ASTM and UL to Publish ISO-ASTM Standard for Additive Manufacturing

Nonprofit standards development organization ASTM International, which develops and publishes technical standards for a range of industries, materials, products, services, and systems around the globe, has signed a memorandum of understanding (MoU) with Underwriters Laboratories (UL), another nonprofit which works to advance its mission of public safety through discovery and application of scientific knowledge. The agreement will set up a framework for a cooperation between the two to create an international, dual-logo ASTM and International Standardization Organization (ISO) standard.

“We are announcing a collaboration agreement with ASTM International that will result in an ISO-ASTM standard for additive manufacturing facility safety management,” Patrick Wilmot, Communications Manager for UL Standards, told 3DPrint.com. “This is an exciting partnership for our organizations and we believe it will be of great use to the AM industry.”

While ASTM signed an MoU with German testing and certification organization TÜV°SÜD at formnext 2019, and created the Additive Manufacturing Standards Development Structure with ISO back in 2016, this new MoU is the first international collaboration agreement of its kind with fellow standards development organization UL.

(Image: Underwriters Laboratories)

“This partnership brings together both organizations’ expertise and shared desire to drive global safety. It leverages ASTM’s technical committee and relationship with ISO with our document and research to drive impact and positively influence the international standards landscape,” said UL Standards Vice President Global Standards Phil Piqueira.

The terms of this new MoU state that ASTM will act as the standards developing organization (SDO) for the agreement, which includes responsibilities such as managing all activities and administrative support. In addition, it will convene the organization’s F42 additive manufacturing technical committee, first formed over a decade ago, in order to review and advance the UL document, the basis of which is its 3400 Outline of Investigation for Additive Manufacturing Facility Safety Management. Once the document, developed with UL research, is complete, ASTM will publish the standard.

ASTM has an existing agreement with ISO to publish its standards documents as ASTM-ISO standards, which means that UL Standards will transfer its copyright of the material in the UL 3400 document over to ASTM so that it can officially be published as an ISO-ASTM standard. The complete, published standard will also be attributed to UL Standards, due to its content and technical expertise.

“The collaborative nature of global standardization creates many opportunities for partnership with other SDOs. We appreciate these opportunities to share knowledge with partners like Underwriters Laboratories to help advance public safety in this fast-evolving field,” stated Brian Meincke, ASTM International’s Vice President of Finance, Business Development and Innovation.

What do you think about this news? Let us know! Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

The post ASTM and UL to Publish ISO-ASTM Standard for Additive Manufacturing appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Should Vented Enclosures Become A Mandatory Safety Standard for FFF 3D Printers?

Timing fume clearance speed by the ECC (Image: Health and Safety Executive)

With innovation always comes unintended consequences. There’s been much-to-do with the possible health repercussions of 3D printing, particularly when it comes to the fine particles and fumes produced by the process.

Some 3D printers on the market now carry HEPA (High Efficiency Particulate Air) filters and come with their own safety enclosures. But their effectiveness has not been studied extensively, and therefore certain universal safety standards have yet to be established.

Now, recent research on the danger of these chemicals and the effectiveness of enclosures could make us someday look at 3D printing without one like we now look at smoking on airplanes.

The Danger of FFF Emissions

The research about fumes from 3D printing filaments is not yet conclusive. However, some studies have shown that ABS (Acrylonitrile Butadiene Styrene) is a particularly bad offender in emitting high levels of styrene, a known carcinogen, into the air.

More research by the National Institute for Occupational Safety and Health (NIOSH) studied the effects of these fumes on rats. As told to 3DPrint.com last October:

Rats exposed for 1 hour to particle and vapor emissions from a FDM 3-D printer using ABS filament (a type of plastic material) developed acute hypertension, indicating the potential for cardiovascular effects.  In another NIOSH research study, lung cells exposed to FDM 3-D printer emissions from printing with ABS and polycarbonate for about 3 hours showed signs of cell damage, cell death, and release of chemicals associated with inflammation, suggesting potential for adverse effects to the lungs if emissions are inhaled.

While the organization cautions that these findings need confirmation with more extensive research, it’s probably self-evident that fumes from hot biochemicals + lungs = bad.

That’s why the Health and Safety Executive (the UK’s version of NIOSH) isn’t waiting around for an official declaration before working toward safer 3D printing standards.

The Effects of a Vented Enclosure System

Features of the exposure control cabinet (Image: Health and Safety Executive)

To study the effectiveness of a vented enclosure system, the Health and Safety Executive team created the Exposure Control Cabinet. The ECC is a small glass chamber in which the 3D printer rests. On the roof of the cube is a small fan which could be set to A) do nothing, B) recirculate the air within the chamber, or C) exhaust the air up and out of the cube.

To measure emission rates and particle concentrations, common additives ABS and Polylactic Acid (PLA) were used, respectively. To measure the efficiency and effectiveness of the chamber’s three settings, the ECC was first filled with smoked then timed until the smoke was completely removed.

ECC emission and reduction rates (Image: Health and Safety Executive)

The results were encouraging to say the least, with the exhaust and recirculation settings clearing 97-99.4% of the smoke over a 20 minute period. In their conclusion, the team suggests that in a controlled environment (like the ECC), the rate at which particles are released into the air by 3D printers is reduced by up to 99%.

The Beginning of New Standards (And A New Industry)?

While it might seem obvious that air control would make workplace air safer, the Health and Safety Executive’s findings are an important step in developing safety standards for 3D printing, both at home and on an industrial scale.

Like how you (hopefully) wouldn’t operate certain power tools without eye protection, this kind of data is a small step in making sure quality air control is as important and basic as not touching a hot 3D printing nozzle or chewing on your filament. Using an ECC (or something like it) could become an important mandatory safety standard to have in place at maker’s labs, high school shop classes, and other places using 3D printers.

And should their use become mandatory in settings like these, vented enclosures could become big business. While there are many DIY recipes for vented 3D printing enclosures online, it’s largely an untapped commercial market.

Until then, or until research proves otherwise, we’ll just have to let common sense prevail and recommend operating printers in open areas with good air circulation.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Source: Health and Safety Executive (ResearchGate)

SLM Solutions Helping to Create Guidelines for 3D Printing Spare Parts in Oil, Gas, & Maritime Industries

Last January, 11 companies – now at a total of 16 – began working together on two aligned Joint Innovation Projects (JIPs). Their objective – collaborate in developing a guideline for 3D printing functional, qualified metal spare parts for the Oil, Gas, and Maritime industries, in addition to creating an accompanying economic model.

The 16 companies working on Joint Innovation Projects (JIPs). [Image: SLM Solutions via Facebook]

These 16 partner companies participating in the standardization project include:

In addition, SLM Solutions, a top metal 3D printing supplier headquartered in Germany with multiple offices around the world, is also working to support these two joint projects.

“Our aim is to make the SLM  technology better known in the industry and to increase its application through uniform standards,” stated Giulio Canegallo, Director of Business Development Energy for SLM Solutions, who is representing the company in the JIP.

The company offers cost-efficient, fast, and reliable Selective Laser Melting (SLM) 3D printers for part production, and works with its customers throughout the process in order to offer expertise and support. It will be supporting the JIPs by offering its technical 3D printing expertise, for SLM additive manufacturing in particular.

Using pilot parts, like this pump impeller 3D printed on the SLM 280, the guideline is tested for practical application.

Together with the other 15 JIP partner companies, SLM Solutions is working to create two separate but aligned, coherent programs: a toolbox that will enable economic viability, selection, and supply chain setup, to be be managed by Berenschot, and a guideline towards certified parts, which will be manged by DNV-GL.

Because these two programs will be aligned in their setup, the companies can ensure, as SLM Solutions put it, “maximum cross fertilization.” In order to make sure that all the steps are there to achieve high quality, repeatable production, up to five pilot parts will be produced for the JIPs. One of these pilot parts is a pump impeller, which SLM Solutions already fabricates on its SLM 280 3D printer for oil and gas company Equinor.

During production of the selected pilot parts, the partner companies will complete a final applicability test of this guideline, focusing specifically on its practical use in successfully producing the parts, and their overall quality. The information that’s learned in these case studies will be added to the guideline’s final version so that others can benefit.

The practical guideline will be available to use by this coming June, and will offer a framework so users can make sure that their 3D printed metal spare parts, fabricated through either SLM or Wire Arc Additive Manufacturing (WAAM) technology, will conform to the exacting specifications of the Oil, Gas, and Maritime industries.

A functional, comprehensive business tool will also be released in June, to help figure the bottom-line impact that will result from using 3D printing to fabricate spare parts, as opposed to more conventional methods of manufacturing. A database of parts will also be put together in cooperation with the business ROI-model, in order to show just how applicable 3D printing is for manufacturing spare parts for these three industries. The model will be officially tested during the Q2 parts production process.

Discuss this story, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

Top 10 3D Printing Aerospace Stories from 2018

3D printing has played an important role in many industries over the past year, such as medical, education, and aerospace. It would take a very long time to list all of the amazing news in aerospace 3D printing in 2018, which is why we’ve chosen our top 10 stories for you about 3D printing in the aerospace industry and put them all in a single article.

Sintavia Received Approval to 3D Print Production Parts for Honeywell Aerospace

Tier One metal 3D printer manufacturer Sintavia LLC, headquartered in Florida, announced in January that it is the first company to receive internal approval to 3D print flightworthy production parts, using a powder bed fusion process, for OEM Honeywell Aerospace. Sintavia’s exciting approval covers all of Honeywell’s programs.

Boeing and Oerlikon Developing Standard Processes

Boeing, the world’s largest aerospace company, signed a five-year collaboration agreement with Swiss technology and engineering group Oerlikon to develop standard processes and materials for metal 3D printing. Together, the two companies will use the data resulting from their agreement to support the creation of standard titanium 3D printing processes, in addition to the qualification of AM suppliers that will produce metallic components through a variety of different materials and machines. Their research will focus first on industrializing titanium powder bed fusion, as well as making sure that any parts made with the process will meet the necessary flight requirements of both the FAA and the Department of Defense.

FITNIK Launched Operations in Russia

In 2017, FIT AG, a German provider of rapid prototyping and additive design and manufacturing (ADM) services, began working with Russian research and engineering company NIK Ltd. to open up the country’s market for aerospace additive manufacturing. FIT and NIK started a new joint venture company, dubbed FITNIK, which combines the best of what both companies offer. In the winter of 2018, FITNIK finally launched its operations in the strategic location of Zhukovsky, which is an important aircraft R&D center.

New Polymer 3D Printing Standards for Aerospace Industry

The National Institute for Aviation Research (NIAR) at Wichita State University (WSU), which is the country’s largest university aviation R&D institution, announced that it would be helping to create new technical standard documents for polymer 3D printing in the aerospace industry, together with the Polymer Additive Manufacturing (AMS AM-P) Subcommittee of global engineering organization SAE International. These new technical standard documents are supporting the industry’s interest in qualifying 3D printed polymer parts, as well as providing quality assurance provisions and technical requirements for the material feedstock characterization and FDM process that will be used to 3D print high-quality aerospace parts with Stratasys ULTEM 9085 and ULTEM 1010.

Premium AEROTEC Acquired APWORKS

Metal 3D printing expert and Airbus subsidiary APWORKS announced in April that it had been acquired as a subsidiary by aerostructures supplier Premium AEROTEC. Premium AEROTEC will be the sole shareholder, with APWORKS maintaining its own market presence as an independent company. Combining the two companies gave clients access to 11 production units and a wide variety of materials.

Gefertec’s Wire-Feed 3D Printing Developed for Aerospace

Gefertec, which uses wire as the feedstock for its patented 3DMP technology, worked with the Bremer Institut für Angewandte Strahltechnik GmbH (BIAS) to qualify its wire-feed 3D printing method to produce large structural aerospace components. The research took place as part of collaborative project REGIS, which includes several different partners from the aerospace industry, other research institutions, and machine manufacturers. Germany’s Federal Ministry for Economic Affairs and Energy funded the project, which investigated the influence of shielding gas content and heat input on the mechanical properties of titanium and aluminium components.

Research Into Embedded QR Codes for Aerospace 3D Printing

It’s been predicted that by 2021, 75% of new commercial and military aircraft will contain 3D printed parts, so it’s vitally important to find a way to ensure that 3D printed components are genuine, and not counterfeit. A group of researchers from the NYU Tandon School of Engineering came up with a way to protect part integrity by converting QR codes, bar codes, and other passive tags into 3D features that are hidden inside 3D printed objects. The researchers explained in a paper how they were able to embed the codes in a way that they would neither compromise the integrity of the 3D printed object or be obvious to any counterfeiters attempting to reverse engineer the part.

Lockheed Martin Received Contract for Developing Aerospace 3D Printing

Aerospace company Lockheed Martin, the world’s largest defense contractor, was granted a $5.8 million contract with the Office of Naval Research to help further develop 3D printing for the aerospace industry. Together, the two will investigate the use of artificial intelligence in training robots to independently oversee the 3D printing of complex aerospace components.

BeAM And PFW Aerospace Qualified 3D Printed Aerospace Component

BeAM, well-known for its Directed Energy Deposition (DED) technology, announced a new partnership with German company PFW Aerospace, which supplies systems and components for all civilian Airbus models and the Boeing 737 Dreamliner. Together, the two worked to qualify a 3D printed aerospace component, made out of the Ti6Al4V alloy, for a large civil passenger aircraft, in addition to industrializing BeAM’s DED process to manufacture series components and testing the applicability of the method to machined titanium components and complex welding designs.

Researchers Qualified 3D Printed Aerospace Brackets

Speaking of parts qualification, a team of researchers completed a feasibility study of the Thermoelastic Stress Analysis (TSA) on a titanium alloy space bracket made with Electron Beam Melting (EBM) 3D printing, in order to ensure that its mechanical behavior and other qualities were acceptable. The researchers developed a methodology, which was implemented on a titanium based-alloy satellite bracket.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

ASTM International’s Additive Manufacturing Center of Excellence Welcomes Strategic Partner NAMIC, Announces First Round of Projects

About a year ago, international standards organization ASTM International announced that it would be setting up an Additive Manufacturing Center of Excellence, and began enlisting partners to help launch the center. The most recent partner to be added to the roster is Singapore’s National Additive Manufacturing Innovation Cluster (NAMIC), which will coordinate the center’s R&D and related activities in Asia as well as invest up to $1.5 million in the first two years.

NAMIC’s Managing Director, Dr. Ho Chaw Sing, and ASTM International’s Director of Global Additive Manufacturing Programs, Dr. Mohsen Seifi, signed a Strategic Partnership Statement last week at NAMIC’s Global Additive Manufacturing Summit.

“We are excited to enter into this partnership with ASTM International,” said Dr. Sing. “We look forward to catalyzing crucial research that helps establish technical standards, guiding additive manufacturing into the future for SingaporeAsia, and the entire world. Our investment into the center’s regional-based activities will support implementation of additive manufacturing technologies globally.”

NAMIC is the first organization in Asia to join with ASTM, and its role will be to support R&D and standardization activities that will help drive commercialization of additive manufacturing technologies in sectors such as aerospace, maritime and offshore, logistics and fabrication.

“We are thrilled that NAMIC will be leading the Asia-Pacific’s efforts to drive advancements and innovation in additive manufacturing on a global scale,” said Dr. Seifi. “NAMIC’s leadership in aerospace maintenance, repair, and overhaul, maritime and offshore, and other industries will complement the center’s capabilities, and we are pleased to welcome additional investments in this world-class partnership which will accelerate standardization in this fast-growing field.”

The center’s founding partners are Auburn University, NASA, manufacturing technology innovator EWI, and the UK-based Manufacturing Technology Centre. NAMIC and the US National Institute for Aviation Research (NIAR) are the first two strategic partners.

Recently, ASTM International also announced its first round of funding to support research that will help advance the development of standards for additive manufacturing. The investment of $300,000 as well as in-kind contributions will help the Center of Excellence partners to address technical information needs.

“We are very fortunate to work with such renowned organizations to leverage their expertise towards standardization in additive manufacturing,” said Oerlikon engineer Matthew Donovan, who chairs the research and innovation group under ASTM International’s additive manufacturing technology committee (F42).

The initial round of projects approved by the committee involve four areas: feedstock, process qualification, post-processing and testing. The Manufacturing Technology Centre (MTC) will research the development of quality assessment standards for metal powders used for additive manufacturing. The research will contribute to a standard guide for evaluating powder quality and recyclability.

NASA will work on developing standard procedures, metrics and requirements to help qualify machines and processes for laser bed fusion, while EWI will research how various surface finishing techniques for additively manufactured products impact performance and structural integrity. This will help standardize surface quality and measurement metrics.

Auburn University will research mechanical testing issues in additive manufacturing to better understand the relationships between the properties of test specimens and the performance of parts. This will contribute to a standard that provides guidance on designing test samples that best represent additively manufactured components. Meanwhile, NIAR will focus on mechanical testing issues surrounding polymers used in 3D printing.

You can learn more about the Additive Manufacturing Center of Excellence here.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

 

Researchers 3D Print Clamping Systems to Cut Down on Slippage During Soft Tissue Testing

When I think about clamps, if I do at all, it’s in terms of holding wood steady in a scene shop while making sets for a play, or keeping two large objects that have been glued together tight while the glue dries. But there are many different purposes and applications for clamps, including in the medical field, demonstrated by the 3D printed cardioplegia clamps designed for King’s College Hospital Foundation Trust two years ago.

Recently, a collaborative group of researchers from the University of Otago and the Auckland University of Technology in New Zealand and the University of Leipzig in Germany published a paper, titled “Utilization of 3D printing technology to facilitate and standardize soft tissue testing,” in the Scientific Reports journal that detailed their work in creating 3D printed clamps and fixtures that can help mount soft tissues for testing purposes.

The abstract reads, “This report will describe our experience using 3D printed clamps to mount soft tissues from different anatomical regions. The feasibility and potential limitations of the technology will be discussed. Tissues were sourced in a fresh condition, including human skin, ligaments and tendons. Standardized clamps and fixtures were 3D printed and used to mount specimens. In quasi-static tensile tests combined with digital image correlation and fatigue trials we characterized the applicability of the clamping technique. Scanning electron microscopy was utilized to evaluate the specimens to assess the integrity of the extracellular matrix following the mechanical tests. 3D printed clamps showed no signs of clamping-related failure during the quasi-static tests, and intact extracellular matrix was found in the clamping area, at the transition clamping area and the central area from where the strain data was obtained. In the fatigue tests, material slippage was low, allowing for cyclic tests beyond 105 cycles. Comparison to other clamping techniques yields that 3D printed clamps ease and expedite specimen handling, are highly adaptable to specimen geometries and ideal for high-standardization and high-throughput experiments in soft tissue biomechanics.

Soft tissues have several special characteristics, such as being diverse, directionally dependent (anistropic), and viscoelastic (exhibiting both viscous and elastic characteristics when undergoing deformation). The power of these qualities is increased by things like post-mortem delay, water content alterations, and traumatic pathology, all of which can cause issues when it comes to standardized mechanical tests of the tissue under strain.

Fixtures and clamps have been used to help with issues like material slippage, but are limited when working with soft tissue due to reasons like, as the paper lists, “avulsion at the clamping site or the risk of temperature-induced changes in the mechanical behavior.”

Over the last few years, the team developed a technique called partial plastination that uses ceramic-reinforced polyurethane resin at the clamp mounting sites to help with slippage. But it takes a long time to prepare this method, which also requires special (read expensive and hard to come by) equipment like casting fixtures and vacuum pumps, and errors can come up during the clamping due to how difficult it can be to position soft tissues in a test that involves the effects of gravity.

“As a consequence, we aimed to explore alternative techniques which may facilitate tissue clamping, and aid in standardizing the clamping of soft tissues for biomechanical testing in a less time-consuming manner,” the researchers explained in their paper. “3D printing has meanwhile become broadly available, and such professional extrusion solutions can be utilized for customizing and printing fixtures and adjustments for biomechanical testing using commercially-available filaments. Furthermore, it can be utilized to provide affordable add-ons to existing testing devices all over the world, going beyond just soft-tissue biomechanics. The possibility of sharing existing digital models enables a broad availability and exchange of research and knowledge. 3D printing may also be used for clamping mechanisms, and variations in clamping design appear to be eased by the rapid-prototyping approach with the ubiquitously-available software.”

Standardization in material testing and test setup. Focus of this study will be the boxes highlighted in red.

During a quick Internet search, I found models of 3D printable clamps on Thingiverse, Instructables, and 3D Hubs, though none were for medical purposes. The research team’s clamping systems were designed using Creo 4.0 3D CAD software, and printed on an Ultimaker 3 Extended in commercially available ABS, PLA, nylon, and TPU filaments.

In their paper, the research team described their experience mounting human soft tissues, from three different anatomical regions with differing properties, using 3D printed clamps, and also compared this new way of clamping to their previous partial plastination method.

Co-authors of the paper are Mario Scholze, Aqeeda Singh, Pamela F. Lozano, Benjamin Ondruschka, Maziar Ramezani, Michael Werner, and Niels Hammer.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

America Makes and ANSI Publish Latest Version of Standardization Roadmap for Additive Manufacturing

America Makes, the national accelerator for additive manufacturing and 3D printing based in Youngstown, Ohio, began working with the American National Standards Institute (ANSI), a private non-profit organization, back in early 2016 to develop standards and specifications for the rapidly evolving 3D printing industry. Together, they formed a regulatory institution for the industry, called the America Makes and ANSI Additive Manufacturing Standardization Collaborative (AMSC), and in an effort to facilitate industry growth, immediately got to work developing a roadmap that could be used to identify necessary additive manufacturing standards.

The AMSC was specifically chartered to coordinate and speed up the development of industry-wide additive manufacturing standards that are consistent with stakeholders’ needs, along with setting up a possible approach to the future development process. Four working groups in the areas of design, maintenance, process and materials, and qualification and certification began working, and in December of that same year, the AMSC released the preliminary final draft of its Standardization Roadmap for Additive Manufacturing (Version 1.0) to the public for review and comment.

The completed roadmap was published last February, naming 89 ‘gaps’ – 19 of which were labeled high priority – where no standard or specification had been previously published for a specific industry need. Phase 2 of the project began not long after, and just a few months ago, the AMSC released its preliminary final draft of the Standardization Roadmap for Additive Manufacturing (Version 2.0).

The AMSC released the 260-page draft in order to receive public review and comments, and planned for its final publication this June. About 320 individuals, from 175 different public and private sector organizations, supported the development of this second document version.

This week, the group, which receives major funding from the US Department of Defense (DoD), has announced the publication of its completed Standardization Roadmap for Additive Manufacturing (Version 2.0), which is available for download here.

Jim Williams, the President of All Points Additive and Chair of the AMSC, said, “It’s been a privilege to be involved with the committed group of professionals who make up the AMSC and I want to thank all of them who contributed to this undertaking.”

This latest version of the AMSC roadmap offers a description of the existing additive manufacturing standardization landscape, and also lists progress updates on the gaps identified in the first version, many of which have been, as America Makes puts it, “substantially revised.” A total of five gaps have been withdrawn.

Rob Gorham, Executive Director of America Makes, which is driven by the National Center for Defense Manufacturing and Machining (NCDMM), said, “We are extraordinarily pleased at the AMSC’s continued progress to define a coherent set of additive manufacturing standards and specifications that will benefit the industry.”

V2 of the roadmap has identified 93 gaps, of which 18 are listed as high priority, where no specifications or standards have been published to address an industry need. These new gaps include a lot about polymers, including topics such as laser-based additive repair, the use of recycled polymer precursor materials, NDE of polymers and other non-metallic materials, and heat treatment polymers. In a total of 65 of these gaps, the document lists additional pre-standardization R&D needs.

Joe Bhatia, President and CEO of ANSI, said, “Coordination of standards development activity in emerging technology areas is something that ANSI excels at, and we have been very pleased to partner with America Makes to define the standards needed to help grow the additive manufacturing industry.”

The Standardization Roadmap for Additive Manufacturing (Version 2.0) considers the entire life cycle of a 3D printed part in its standards, all the way from the design and selection of the materials and process through production, post-processing, finished material properties, testing, qualification, and even maintenance post-print.

The document reads, “As with the earlier version of this document, the hope is that the roadmap will be broadly adopted by the standards community and that it will facilitate a more coherent and coordinated approach to the future development of standards and specifications for additive manufacturing.

“To that end, it is envisioned that the roadmap will continue to be promoted in the coming year. The roadmap may be updated in the future to assess progress on its implementation and to identify emerging issues that require further discussion.”

This latest roadmap version is supplemented by a listing of standards, titled the AMSC Standards Landscape, which are either peripherally or directly related to the issues laid out in the document. Both this document, Version 2.0 of the roadmap, and additional information are available on the AMSC website.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.