3D Printing for COVID-19: ID Badge/Door Opener from 3D LifePrints UK

A number of small companies are attempting to support the supply shortages being faced by hospitals in the face of the COVID-19 outbreak and provide new devices that can reduce the potential risk of contamination for medical professionals. Meanwhile, some large manufacturers that might be deployed for a massive World War Two-style production effort are not stepping up or being government mandated to provide production capacity. In fact, they are even laying off staff in the midst of a health crisis that has also become an economic crisis. (See our comments about GE worker protests in a previous article for an example.)

One such small firm lending a hand to the supply shortages is 3D LifePrints UK, an additive medical device manufacture specialist that makes such items as implants for craniofacial surgery, surgical guides and pre-surgical models for National Health Service trusts, medical device companies, research institutions and others in the U.K., Europe and around the world. 

3D LifePrints has been asked by a number of medical institutions to investigate and provide prototype designs for personal protection equipment (PPE) such as Facial mask connectors, mounts for ICU devices that are being moved into other venues, and a simple 3D printable device called the “Distancer.” This last item makes it possible for healthcare professionals to open a door or swipe an ID card without the need to touch potentially contaminated surfaces. 

“A doctor goes through a door up to 150 times a day in a hospital. The phrase we hear all the time is ‘the doors are like lava.’ The surface retention of COVID-19 is quite high on stainless steel and plastic,” founder and CTO Paul Fotheringham said.

Fotheringham explained that, in addition to the regular protocol for which hospital employees use their IDs, presenting proper identification in healthcare facilities is necessary to prevent the theft of supplies by hospital staff. 

To ensure the maintenance of proper protocol and prevent the spread of the virus, 3D LifePrints UK and the Alder Hey NHS Foundation Trust designed a 3D printed device that can hang off a keychain or lanyard and allow for the slide insert of a user’s electronic ID card. The Distancer features a handle so that the user does not have to touch the actual card, a hook that allows users to open a door, and a flat end for pushing doors closed. 

The company is 3D printing the items from materials that will not deteriorate during the cleaning process, which is essential for items that have exposure to COVID-19: nylon PA 12, ABS or anti-microbial PLA that includes an embedded nano-copper additive. It is available in two designs, either flat-packed with living hinges and one-click assembly, which could be mass produced with injection molding, or a 3D printed version.  

The 3D printed Distancer from 3D LifePrints UK. The file is available for download on the company website. Image courtesy of 3D LifePrints UK.

3D LifePrints is in the process of producing and delivering 4,000 Distancers to NHS hospitals at the moment, while it designs and evaluates other items. The firm is also working with the NHS to develop a specialty connector that can join an off-the-shelf scuba mask to an anesthesia filter that results in a respirator-style device for clinicians (not patients). This is in contrast to the CPAP-type device being developed in Italy using masks from Decathlon. The device is currently being evaluated with the NHS, but it is promising due to the fact that the scuba mask is form fitting and sealed against the face with rubber in a way that is required for the safety of clinicians.  

Fotheringham stressed that 3D LifePrints didn’t simply begin making supplies for the U.K.’s medical facilities out of the blue, but is acting on specific requests from the NHS and British hospitals and is working with medical partners to ensure the safety of the devices, while it is his firm’s job to design, iterate and produce the parts to the needs and specifications of the medical professionals. 

Typically, these devices would require significant clinical testing and approval from the proper regulatory bodies, but due to the emergency nature of the current public health crisis, devices that have not yet received certification are being fast-tracked for approval. 

Other considerations being taken into account are the specific production technologies and materials used to produce parts. More common and less expensive material extrusion printers, for instance, are known to make items that are more porous and have rougher surface finish than those made with selective laser sintering and other polymer powder bed fusion technologies. This reduces the chance for bacteria developing in hidden crevices and makes the parts easier to clean. 

As for materials, the company is focusing on the ability of plastics to withstand the use of chemical disinfectants to minimize the degradation of the part over time. In this case, PLA (the most common polymer used in desktop machines and made from corn starch), is not ideal. However, polypropylene, from which 3D LifePrints intends to injection mold its Distancer, is more durable and can sustain repeated cleanings. 

Fotheringham urged 3D printing enthusiasts and experts to use caution and proper time management when volunteering to combat the COVID-19 supply crisis. He suggested that these devices should be made in conjunction with medical professionals to ensure proper protocol is followed. One way would be to use official channels such as the FDA in the U.S., who we have reached out to in order to learn more about the safety of 3D printed medical devices made in response to the public health crisis. We will cover this topic in greater depth in a follow-up article.

The post 3D Printing for COVID-19: ID Badge/Door Opener from 3D LifePrints UK appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Copper3D Antimicrobial Filament Device Attempts To Reduce HIV Transmission From Breastfeeding

3D printing startup Copper3D, based in Chile and the US, uses nano-copper additives, and adds antimicrobial properties to polymers like PLA and TPU to create antibacterial 3D printed objects. Last year, Copper3D partnered with NASA to study microbial risks in outer space, but now the startup is working on an important project that’s a little closer to home.

According to UNICEF, the number of children and adolescents living with HIV in 2017 reached 3 million, with 430,000 newly infected people and 130,000 deaths from AIDS-related causes. UNAIDS reports that in 2018, 26,000 new HIV infections among children up to the age of 14 resulted from withdrawal of treatment during pregnancy, and breastfeeding. But even with this knowledge, the World Health Organization reports that 37.9 million people around the world were living with HIV at the end of 2018, 8.1 million of which didn’t even know they had the disease to begin with.

Companies and scientists around the globe are working to use technology to help control dangerous bacteria and viruses with high replication rates, like HIV. Copper3D has created a 3D printed device, with its copper nanotechnology, that can effectively inactivate the HIV virus under the right conditions on certain objects- a project that the startup’s Director of Innovation Daniel Martínez tells us is “the result of more than one year of research in antimicrobial polymers and the role on inactivating high replication rate viruses like HIV.”

Dr. Claudia Soto, Copper3D’s Medical Director, said, “Understanding the global problem behind the HIV statistics and analyzing the role that our antimicrobial materials could have in containing the transmission of HIV virus led us think that we could develop some kind of device that acts like an interface between mother and child to prevent the spread of this virus through breastfeeding, which is one of the main routes of infection.

“The initial idea is based on some of the few available studies that establish that copper based additives and filters can inactivate HIV virus in a solution of breastmilk, acting specifically against the protease (essential for viral replication) where copper ions non-specifically degrade the virus phospholipidic plasmatic membrane and denaturalize its nucleic acids; nevertheless, several issues such as toxicity levels, milk nutritional degradation, time for virus inactivation, or the optimal size/form of these filters remain unsolved.”

3D concept of the Viral Inactivator (patent pending)

Copper3D, led by co-founders Martínez, Dr. Soto, and CEO Andrés Acuña, began work on a project with, as the startup stated in a release sent to 3DPrint.com, “two lines of research.” Last year, they submitted a patent application for the project, called Viral Inactivation System for a Breastmilk Shield to Prevent Mother-to-Child Transmission of HIV. First, the viral inactivation effectiveness of its PLACTIVE material was tested with samples of HIV-infected breast milk, and then the team designed an object that optimizes the “viral inactivation of HIV” in the milk, acting as a mother-to-child interface during breastfeeding.

“Our purpose as a company has always been related to make a global impact through innovation in materials and nanotechnology. This line of research of active/antimicrobial medical devices and applications that opens with these studies, fills us with pride as a company. We believe that we are marking a before and after in the industry and we take this honor with a great sense of responsibility,” stated Acuña. “We will continue on the path of applied innovation, always thinking of playing an important role in the most urgent global healthcare challenges, where our antimicrobial materials, intelligent 3D designs, rigorous processes of technical validations and laboratory certifications, can generate a new category of antimicrobial/active devices that can avoid infections at a global scale and save millions of lives.”

Virology Laboratory at Hospital Clínico Universidad de Chile

The startup commissioned a proof-of-concept laboratory study at the Hospital Clínico Universidad de Chile’s Virology Laboratory to validate PLACTIVE’s potential HIV viral inactivation capacity. The study used a split-sample protocol to test and treat 20 sub-samples of HIV-1 (subtype B, cultivated from infectious clone NL4-3, with CXCR4 co- receptor).

The sub-samples were randomized into different groups: A, B, and Control. Samples for A and B were placed in either a green or blue 3D printed box, with and without the nano-copper additive; for a proper blind study, the researchers did not know which was which. The samples were exposed to the medical device for 15, 60, 120, and 900 seconds, and then cultured with HIV-1 Jukat reporter cells LTR-luciferase Cells (1G5); Copper3D performed culture measures on the samples 24, 48, 72, and 96 hours post-treatment.

“The preliminary results showed a reduction of viral replication up to of 58.6% by simply exposition of the samples to the 3D printed boxes containing copper nanoparticles. Fifteen (15) seconds of exposition were enough to achieve such a reduction. These data allow us to infer that by increasing the contact surface by a factor of 10X, we could obtain much higher inactivation rates, very close to 100% (log3) and according to our calculations, most probably in less than 5 seconds,” explained Martínez. “These results are coherent with the hypothesized reduction times proposed by Borkow, et. al. To the best of our knowledge, this is the first essay aiming to study the inactivation of HIV virus by using this new kind of polymers with antimicrobial copper nanotechnology in 3D printed objects.”

3D model of the Viral Inactivator (patent pending)

These results are pretty promising, which bolstered the team as they moved on to the second part of the study – designing a device, with a surface of contact expanded 10X, for HIV-contaminated milk, that’s embedded in nano-copper for use during breastfeeding.

“Like any innovation project, this is a constantly evolving process. We have learned a lot along the way, and we will continue designing, iterating, testing, validating and learning about antimicrobial materials and devices in the future. The preliminary results obtained in the first phase of our investigation with viral inactivation on active/antimicrobial nanocomposites materials gives us a great drive to continue in that line of research,” said Martínez. “We hope in the coming months to conclude the second phase of this study. For these purposes we develop a new antimicrobial flexible TPU based material (MDflex), with the same nanocopper additive as PLACTIVE, to test with new iterations of the design of this viral inactivation device with expanded surfaces of contact that we believe will be much more effective. These new insights will allow the development of a whole new range of active medical devices and applications, with incredible capabilities to interact with the environment, eliminating dangerous bacteria and viruses and protecting patients and users around the globe. This second and final phase of the study will be concluded in Q2 of 2020.”

Copper3D’s concept for its Viral Inactivator is to study how the antimicrobial capacity of its nano-copper materials impacts HIV inactivation, and how different shapes and designs for the 3D printed device can increase the surface of contact with breast milk, while using the nano-copper to enhance effectiveness. The device was made with various layers and “rugosities” in order to imitate what has been observed in the human gastrointestinal tract.

Collaborators at the University of Nebraska at Omaha’s Department of Biomechanics will perform mechanical characterization testing of Copper3D’s prototype.

“Copper3D has once again disrupted the field of medical devices by creating this revolutionary device that can have a tremendous impact in reducing mother-to-child transmission of HIV,” said Jorge Zuniga PhD, Associate Professor of Biomechanics with the university. “Our laboratory is fortuned to partner with Copper3D, in such an impactful project.”

Concept of applications with the Viral Inactivator

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

The post Copper3D Antimicrobial Filament Device Attempts To Reduce HIV Transmission From Breastfeeding appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: October 14, 2019

In today’s 3D Printing News Briefs, everything is new, new, new! Carbon is announcing a new RPU 130 material, and STERNE Elastomere introduces its antimicrobial silicone 3D printing. Protolabs launches a new polypropylene 3D printing service in Europe, and Hydra Research has officially released its flagship Nautilus 3D printer.

Carbon Introduces RPU 130 Material

At this week’s International K Trade Fair in Dusseldorf, Carbon will debut its new RPU 130 resin, a rigid polyurethane that’s rigid, tough, impact resistant, and stands up under high temperatures, making it a perfect choice for the automotive industry in applications such as brake caliper covers. Made exclusively for Carbon’s Digital Light Synthesis, the dual-cure engineering resin is comparable to unfilled thermoplastics, and Carbon also partnered with DuPont Tate & Lyle Bio Products to make RPU 130 out of sustainable Susterra propanediol, a 100% bio-based material that uses 46% less nonrenewable energy from cradle-to-gate and produces 48% less greenhouse gas emissions as well.

“We are focused on ways to incorporate more sustainable approaches to developing materials, and our partnership with DuPont Tate & Lyle emphasizes that commitment,” stated Jason Rolland, SVP of Materials at Carbon. “We believe that sustainability can go hand-in-hand with improved performance. In the case of RPU 130, we believe it will make the material even more appealing for our customers, as it makes it possible to create better quality products that are also ultimately better for the environment.”

You can learn more about Carbon’s new RPU 130 at its K-Show booth, H7.2, F12 from October 16-23.

Antimicrobial Silicone 3D Printing by STERNE

French silicone 3D printing specialist STERNE will also be attending K 2019 this month. Three years ago, the company unveiled its silicone 3D printer at K 2016, and its SiO-shaping 3D silicone printing technology makes it possible to fabricate very small pieces, according to standard ISO 3302-01 :2014 (M2) tolerances, at hardness from 30 to 60 Shores A. The printer also offers a full panel of colors in opaque, phosphorescent, and translucent.

The company is now combining 3D printing with antimicrobial silicone, in order to keep the silicone odor-free, avoid bacteria developing, improve the hygiene of a 3D printed object, and strengthen its immune barrier as well. You can learn more about this antimicrobial silicone 3D printing at STERNE’s Stand E23, Hall 8A, at K 2019.

Protolabs Offering Polypropylene 3D Printing in Europe

For the first time, digital manufacturing company Protolabs is offering polypropylene 3D printing, with the launch of a new service in Europe. The company has invested a lot in developing the material to be used with selective laser sintering (SLS) technology, on an SPro 60 system. SLS 3D printing with polypropylene plastic allows design engineers to rapidly develop and test prototypes, and fabricate complex designs as well, like internal channels and honeycomb structures.

“Polypropylene is one of the most used plastics available to modern manufacturers and is widely used for a number of applications. Polypropylene is one of the most used plastics available to modern manufacturers and is widely used for a number of applications. Now that we can produce a prototype in polypropylene, design engineers can develop and test it in an application using the same material that it will be manufactured from. The product design can then be quickly reiterated and retested until they have the perfect solution, before committing to tooling. This breakthrough takes product development to the next level using the most versatile of plastics, ” said Andrea Landoni, 3D printing product manager for Protolabs.

“Before, if you wanted to use polypropylene then you were limited in what you could design by the manufacturing technology available to you. Now the only limitation is your imagination.”

Hydra Research Releases Flagship 3D Printer

Oregon company Hydra Research, which began in a closet three years ago as a peer-to-peer print service, has announced the release of it flagship 3D printer, the Nautilus. The fully enclosed, industrial-grade desktop system – assembled in Portland – features a quick-change Tool Cartridge system that integrates E3D’s V6 hotend for fast nozzle switching, in addition to an integrated software solution. It also supports a variety of materials, provides Cura profiles for easy slicing, has a small footprint in a sleek frame, and offers customizable HydraCare support and consulting packages

“As a company, our primary goal is producing world-class hardware on an open source platform,” explained John Kray, the Founder and CEO of Hydra Research. “Manufacturers like E3D, Duet3D, and Fillamentum combine these values perfectly.”

You can now purchase Hydra’s Nautilus 3D printer on the company’s website, in addition to spare parts, accessories, and filament.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

The post 3D Printing News Briefs: October 14, 2019 appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.