3D Printed Plastic Geoboards Teach Visually Impaired Students about Geometry

Geometry is the branch of mathematics that relates to angles, geometric shapes, lines and line segments, and rays, and you use geometry concepts to measure lengths and areas of 2D shapes and calculate the volume and surface area of 3D shapes. I was never any good at geometry (or any mathematics, to be honest), so I can’t imagine how hard it must be to learn when you are visually impaired. Three researchers from Thailand wrote a paper, “The Designation of Geometry Teaching Tools for Visually-Impaired Students Using Plastic Geoboards Created by 3D Printing,” about making 3D printed teaching tools for visually impaired students – a concept we’ve seen before.

Visually impaired students must interpret 2D shapes through a sense of touch.

“There are several teaching tools available on the market that can serve this purpose effectively; however, the imported products are too expensive,” the researchers explained.

Traditional wooden geoboards.

A geoboard is a great way to teach visually impaired students geometry, as it helps them better understand geometric reasoning, terminology, and theorems. It’s a physical board with rivets half driven in, and rubber bands are wrapped around the nails to teach plane geometry concepts and polygons.

“According to the difficulty of wooden geoboard making and carrying, we propose to replace the existing model with the unlimited design of light and colorful geoboards,” the team wrote.

Using 3D printing to make lightweight geoboards out of plastic costs less money, and they can be customized to fit user requirements. The researchers created colorful geoboards to teach visually impaired elementary students in Bangkok about angles, circle components, line segments, shape areas, and 3D geometric shapes, like prisms and cubes. They also made additional teaching tools, like arrowheads, protractors, and 3D object models, for lessons about 2D and 3D shapes and geometry.

The SketchUp model and 3D printing of geoboards.

SketchUp was used to create the colorful 20 x 20 cm geoboards, which were printed out of PLA on a Flashforge Creator Pro over 18 hours. Two patterns were made – a 10 x 10 grid on the x-axis and y-axis with a square edge, and a 4-quadrant graph with a circular edge and 24 circumference scales. Braille scales are included so the students can identify 0-10 on the x and y axes, and the top right corner of the boards have two columns of three dots to show that they’re upright.

“Z-axis pillars with different heights, identified by braille, were also created for 3D geometry teaching,” the team explained.

“There were 24 points identified by the letters A to Y on the circumference with a 15-degree angle difference for teaching about circles and tangents. The central point was identified by the letter O and the circle diameter was 13 cm. Raised grid lines 1.5 mm in height were also generated for exploring direction by blind touch.”

Plastic geoboards with square and circle edges, learning accessories, and segments of 3D objects for spheres, cones, cylinders, pyramids, and cubes.

15 visually impaired fourth graders and three experienced teachers participated. The experimental group and the control group each completed 15 one-hour periods of different learning activities. After a pre-test, the control group continued with traditional geoboards, while the experimental group switched to the 3D printed ones.  You can see teaching and assessment contents with related exercises for the experimental group in a portion of Table 1 below.

“The coordinate points of 2D geometry were explored by blind touch on braille scales and raised grid lines, while z-axis pillars were used for 3D geometry by connecting rubber bands to the plane,” the researchers explained.

The students in the experimental group used the 3D printed geoboards to learn about 2D geometry. For example, they stretched rubber bands across rivets on the square board, connecting two points to draw a straight line and “an angle of 2 lines from 3 points on the coordinate plane.” To learn about straight and parallel lines, rays, and right, acute, and obtuse angles, arrowheads could be attached to the ends of the lines.

Teaching about straight lines, parallel lines, rays, and angles.

They used the circular geoboard for learning angle measurements and circle components, like radius and diameter, and 2D geometric shapes, like squares and triangles.

Teaching about angles, circle components, squares and triangles.

The geoboards were also used to teach 3D geometry with plastic pillars on the z-axis. Once the students had the basic concept down, pillars on this axis “with different heights of 4, 5 and 6 units can be used to teach 3D geometric shapes and volumes.” Multiple pillars were used to create prism, and pyramids with differently-shaped bases.

Teaching to create 3D geometric shapes for pyramids and prisms, similar to 3D object models.

“The raised grid lines with braille numbering are handy for identifying shape locations, measuring distance, and calculating areas or perimeters; and scales can be applied for measuring the diameter or radius of a circle on a cylinder, cone, or sphere and multiplying the area by the height to find the volume,” they wrote.

At the end, both student groups took another test, and independent two-sample t-tests were used to analyze and compare the differences in the mean scores of the pre-test and post-tests between the groups. You can see the mean scores (x) and standard deviations (SD) for the tests below.

The participants also completed a questionnaire, using a 5-point Likert scale, about how satisfied they were with the 3D printed geoboards. They evaluated the quality of the teaching tools and the benefits of the learning activities, and answered open-ended questions regarding areas for improvement and their personal opinions.

“The response showed that the new geoboards as a teaching tool were considered to be much more satisfactory than the traditional tool because the mean scores were very high (>4.8) in all areas,” the researchers noted.

All the participants agreed that the 3D printed geoboards made class more enjoyable for the visually-impaired students, and that they “enhanced the mental imagery and understanding of geometry.”

“The prototype testing showed that the experimental group had a higher mean score on the post-test than did the control group, indicating that the learning achievement of the visually-impaired students who learn with the new geoboards is significantly higher than that of the students who learn with the regular tools. The participants’ satisfaction with the geoboards in terms of learning about geometry was evaluated highly on the part of the teachers and the students because the tangible teaching tools were considered more effective for understanding geometry with good visual imagery than when using the traditional tools,” the team concluded.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

The post 3D Printed Plastic Geoboards Teach Visually Impaired Students about Geometry appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: March 9, 2019

We’re taking care of business first in today’s 3D Printing News Briefs, and then moving on to education. Optomec has announced two new additions to its LENS series, and CRP Technology is introducing a new commercial strategy for its Windform composite materials. HP India is building a new Center of Excellence for 3D Printing, while the South Korean government continues its investment in the technology. The GE Additive Education Program is now accepting applications for 2019-2020, and a Philadelphia-based university and health system has integrated Ultimaker 3D printers into its teaching curriculum. Speaking of health, Sweden is looking into 3D printing food for the elderly.

Optomec’s New LENS Systems

This week, production-grade metal 3D printer supplier Optomec announced that it was releasing two new Directed Energy Deposition (DED) 3D printers in its Laser Engineered Net Shaping (LENS) Classic System Series: the CS 600 and the CS 800 Controlled Atmosphere (CA) DED Systems. Both of the systems are configurable, and are designed to maximize the process build envelope, while at the same time lowering the system footprint and chamber volume. They have CA chambers that make it possible to process both non-reactive and reactive metals, and are both compatible with the company’s latest generation LENS deposition head.

“These new systems come packed with next-generation DED components all born from signature Optomec know-how and built to provide affordable, high-quality metal additive manufacturing capabilities for industry’s most demanding requirements. The LENS CS 600 and CS 800 systems represent the latest in DED processing from precision deposition to cladding applications and extend our product portfolio to continue to provide high-value metal additive manufacturing solutions,” said Tom Cobbs, Optomec’s LENS product manager.

The first customer shipments of the CS 600 and the CS 800 CA systems have already begun this year.

New Commercial Strategy for Windform Materials

CRP Technology has for years made components and also sold its Windform composite materials. Now the company has decided to revise its commercial strategy for the materials: from now on, they will no longer be sold to service bureaus for the toll-manufacturing of 3D printing components. However, the materials will continue to be sold to companies that produce their own components, while CRP Technology and CRP USA will continue to offer support for service and assistance in producing Windform parts.

“The change in the strategy of CRP Technology is because we believe we can ensure the highest quality in the manufacture of 3D printed components; indeed the increase in production capacity -both in Europe and in the United States- will guarantee the volumes necessary to satisfy any request from our customers based all over the world, in compliance with the high standards of service and quality that has always been a distinctive element of CRP Technology and CRP USA’s activities,” CRP Technology told 3DPrint.com in an email.

HP Building Center of Excellence for 3D Printing in India

HP introduced its Jet Fusion 4200 3D Printing solutions to India last year, and is now planning to build a Center of Excellence (CoE) for 3D Printing in Andhra Pradesh, which is the country’s seventh-largest state. This week, the company signed a Memorandum of Understanding (MoU) with the Andhra Pradesh government to build the CoE, which will give small and medium businesses (SMBs) and startups in the state the opportunity to learn more about the benefits of adopting 3D printing. HP India will be the main knowledge provider for the CoE, while the Andhra Pradesh Innovation Society (APIS) will enable accreditations and certifications and provide infrastructure support, and the Andhra Pradesh Economic Development Board (APEDB) will encourage and drive public sector enterprises and government departments to use the CoE.

“Manufacturing in Andhra Pradesh has great potential as a lot of demand is slated to come from domestic consumption,” said J. Krishna Kishore, the CEO of APEDB. “Andhra Pradesh’s impetus in automotive, electronics and aerospace makes technologies like 3D printing market-ready.”

South Korea Continues to Invest in 3D Printing 

For the last couple of years, the government of South Korea has been investing in 3D printing, and 2019 is no different. The country’s Ministry of Science and ICT announced that it would be spending 59.3 billion won (US $52.7 million) this year – up nearly 17% from its 2018 investment – in order to continue developing 3D printing expertise to help nurture the industry. According to government officials, 27.73 billion of this will be allocated to further development of 3D printing materials technology, and some of the budget will go towards helping the military make 3D printed components, in addition to helping the medical sector make 3D printed rehab devices.

“3D printing is a core sector that can create innovation in manufacturing and new markets. The ministry will support development by working with other related ministries and strengthen the basis of the industry,” said Yong Hong-taek, an ICT ministry official.

GE Additive Education Program Accepting Applications

In 2017, GE Additive announced that it would be investing $10 million in the GE Additive Education Program (AEP), an educational initiative designed to foster and develop students’ skills in additive manufacturing. To date, the global program has donated over 1,400 polymer 3D printers to 1,000 schools in 30 different countries, and announced this week that it is now accepting applications for the 2019-2020 cycle from primary and secondary schools. While in previous years the AEP also awarded metal 3D printers to universities, that’s not the case this time around.

“This year’s education program will focus only on primary and secondary schools,” said Jason Oliver, President & CEO of GE Additive. “The original purpose of our program is to accelerate awareness and education of 3D printing among students – building a pipeline of talent that understands 3D design and printing when they enter the workplace. We already enjoy some wonderful working relationships with universities and colleges, so this year we have decided to focus our efforts on younger students.”

The deadline for online AEP applications is Monday, April 1st, 2019. Packages include a Polar Cloud premium account, a Polar Cloud enabled 3D printer from either Dremel, Flashforge, or Monoprice, rolls of filament, and – new this round – learning and Tinkercad software resources from Autodesk. Check out the video below to learn about GE Additive’s ‘Anything Factory’ brand campaign, the heart of which was formed by a young student who had just discovered 3D printing and what it’s capable of creating…this is, of course, the purpose behind AEP.

Ultimaker 3D Printers Integrated into Medical Teaching Curriculum

Dr. Robert Pugliese and Dr. Bon Ku of Philadelphia’s Thomas Jefferson University and Jefferson Health wanted to better prepare their students for real-world hospital challenges, and so decided to integrate Ultimaker 3D printers into the system’s Health Design Lab. The Lab is used for multiple medical and educational applications, from ultrasound training and cardiology to ENT surgery and high-risk obstetrics, and students are able to work with radiologists on real patient cases by helping to produce accurate anatomic models. The Lab houses a total of 14 Ultimaker 3D printers, including the Ultimaker 2+ Extended, the Ultimaker 3, and the Ultimaker S5, and the models 3D printed there help enhance patient care and improve surgical planning, as well as teach students how to segment critical features and interpret medical scan data.

“When we introduce these models to the patients their eyes get big and they ask a lot of questions, it helps them to understand what the complexity of their case really is. It’s just so much better to have the patient on the same page and these models really help bring that reality to them,” said Dr. Amy Mackey, Vice Chair of the Department of Obstetrics and Gynecology at Jefferson’s Abington Hospital.

3D Printing Food for the Elderly in Sweden

Swedish care homes hope to make pureéd chicken indistinguishable from a drumstick [Image: EYEEM]

If you’ve attended a meal at a nursing home, or care home, then you know the food that’s served is not overly appetizing. This is because elderly people can also just have a more difficult time eating regular food. Roughly 8% of adults in Sweden have trouble chewing or swallowing their food, which can easily cause them to become malnourished. That’s why the Halmstad municipality on the country’s west coast wants to use 3D printing to stimulate these residents’ appetites, which will be accomplished by reconstituting soft, puréed food like chicken and broccoli to make it look more realistic.

Richard Asplund, a former head chef at the luxury Falkenbergs Strandbad hotel who’s now the head of Halmstad’s catering department, said, “When you find it hard to chew and swallow, the food that exists today doesn’t look very appetising.

“So the idea is to make something more aesthetic to look at, to make it look good to eat by recreating the original form of the food.”

The state innovation body Rise is coordinating the project, which is currently in the pre-study phase and plans to serve the first 3D printed meals in Halmstad and Helsingborg by the end of this year.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Researchers Use 3D Printing and Basic Electronic Components to Make Neuroscience More Accessible

While I was worse in math, science was also not one of my strong suits in school. So anything that makes it easier for students to better understand these complex subjects is a good idea, in my humble opinion. Tom Baden, a professor of neuroscience at the University of Sussex, has been collaborating with his colleagues to further open up access to science education with a piece of hardware that can demonstrate how our brains function.

“By making access to scientific and teaching equipment free and open, researchers and educators can take the future into their own hands,” Professor Baden said. ” In time, we hope that this type of work will contribute to level the playing field across the globe, such that ideas, not funding can be the primary driver for success and new insights.”

Professor Baden is also one of the scientists behind the innovative 3D printable FlyPi microscope, and his latest work – an educational model of neurons in the brain made with basic electronic components – is just part of his expanding range of equipment that uses DIY and 3D printable models to make science more accessible and interactive.

One of the central parts of neuroscience is, of course, understanding how our neurons encode and compute information. But there’s not a good hands-on type of way to learn about this…until now. Professor Baden and other colleagues are building Spikeling: a piece of electronic kit which behaves similarly to the neurons in the brain and costs just £25.

“Spikeling is a useful piece of kit for anyone teaching neuroscience because it allows us to demonstrate how neurons work in a more interactive way,” Professor Baden explained.

Professor Baden, together with researchers Ben James, Maxime J.Y. Zimmermann, Philipp Bartel, Dorieke M Grijseels, Thomas Euler, Leon Lagnado and Miguel Maravall, published a paper about their work on Spikeling in the open access journal PLOS Biology, titled “Spikeling: a low-cost hardware implementation of a spiking neuron for neuroscience teaching and outreach.”

The team hopes that their invention will end up being a useful neuroscience teaching tool, and in fact, they are already seeing the benefits of their hard work. A class of third year neuroscience students at the university have used the kit, and at a Nigerian summer school last year, scientists were also taught how to build the hardware from scratch.

Spikeling has receptors, which react to external stimuli such as light to simulate how information is computed by nerve cells in the brain. Then, students can follow the activity of the receptors, or cells, live on a computer screen. Users can also link several Spikelings together to form a network, which demonstrates how brain neurons interconnect. This action makes it possible to demonstrate the neural behavior behind every day actions, such as walking.

The goal in Professor Baden’s lab is to, as the university put it, “level the playing field in global science” and make necessary equipment less expensive than it usually is. That’s why all of the information and design files for Spikeling have been made available, joining a growing trend around the world of designs collected on the PLOS Open Hardware toolkit, which Professor Baden just so happens to co-moderate.

A. Bag of parts disassembled Spikeling, as used in our summer school in Gombe, Nigeria. B. Students soldering Spikelings as part of an in-class exercise on DIY equipment building.

“With all parts being cheap, and design files being free and open, we hope that like any open Hardware design, Spikeling can be a starting point for others to change or extend it to their requirements, and reshare their improved design with the community,” Professor Baden said.

Andre Maia Chagas, one of the research technicians in the lab, recently published his own article in PLOS Biology that explains the importance of open scientific hardware, in response to a piece by Eve Marder, an American neuroscientist who wondered if researchers who worked in less wealthy institutions would fall behind as scientific research equipment continues to grow more expensive. More and more, we’re seeing that 3D printing can be used to make sure this doesn’t happen.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Images provided by University of Sussex]