Interview with Lockheed: “Orion Spacecraft Has 200 3D Printed Components”

In 2006, NASA selected Lockheed Martin to design, develop, and build Orion, set to embark on both manned and unmanned missions, it is the agency’s newest deep space exploration spaceship that will eventually carry astronauts from the Earth to the Moon, and back. As part of a plan to extend a sustained human presence beyond low Earth orbit (LEO), advance commerce and science in space, the Artemis program is the next step in human space exploration and a part of NASA’s broader Moon to Mars approach. In 2022, the Orion crew capsule is expected to take astronauts on a ride beyond LEO, to the Moon and back, and in five years it will transport the next people to a lunar orbital post.

NASA’s Orion spacecraft has been using additive manufacturing technologies exponentially. Lockheed Martin and NASA recently announced the completion of the Orion crew and service module being developed for the uncrewed Artemis I mission, which used 100 3D printed parts. While the spacecraft for the Artemis II mission has Lockheed developing close to 200 3D printed parts.

The Orion crew module for Exploration Mission 1 that will launch atop NASA’s Space Launch System rocket on its first uncrewed integrated flight (Image credit: NASA)

Last September, NASA, and Lockheed finalized a contract for the production and operations of six Orion spacecraft missions with an option to order up to 12 in total. The agency’s Orion Production and Operations Contract (OPOC) is an indefinite-delivery, indefinite-quantity (IDIQ) contract for NASA to issue both cost-plus-incentive-fee and firm-fixed-price orders. Initially, NASA has ordered three Orion spacecraft for Artemis missions III through V for $2.7 billion. Then in 2022, the agency plans to order three additional Orion spacecraft for Artemis missions VI through VIII for $1.9 billion. Up to six additional Orion spacecraft may be ordered under the IDIQ contract through 2030, leveraging spacecraft production cost data from the previous six missions to enable the lowest possible unit prices.

During an interview with Lockheed Martin Space’ specialists Brian Kaplun, Manager of the Additive Manufacturing Lab, and Colin Sipe, Orion Crew Systems Senior Manager, 3DPrint.com delved into the makings of America’s next spacecraft for a new generation of explorers.

How has additive manufacturing helped in the creation of more efficient spacecraft?

“One of the tenants of advanced manufacturing is to increase the cost and the schedule efficiency for any of our platforms, including Orion, and doing so in a way that, at the very least, maintains parity from a technical perspective but in many cases enhances that. So a lot of the work we’ve done with Orion was targeted to allow for a more efficiently reusable, cost-competitive and faster time to delivery spacecraft that will have a better technical performance. For example our docking hatch covers were printed in a cost and schedule effective manner; additionally, thanks to a new ESD compliant polymer (a type of no-static plastic) we provided more technical performance as well,” suggested Kaplun. “AM is one tool in the advance manufacturing toolbox that really allows us to hit all three of those valuable points. The plan is to continue creating AM components that we already utilized and look at increasing the number.”

While Colin Sipe explained that “we do a lot of parts that would be traditionally difficult to produce, such as structural components and brackets, different parts to channel airflow, or fuel containers, like hydrogen fuel tanks. Moreover, on the seats that the astronauts will use on Orion, we 3D printed different spacers (parts that go between the edge of the seat and the hip of the astronaut) and those come in various sizes based on the astronaut using it. We have to be able to accommodate from 1 to 99th percentile of the average American size individual.”

Do 3D printed parts withstand some of the harshest conditions in space?

“We fully qualify any of our spacecraft and platforms, and it is a qualification born of many years of doing this. On 2011 we launched the first-ever 3D printed part going to outer space on our Juno mission and right now those parts are orbiting the gas giant. So just as rigorous as we did in 2011, here in the last throes of 2019 we have to go through and really qualify any of the Orion parts. Even more so, with future manned missions, we are going to further stress those qualifications. Its a challenge that we are very experienced in and really believe we are up for,” claimed Kaplun. “Experience in any way, shape or form is going to be a competitive advantage for Lockheed.”

How do you choose the design for the 3D printed parts?

“We have produced many different parts for our customers that almost have an organic shape to them and so if you look at some of the new designs where you are optimizing for strength in terms of weight and producibility, you will observe that they mimic the bones in your arm like a very evolved and efficient method of support. If we look at some of the structural brackets that we have done, they almost have a tree or a skeletal structure look to them, that is a very unique mindset or would have been a unique mindset when we were looking at the substractive and traditional manufacturing. But now that people are being trained for AM, we notice that there are a lot more technically complex designs. Some of the ESD parts that we made for Orion would be virtually imposible ot make any other way,” revealed Kaplun. “Now, we are able to combine a large number of other parts into one piece and eliminate a lot of the fasteners and the weight that otherwise would have been a parasitic load, providing greater opportunities to put payloads and scienitic instruments onto our platforms.”

In what way does 3D printing drive down spacecraft costs?

“We try for a really ambitious cost reduction, aiming at 50%. Over the last year, we printed roughly 6,500 parts across our entire space division. Recently we even used AM technology to develop mockups for tests, such as the toilet that will be used on Orion, called the UWMS,” proposed Sipe. “We were concerned about one area of interference so we printed the entire mockup of the toilet and put it into the flight vehicle to verify that we could reach and access the bolts. The size of that toilet is probably two feet in diameter and three feet tall, so it was a very large piece to produce.”

How does Lockheed factor in sustainability when 3D printing its pieces?

Kaplun indicated that at Lockheed, engineers are “very proud of how sustainable our technology is. Our polymer builds can be recycled and reused if needed, the powder bed processes are extremely efficient and the industry as a whole is considered very sustainable and cost-efficient from a materials perspective. Some of the waste for our additive processes can be lower than five percent. When you compare that to some of the subtractive and traditional manufacturing applications, those numbers flip completely, producing 90% waste.” 

Would you be able to convey how many AM parts were used for Orion?

“We made 200 components for the Artemis II Orion spacecraft. While the Artemis I had over 100 printed pieces and the previous version had only four 3D printed parts. This reveals that only one spacecraft generation later, we were able to double the amount of 3D printed parts,” reported Sipe. 

A 3D printed titanium part for NASA’s Orion spacecraft (Image credit: Lockheed Martin)

What can we expect to see during the Artemis II mission scheduled for late 2020?

“Our next mission will launch Orion on a Space Launch System (SLS) rocket, which will be the largest rocket ever built as far as liftoff power. Next year we can expect an unmaned service module to travel to the lunar orbit where it will stay for a month, carry out significant checkouts of all of our modules and will be the first launch on the new rocket. Once it returns to Earth, we will recover it, take it apart, see what we can reuse, what we need to make some improvements on, and at the same time, we’ll be getting ready for our Artemis II mission, with the first astronauts flying on 2022. Then, Artemis III in 2024, will take astronauts to Gateway, a small space station in the lunar orbit, and from there to a human landing system that will put the first woman and next man on the Moon surface. This will be the first of many missions to the Moon’s south pole, where bases and moon mining will begin,” said Sipe.

Are there more engineers interested in AM technology applications?

According to Kaplun, there has been much interest in AM: “we are witnessing a lot of students and scholars contributing to the design space, coming into our engineering and production ranks with a lot of previous work in the field, with new ideas and new abilities to utilize the tools that we can now offer.” 

As an engineer, how do you change your mindset to produce something from a subtractive standpoint to an additive one?

“We are starting to corrupt the threshold as we are beginning to design parts that can only be made via the additive route, whereby in the past we would sort of take something that was designed for a normal conventional machine and then transition it to the additive world,” told Sipe. “Today we are generating designs that we know the only way they can be made is through AM. There are certain parts of the spacecraft that couldn’t be done with other technologies, such as hollow, organically grown on the printer parts that create new opportunities for us.” 

3D printed Orion docking hatch cover (Image credit: Lockheed Martin)

What 3D printing technologies are being used at Lockheed?

“We have a very large gamut of different types of technologies to make the 3D printed parts for Orion, the docking hedge covers were made on Stratasys FDM printers, but we also use a lot of metal powder bed technologies in various forms as well as different polymer technologies,” the experts proposed. 

3D printed Orion docking hatch cover made of PEKK thermoplastic (Image credit: Lockheed Martin)

So what lays ahead for the aerospace company?

“We just got into a long term production contract with NASA for the six upcoming spacecraft missions, so I believe it is our goal to make even more 3D printed parts for spacecraft. A big focus of the contract was to dramatically reduce per-vehicle costs and the major ways of doing that was by having reusable Orion crew modules and systems, using advanced manufacturing technologies, material and component bulk buys and an accelerated mission cadence. I consider that AM is a large part of reducing the cost and increasing the cadence of how often we fly,” enlightened Kaplun.

Both Kaplun and Sipe consider that the “Orion spacecraft is part of NASA’s backbone for deep space exploration.”

The completed Orion spacecraft crew module at the NASA Kennedy Space Center (Image credit: Lockheed Martin)

 

With work well underway on both the Artemis I and II rockets, with core stage assembly nearly complete at Michoud, Orion will leave Lockheed for testing at NASA’s Stennis Space Center near Bay St. Louis, in Mississippi.

Sipe concluded that: “In 1981, NASA wanted to move back into deep space so since 1981 we were flying the space shuttle, and physically could not go outside the Earth’s orbit, the Apollo was the last spacecraft that physically could leave the gravity of the Earth and move into deep space, and NASA had a desire for mankind to return. Orion is the only spacecraft development that is a true exploration class spacecraft. It’s not like any other, it has unique capabilities never before seen and even though the capsule is a heritage of the Apollo mission, its actually far superior.” 

The post Interview with Lockheed: “Orion Spacecraft Has 200 3D Printed Components” appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Sciaky Joins R&D Initiative to Combine Traditional Metallurgy with Wirefed Metal 3D Printing Techniques

Metal 3D printing solutions provider Sciaky, Inc., well known for its extremely popular Electron Beam Additive Manufacturing (EBAM) process, just announced that it has entered into a research and development initiative with metallurgist expert Aubert & Duval – a subsidiary of the Eramet group’s Alloys division – and Airbus, one of its previous 3D printing partners. The ambitious initiative, also called the Metallic Advanced Materials for Aeronautics (MAMA) project, is being driven by the Saint Exupéry Institute for Research in Technology (IRT), and the academic partner for the project is the Production Engineering laboratory of the National School of Engineering in Tarbes, France.

“Sciaky is proud to work with the Saint Exupéry IRT, Aubert & Duval and Airbus on this exciting project. Industrial metal additive manufacturing technology continues to break new ground every day, and Sciaky is committed to keeping EBAM at the forefront of this movement,” said Scott Phillips, the President and CEO of Sciaky, Inc., a subsidiary of Phillips Service Industries, Inc. (PSI).

In terms of work envelope, Sciaky’s exclusive EBAM technology is probably the most widely scalable metal AM solution in the industry. It’s the only industrial metal 3D printing process that has approved applications for air, land, sea, and space, with gross deposition rates up to 11.34 kg of metal an hour, and is able to manufacture parts from 203 mm to 5.79 meters in length. Rather than just melting the outer layer of the metal powder, the EBAM process completely liquefies the metal wire feed.

The fast, cost-effective EBAM process offers a wide range of material options, including titanium, for large-scale metal applications, and uses its adaptive IRISS (Interlayer Real-time Imaging and Sensing System) to combine quality and control, as the patented system can sense, and digitally self-adjust, metal deposition with repeatability and precision. It is mainly due to the IRISS system that the Chicago-based company’s EBAM 3D printing process is so good at delivering, as the company puts it, “consistent part geometry, mechanical properties, microstructure, and metal chemistry, from the first part to the last.”

The goal of its combined MAMA project with Airbus and Aubert & Duval is to combine traditional metallurgy (high-power closed die forging) with new wirefed metal 3D printing techniques, such as Sciaky’s EBAM process, in order to come up with new processes for manufacturing titanium alloys that can be used to make aircraft parts. Based on the caliber of its partners, Sciaky made a good decision in joining the R&D initiative – Airbus is a 3D printing pioneer in the aerospace industry, and Aubert & Duval creates and develops advanced metallurgical solutions for projects in demanding industries, such as nuclear, medical, energy, defense, and aeronautics.

The project’s first phase has global funding in the amount of €4.2 million. 50% of this funding is supported by the French State as part of its “Investing in the Future” program (Programme Investissement d’Avenir, or PIA), while the other half is funded by industrial partners of the initiative.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Images provided by Sciaky, Inc.]

3D Printing Used to Decorate Biodegradable KOFFINs that are Personalized for the Deceased

While the way we live is vastly different from the way we did 100, 50, and even 20 years ago, the way we say goodbye to loved ones when they’ve passed away is still pretty much the same. Funerals are not easy for a number of reasons, but the last thing on anyone’s mind should be the cost of these emotional events and ceremonies; unfortunately, that’s not often the case. According to SunLife, funeral costs have shot up over 70% in the last decade.

With this in mind, Koffin, a Liverpool startup founded by artist Gina Czarnecki in 2014, is working with business program LCR 4.0 and using Industry 4.0 technology – specifically 3D printing and advanced material testing – to help cut down on the cost of funerals with customizable, biodegradable eco-coffins.

“Funeral prices are increasing drastically, and people deserve the right to a personalised send-off that isn’t going to break the bank. Planning a funeral can be a difficult time, but we’ve found that having something tangible to take control of and make your own improves people’s wellbeing and peace of mind,” said Czarnecki.

“The work with LCR 4.0 has enabled us to test our design that creates a cost-effective alternative that emits less CO2 emissions than a natural plant.”

Together with brand consultant Clare Barry, Czarnecki set out to redesign the coffin – typically a narrow wooden box. But a KOFFIN, according to the startup’s website, is “a light, eco-friendly capsule made from bioplastic,” which is definitely different from the more traditional, pricey Victorian-style coffins we’re used to seeing.

“The way we currently bury or cremate our loved ones is poisoning the earth,” the Koffin website states.

“Besides… your funeral is your last hurrah, right?

“…So shouldn’t your coffin be as unique as you are?”

The 100% biodegradable KOFFINS were created to help people take back their rights to a personal, affordable funeral. They are made with a lignin-based biopolymer and don’t require any glues or metals to hold them together. They produce less ash residue than other coffins, are leak-proof without having to use wax linings, and will decompose in the earth just like natural tree wood. Additionally, the oval capsules can be completely personalized with different colors, hand-written messages, photographs, and a variety of attachable, 3D printed decorations.

During the development of the KOFFIN prototype, the startup was in need of expert technical support during testing. So Koffin turned to LCR 4.0, partially funded by the European Regional Development Fund, and its partners Sensor City and Liverpool John Moores University to test its inexpensive, sustainable prototype, and use 3D printing for added personalization.

“Koffin is unlike any other start-up that we’ve helped to date,” said Jaime Mora-Fernandez, LCR 4.0 product design engineer at Sensor City. “The work carried out illustrates how new technologies can help businesses in a wide variety of sectors transform the way they approach the design and manufacturing process.”

The LCR 4.0 team at Sensor City helped Koffin complete a finite element analysis (FEA) of the design to find the right material thickness to withhold sufficient pressure. This helps reduce material costs, which will trickle down to lower consumer costs. Then, the partners tested the prototype, and completed a report that concluded the material’s thickness would be robust enough for its purpose.


After four long years of development, the startup has officially gone into production with its first run of biodegradable, customizable, eco-friendly KOFFINs.

“Our involvement with the LCR 4.0 scheme has resulted in outputs being produced in a timely and efficient manner, using expert advice and linking disciplines seamlessly,” said Czarnecki.

Starting today, 20 of the KOFFINs, decorated through a national public call-out, will be displayed at the Oratory, next to the Anglican Cathedral, in Liverpool; some of them even bear some interesting 3D printed decorations. Soon, the startup will also launch a Kickstarter campaign in order to raise the necessary funds to take the KOFFINs to market.

 

This isn’t the first time that 3D printing has been utilized in the death care industry. We’ve seen 3D printed urns, 3D printed busts of the deceased, and even 3D printed jewelry made from the ashes of our loved ones. As 3D printing also comes into play often with sustainability efforts, the KOFFINs seem to be a perfect mix of life and death.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

Researchers Use Aerosol Jet 3D Printing to Develop Neuronal Interface with More Anti-Inflammatory Ability

a) Schematic illustration of the mechanism for formation of nanogel-based membrane based on the self-assembly of OPC-incorporated amphiphilic polydimethylsiloxane-modified N, O-carboxylic chitosan (OPMSC), followed by hydrogel-bonding interaction of OPC. The TEM images display the network structure of b) PMSC and c) OPMSC spherical nanogels.

3D printing has been used in the past to help treat degenerative diseases, or at least make it easier to cope with them. In terms of neurodegenerative diseases, implanted prosthetic devices are often used, but adverse biological reactions in host tissues can result in signal failure. it’s important to create tissue that can mimic the mechanical and structural properties of neural implanted devices, and while flexible polymer-based implants have helped to alleviate some injuries, the mechanical stress doesn’t quite match brain tissue. That’s why a lot of research has been conducted about using conductive polymer (CP) composites or conductive hydrogels to coat the devices so the biocompatibility and electrochemical performance of neural electrodes can be improved.

Representative fluorescent images demonstrate tissue responses around the tip of the non-coated probe and the OPMSC-coated probe at days 2, 7, 14, and 28 post-implantation. (c) ED1 staining; (e) GFAP staining; (g) NeuN staining.

But, a team of researchers from China and Taiwan say that it’s more important to design biocompatible coatings for implanted devices that mimic mechanical and structural properties of brain tissues, so tissue responses after long-term utilization can be reduced.

The researchers believe that 3D nanostructural coatings should be developed for the insulated regions, and not the implant electrode sites, so implants can interface with nearby brain tissues with more stability. They explained their findings in a recently published paper, titled “Multifunctional 3D Patternable Drug-Embedded Nanocarrier-Based Interfaces to Enhance Signal Recording and Reduce Neuron Degeneration in Neural Implantation.”

“Although the nanomaterial-based substrate coatings incorporated into drug delivery systems such as poly(lactic-co-glycolic acid) (PLGA) nanoparticles, pHEMA, or PLGA nanoparticles-embedded matrix have been developed, these systems lack stable physical and chemical properties for reducing tissue responses, including an appropriate nanostructural interface, mechanical properties, and biofouling ability,” the researchers wrote. “Multifunctional drug-embedded coatings must be developed and integrated into the nanostructural neural interfaces to allow sustained release of bioactive molecules (anti-inflammatory drugs) and simultaneous construction of a brain tissue-mimic but bioinert microenvironment for reducing both acute and chronic inflammation reactions during long-term implantation.”

The researchers used aerosol jet 3D printing to develop a neuronal interface with prolonged anti-inflammatory ability, structural and mechanical properties that mimicked brain tissue, and a sustained nonfouling property in order to inhibit tissue encapsulation.

Using aerosol jet printing, the OPMSC suspensions were directly patterned on a neural probe to create an anti-inflammatory neural interface.

“With the integration of nanomanufacturing technology and multifunctional nanomaterials into the neural implants, we can extensively reduce the reactive tissue responses, provide continuous protection of surviving neurons, and ensure long-term performance reliability of implants,” the researchers explained.

They created a new 3D nanocarrier-based neural interface that could possibly be used to support long-term neural implantation, as well as achieve better therapy for chronic and degenerative diseases. The researchers used a “novel combination of antioxidative zwitterionic nanocarriers and nanomanufacturing technology” to make the interface. The team developed a new type of anti-inflammatory nanogel, based on the amphiphilic polydimethylsiloxane-modified N, O-carboxylic chitosan (PMSC) incorporated with oligo-proanthocyanidin (OPC), called OPMSC.

a) Optical microscopy image showing patterning morphology of PMSC and OPMSC arrays with a thickness of ≈30 µm obtained by aerosol jet printing. The red arrows indicate the patterned location. Comparison of PC12 cell patterning on b) PMSC and c) OPMSC arrays demonstrates that OPMSC can maintain structural stability in a biological microenvironment. d) An overview and SEM images of the flexible OPMSC-coated polyimide probe. e) SEM image showing a cross-sectional view of OPMSC-coated probe after washing with water.

“The natural OPC can be used as an anti-inflammatory drug due to its multipotent therapeutic effects on neurodegenerative diseases,” the researchers explained. “Furthermore, given the abundance of hydroxyl groups and the aromatic architecture, the semi-hydrophilic OPC can act as a structural stabilizer to help the self-adhesion of nanogels, making the structure evolve into a biostable 3D anti-inflammatory neural interface.”

The team directly fabricated OPMSC nanogels onto a membrane using aerosol jet printing technology, because it is a low-temperature technology. When developing neural implants, mechanical properties are the main concern, which is why the researchers conducted a tensile test, among other experiments, on their new 3D nanocarrier-based neural interface, which was also implanted into rodents.

“After short-term and long-term in vivo implantation, the OPMSC-coated neural probe displayed a relatively lower impedance value and much higher signal stability compared to noncoated probe,” the researchers concluded. “The ADC obtained by magnetic resonance imaging (MRI) demonstrated that the OPMCS-coated probe alleviated edema at the acute phase, and further reduced tissue trauma in the chronic phase. Immunostaining of anti-NeuN, anti-ED1, and anti-GFAP around the implanted site further demonstrated that the OPMSC-coated probe significantly reduced the population of activated microglia and astrocytes for all durations, resulting in increased survival 28 d after implantation. Such multifunctional nanostructured OPMSC-coated neural probes can provide a long-lasting functional neural interface for long-term neural implantation.”

Co-authors of the paper are Wei-Chen Huang, Hsin-Yi Lai, Li-Wei Kuo, Chia-Hsin Liao, Po-Hsieh Chang,Ta-Chung Liu, San-Yuan Chen, and You-Yin Chen.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.