3D Printing Strong and Sturdy Models

Sometimes a digital 3D design looks great in your software, but just can’t make it in reality. Here in the real world, a 3D model can only be so thin or fragile; models with very skinny wires or delicate parts might break after printing, or worse, not be able to 3D print at all. In this post, we’ll examine how auto-checks, human checks, and prototyping can help you design models that print successfully and are sturdy enough to handle repeated use or handling.

Auto-Checks

Shapeways provides guidelines and auto-checks to ensure that your uploaded models are printable in each material. For example, models created at Shapeways in Versatile Plastic are 3D printed in a durable nylon material in large batches using an industrial Selective Laser Sintering (SLS) printer. Versatile plastic has an intense post production process that includes extraction from powder and other models, cleaning and polishing, and even dying in different colors. Thin or narrow models can be easily broken or separated during post production. You can refer to the Design Guidelines for Versatile Plastic to determine how thin you can make the wires in your model. Here’s what those guidelines say about two success parameters, wall thickness and wire thickness:

In the guidelines above, “walls” are flat surfaces in your model and “wires” are more like strands. Notice that the recommended minimum for supported wires (those that connect to your model nearby on both ends) is 0.8mm. Processed models are put through a polisher, and Premium models are polished even more, so their minimum is higher: 0.9mm. Finally, the minimum for unsupported wires (which don’t inherit as much stability from the rest of the model) is even larger, at 1.0mm.

After you upload your model, Shapeways will perform a series of auto-checks to measure the thickness of walls and wires, among other things. If you click on “View 3D Tools” (or “View Issues”, if your uploaded model failed any checks) from within any Material view of your model, Shapeways will show you the results of these auto-checks. Here’s what that looked like for an early demo version of our Deltoidal Icositetrahedron model:

Although this model passed the Wire Thickness check, it fails the Wall Thickness check. The flattened notes at the vertices, and even some of the long wires, are considered “walls” here, and they aren’t thick enough to get over the 0.7mm minimum thickness requirement.

Checking and Fixing Thickness Issues

You can check the thickness of your model in whatever design software you used to create it. Or, another easy way to determine the minimum thicknesses of your design is to import your model to Meshmixer and use the Thickness tool in the Analysis menu. You can then use Meshmixer to make your design thicker, if needed, by selecting the model and then using Edit > Extrude (using the Normal Direction) or Edit > Offset to expand your model outwards or inwards. To thicken only selected parts of your model, you can take the more targeted approach described in our previous article Tutorial Tuesday 50: Using Meshmixer to Make 3D Models Thick Enough to 3D Print.

Prototyping

Even if your model passes printability checks, it’s worth printing a demo model to make sure that everything is okay. Sometimes, weak geometry can’t be determined until a model is actually printed and in your hand. Even if the print comes out successfully, it may be too delicate to hold up to its intended use. After our example model failed printability checks, we redesigned it so that it would just barely pass the checks and print successfully. It was a beautiful model, but it wasn’t long before it broke and warped:

I guess the moral of this story is: For best results, don’t try to just *barely* meet the print requirements; rather, make sure you are safely above them.

It’s worth pointing out that the size of the model itself matters as much as the thickness; the two go hand-in-hand. In the image above, the smaller model has the same wire thickness but is actually quite sturdy. The larger model is weaker because the wires are longer and have to hold up to greater stress when the model is handled. This means when prototyping, you can’t always get an accurate impression of the strength of your model by shrinking your model down, or designing a smaller version. Think about it this way: a wireframe model the size of your head will need a larger wire thickness than a model the size of your pinky!

In the end, we decided to thicken up our Deltoidal Icositetrahedron model significantly. The final version looks like the blue model on the right in the image below. It’s much stronger, and the cost of printing was only increased by a few dollars.

Human Checks

Sometimes models pass the online checks at Shapeways, but then fail a secondary check when they are actually ordered for printing. That’s because actual human beings at Shapeways check your model manually while they prepare it for 3D printing. They check for things that require a lot more expertise than the automatic computer checks, like how large your model is, how the different pieces of it fit together, and a lot of things that you or I might not think of. If they notice a problem then they will email you, and try to suggest ways that you can modify your model to increase the likelihood that it will print successfully.

Keep in mind that the printing engineers at Shapeways want to make sure that your model can print correctly not just once, but over and over. A model that passes the auto-checks and listed guidelines may have weak areas that may not break on the first print, but are likely to break the second or third time. This means that even if your print comes out well in a “Print it Anyway” situation, it still might not be stable enough to offer as an item in the Marketplace. Variations in print stability can arise from small differences in the printing and finishing process, like how the models are packed or oriented in the machines, or how it interacts with other models in the polisher.

As an example, consider our Hoop Knot Earring:

According to the Design Guidelines for Silver, we needed to make the wires at least 1mm in diameter. However, it’s best to exceed that significantly; consider that Silver models from Shapeways are 3D printed in wax, cast in Silver using lost wax casting, and then finished and polished. All of those procedures could damage a model with weak geometry. When we uploaded our Hoop Knot Earring for printing, it passed all of the auto-checks. But when we tried to order a print of it in Silver, the kind and knowledgeable human engineers at Shapeways said that the geometry of our model was too weak. They suggested adding connectors and even emailed me this helpful illustration:

Of course, in this case I couldn’t add connectors since that would have ruined the design; instead I had to make the wires thicker to give the model more stability. That resulted in the print shown below on the right. Later I tried to make a larger version, shown on the left, but an interesting thing happened; since the wires had to travel further, they were more prone to bending and becoming misshapen when I opened and closed the earring. Even though the larger model had thicker wires, in the end it didn’t work as well as a functional item.

In the end, you’ll have to use a combination of your own design analysis, automatic printability checks, manual printability checks, and physical prototyping to successfully print delicate or geometrically complex models. If you’ve got your own tips and tricks that help you through this process, let us know!

 

The post 3D Printing Strong and Sturdy Models appeared first on Shapeways Magazine.

Is your 3D model a mess? Make it printable!

What do you do when your 3D model is broken? I mean really broken, like “can’t even upload it” broken, or “half of my triangles are disappearing” broken? In this post we’ll talk about what to do when your usual mesh-repairing strategies fail and you need to bring out the big guns.

Let’s do this by example. So that we can follow exactly what’s going wrong, we’ll create a bad mesh by modifying an existing 3D model, my Deltoidal Hexecontahedron Catalan Bracelet:

We’re going to turn this into a tealight ring and add some solid faces to the wireframe to create a partially-enclosed look. The screenshot below shows what it looked like when I did this in TopMod; I added the closed triangle faces, and everything seems fine:

Nice! But when we try to upload to Shapeways, we get this error message:

First line of defense: Meshmixer

Meshmixer is a great first tool for modifying 3D meshes; for an in-depth example see our previous article Tutorial Tuesday 50: Using Meshmixer to Make 3D Models Thick Enough to 3D Print. But, in this case, when we open our broken file in Meshmixer to see what’s going wrong, the faces don’t load in. Although Meshmixer knows something is wrong here, its Inspector cannot repair it:

Second line of defense: MeshLab

Another great mesh-manipulation tool is MeshLab; for a primer on making simple mesh fixes with MeshLab, check out our previous article Tutorial Tuesday 5: Quick Fixes With MeshLab. It’s more complicated than Meshmixer, but can often take care of bad geometry like reversed normals and non-manifold faces. However, when we try to open our broken file in MeshLab we get this error:

After opening the file and looking through some of the Cleaning & Repairing filters, we see that there are some non-manifold faces:

The problem lies with where the new faces intersect. When we added those new triangles, we created some bad geometry where the pairs of coincident faces meet.  Alas, although MeshLab can identify these problems, it’s not able to actually fix them; usual MeshLab repair menu options such as “Remove Faces from Nonmanifold Edges” and “Remove T-Vertices by Edge Flip” are unsuccessful here.

The big guns: MakePrintable

If you have a Windows machine, you can try using the professional software Netfabb to repair this model. Netfabb is free for students, but for the rest of us it costs $30, per month. For professionals in industry this is probably reasonable, but for smaller businesses and hobbyists it’s pretty steep.

Luckily, with any platform and for no money at all you can have access to the extremely powerful mesh-repair services at MakePrintable. MakePrintable’s free cloud-based repair service lets you upload models to repair on their servers, and then download up to three repaired models per month. If you need more repairs than that, then for just $10 per month you can upgrade to their Pro service to get access to more features and unlimited downloads. Since Meshmixer and MeshLab can handle lots of simple mesh problems, the three-a-month restriction is not so bad. But does it work? The answer is YES, and in fact in my experience I have NEVER had a model that MakePrintable couldn’t repair. That includes successfully repairing my Tentacle Bowl, which was made from thousands of recursively-generated overlapping spheres that resulted in very broken internal geometry.

Let’s see what MakePrintable can do with our model. MakePrintable is a cloud-based service that works entirely in your browser, so to get started you just go to makeprintable.com:

Opening and repairing models is free in MakePrintable; it’s only the final download that counts against your monthly total. This means that we can upload our file and see if MakePrintable will fix our file without risking anything. When we upload our model, MakePrintable immediately recognizes its 20 non-manifold edges. Along the right sidebar are a number of fancy options for the Pro/Paid version, but for our purposes we can just use the default free settings.

So, can MakePrintable fix this bad geometry? Yes! Note in the image below that the right-hand model has no non-manifold edges anymore, so we should be in the clear. To download the repaired mesh, choose Save/Export, then 3D Model, then your filetype, then save the file to your computer. This action will reduce your three-a-month download count, so be sure you are happy with the repair before downloading.

In this case our initial broken mesh was very simple, and MakePrintable’s repaired mesh was much finer, with many more triangles. We could have controlled that if we were using the Pro/Paid version, but in this case we can reduce the mesh in Meshmixer and then run through mesh styling TopMod to get exactly the blocky-smooth style we want, which looks like this:

Fixed and ready for Shapeways

Our repaired and remeshed model now uploads to Shapeways, and we can order 3D prints of fancy Deltoidal Hexecontahedron Tealight Rings. Here’s what they look like after printing and photographing for our geekhaus store:

This was just a simple example with a handful of faces and edges causing bad geometry; it can of course get much, much worse. Do you have a broken model? Give these tools a try then upload your model again. Let us know how it goes!

Upload My Model button

The post Is your 3D model a mess? Make it printable! appeared first on Shapeways Magazine.