edge of this technology: we started by printing small specimens and have now progressed to large size and complex parts,” said Jose López Fresno, Head of the Additive Manufacturing department, ArcelorMittal Global R&D in Avilés, Spain.

Operations in the steelmaking industry require components, and spare parts, that must hold up under difficult conditions. In the beginning of the ArcelorMittal and Additive Industries collaboration, they had to figure out how best to achieve the necessary requirements for component size and quality. But over the last two years of working together, the two have achieved an up to fourfold increase in component size, in addition to improving their reliability and quality. This means that the steel company has been able to increase the amount of applications for its 3D printed spare parts from small size part consolidation to jobs that need complex, functional, large, and strong parts.

MetalFab1 on the day of installation in ArcelorMittal R&D facilities in Avilés.

Now, the two are looking at what metal 3D printing can do for the steel industry with the MetalFAB1 by Additive Industries, which is one of the market’s largest 4-laser metal AM systems.

“Innovation and market leader ArcelorMittal have helped us to stress-test our MetalFAB1 system for critical spare-part production,” stated Daan A.J. Kersten, Co-Founder and CEO Additive Industries. “This enabled us to expand our experience to the steel industry from our main application markets in aerospace and automotive. It has become clear that metal 3D printing is a serious alternative for a large variety of cast parts.”

First introduced back in 2015, the unique MetalFAB1 printer has a 420 x 420 x 400 mm build volume, which makes it possible to fabricate large steel spare parts for the mining and steelmaking industries. But at the same time, it also ensures high productivity because it automated the manual steps of regular powder bed fusion 3D printers; this, in turn, equals the lowest cost per 3D printed part.

The modular MetalFAB1 has multiple build chambers, up to four 500W lasers, and can be configured for up to 11 different modules for more productivity or post-processing automation. It’s also well-designed for safety, which is perfect for ArcelorMittal and its focus on operator safety. In addition, 3D printing spare parts can help reduce waste – meeting another of the company’s objectives in terms of environmental safety.

“We are proud to work together with ArcelorMittal, jointly driving the business case for 3D-printed parts in the steel industry,” said Harry Kleijnen, Key Account Manager for Additive Industries. “ArcelorMittal’s typical applications have enabled us to further adapt the MetalFAB1 system to print high density, high volume parts. We are looking forward to expanding the range of applications and materials in this intense and strong collaboration.”

Since the first MetalFAB1 3D printer was installed at ArcelorMittal’s R&D facilities, the company has already used several of the 3D printed spare parts. To see the assembly and installation of the MetalFAB1 at ArcelorMittal, check out Additive Industries’ video here.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

(Source/Images: Additive Industries)

The post Additive Industries & ArcelorMittal Using MetalFAB1 3D Printer to Make Spare Steel Parts appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Blueprint Webinar: The Business Case for 3D Printing Spare Parts

In the next decade, 3D printing will massively reduce costs and create new revenue opportunities in spare parts businesses. This growth will be driven by 3D printing’s unique ability to eliminate fixed costs in manufacturing and radically reduce lead times.

The first step in unlocking the potential of 3D printing in your spare parts business is to understand the business case.

In this webinar Aaron Hurd, Consulting Manager at Blueprint, gives an overview of the business case for 3D printing spare parts. He explores both the high-level business case and gives tactical examples of how 3D printing is uniquely positioned to solve cost and lead time issues that often plague spare parts businesses.

In this webinar, you will:

    • Learn how and why 3D printing solves the problems of cost and lead times in spare parts.
    • See real examples of applications where 3D printing provided savings in both cost and lead times.
    • Hear stories of how leading companies are innovating using 3D printing in their spare parts businesses.
    • Gain an understanding of what it takes to deploy a 3D printing capability.
    • See actionable steps to take for jumpstarting 3D printing in your spare parts business.

Blueprint is the world’s leading 3D printing consultancy. We’re engineers, innovators, analysts, and strategists with 15 years of experience helping clients across virtually every industry, at startups and Fortune 500 companies alike. We are laser-focused on helping our clients make sense of 3D printing, from high-level strategy and innovation, to deeply technical design optimization.

If you want to discuss this article or your additive manufacturing strategy, the team at Blueprint is here to help. Let’s say hello.

hello@additiveblueprint.com

The post Blueprint Webinar: The Business Case for 3D Printing Spare Parts appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

SLM Solutions Helping to Create Guidelines for 3D Printing Spare Parts in Oil, Gas, & Maritime Industries

Last January, 11 companies – now at a total of 16 – began working together on two aligned Joint Innovation Projects (JIPs). Their objective – collaborate in developing a guideline for 3D printing functional, qualified metal spare parts for the Oil, Gas, and Maritime industries, in addition to creating an accompanying economic model.

The 16 companies working on Joint Innovation Projects (JIPs). [Image: SLM Solutions via Facebook]

These 16 partner companies participating in the standardization project include:

In addition, SLM Solutions, a top metal 3D printing supplier headquartered in Germany with multiple offices around the world, is also working to support these two joint projects.

“Our aim is to make the SLM  technology better known in the industry and to increase its application through uniform standards,” stated Giulio Canegallo, Director of Business Development Energy for SLM Solutions, who is representing the company in the JIP.

The company offers cost-efficient, fast, and reliable Selective Laser Melting (SLM) 3D printers for part production, and works with its customers throughout the process in order to offer expertise and support. It will be supporting the JIPs by offering its technical 3D printing expertise, for SLM additive manufacturing in particular.

Using pilot parts, like this pump impeller 3D printed on the SLM 280, the guideline is tested for practical application.

Together with the other 15 JIP partner companies, SLM Solutions is working to create two separate but aligned, coherent programs: a toolbox that will enable economic viability, selection, and supply chain setup, to be be managed by Berenschot, and a guideline towards certified parts, which will be manged by DNV-GL.

Because these two programs will be aligned in their setup, the companies can ensure, as SLM Solutions put it, “maximum cross fertilization.” In order to make sure that all the steps are there to achieve high quality, repeatable production, up to five pilot parts will be produced for the JIPs. One of these pilot parts is a pump impeller, which SLM Solutions already fabricates on its SLM 280 3D printer for oil and gas company Equinor.

During production of the selected pilot parts, the partner companies will complete a final applicability test of this guideline, focusing specifically on its practical use in successfully producing the parts, and their overall quality. The information that’s learned in these case studies will be added to the guideline’s final version so that others can benefit.

The practical guideline will be available to use by this coming June, and will offer a framework so users can make sure that their 3D printed metal spare parts, fabricated through either SLM or Wire Arc Additive Manufacturing (WAAM) technology, will conform to the exacting specifications of the Oil, Gas, and Maritime industries.

A functional, comprehensive business tool will also be released in June, to help figure the bottom-line impact that will result from using 3D printing to fabricate spare parts, as opposed to more conventional methods of manufacturing. A database of parts will also be put together in cooperation with the business ROI-model, in order to show just how applicable 3D printing is for manufacturing spare parts for these three industries. The model will be officially tested during the Q2 parts production process.

Discuss this story, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

US Marines Using LulzBot 3D Printers to Successfully Continue Their Mission

3D printing in the military isn’t just about fabricating weapons like grenades, missiles, and warheads. The US Marine Corps has embraced the technology with enthusiasm, using it to research and complete a wide variety of projects. These days, logistics in particular is a fairly complicated defense sector, and investing in 3D printing has allowed the Marines to learn how to travel lighter to missions, with more adaptability…par for the course for this branch of the military, which counts “Improvise, Adapt, and Overcome” as its unofficial motto.

The USMC’s Next Generation Logistics Innovation group (NexLog) was established in 2015 to advocate for the use of modern technologies, such as 3D printing, on the front lines. The initiative, led in part by Col. Howard Marotto and Captain Matthew Friedell, speeds up development and integration of these technologies within the Marine Corps, and gives the Marines a way to develop solutions to problems directly affecting them and their environment.

“We see it as being absolutely transformative. It’s not just about untethering yourself from the supply chain,” Marotto said. “It’s also about being able to rapidly innovate to the threat in the field.”

Cpl. Christopher Bigham and Col. Farrell J. Sullivan. [Image: Cpl. Jon Sosner]

The Marine Corps is more than ready to use 3D printing in any way they can, and LulzBot 3D printers from Aleph Objects are now being used by Marines in their important mission: to help build and grow a more innovative culture.

When the US military first got wind of 3D printing, the technology originally provided the perfect solution to a long-time problem: a continuing shortage of available spare and replacement parts for equipment that was getting older, thus more difficult to maintain.

Marotto explained, “A lot of our older equipment in the Marine Corps, nobody wants to make those items or parts for. So we might have to become our own manufacturers on certain low-demand, obsolete type items because the industrial base won’t support us, because there’s no money in it.”

3D printed handles [Image: Lance Cpl. Andrew Huff]

In one of the many ongoing efforts to use the technology to “Charlie Mike” (Continue Mission), the Marines have started to design and 3D print replacement handles for their Humvees on LulzBot 3D printers. The standard vehicle handles are extremely fragile – not good if you’re on the front lines and need to get up and moving quickly.

LulzBot 3D printers have been a good choice for the Marines, thanks in large part to the LulzBot MOARstruder Tool Head – a popular option for applications that require strong parts and rapid prototyping capabilities.

“I use a MOARstruder on the thing and it prints in an hour, and you can’t break that thing…that’s my favorite example of using a LulzBot and more specifically, the MOARstruder,” said Friedell.

Another application for 3D printing in the Marine Corps is providing solutions in expeditionary environments.

“It’s stuff like buckles that you don’t think would be very valuable, but they’re huge in an expeditionary environment,” Friedell said. “If your buckle breaks that’s holding your weapon, your life is gonna suck for the next 10 miles or 3 weeks until you can get a new plastic buckle. So having that ability is huge.”

A recent example is a small snowshoe clip, 3D printed using a strong, flexible resin, that the Marines developed at the Mountain Warfare Training Center (MWTC) in northern California. Marines are now extensively training in very cold environments, which can cause a slew of new problems for their important gear.

Friedell said, “We have a snowshoe in our inventory and Marines keep breaking small retaining clips. So we had Marines redesign them and we’re actually able to 3D print them and throw them on the snowshoes, and now we have snowshoes that don’t fall off our feet.”

The Marines were able to call on their trusty LulzBot 3D printers to come up with a fast, inexpensive solution to this particular problem.

“I’ve been a big proponent of LulzBot [3D Printers] because it’s just bulletproof, and that’s the reason we put it out there. We literally load them up in [watertight] cases, unbox them…. they level themselves, and they’re printing in five minutes. So the durability of them, the flexibility of them, is awesome,” Friedell said.

Because LulzBot 3D Printers are so reliable, durable, and easy to use, Marines stationed in difficult environments all around the globe can put them to work in tasks ranging from mission-critical to simply making everyday life more convenient.

To learn more about the Marine Corps’ use of LulzBot 3D printers, check out the video here.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.