3D Printing and COVID-19, May 14, 2020 Update: Arburg, America Makes, Caracol-AM

Companies, organizations and individuals continue to attempt to lend support to the COVID-19 pandemic supply effort. We will be providing regular updates about these initiatives where necessary in an attempt to ensure that the 3D printing community is aware of what is being done, what can be done and what shouldn’t be done to provide coronavirus aid.

After participating in a simulation of a similar such pandemic, the World Economic Forum has been leveraging its might to shape response to the outbreak. The non-governmental organization has highlighted the work that its corporate partners have performed, including the use of JD drones for delivery of medical supplies in China and data gathering about people’s movements in Norway by the country’s leading telecom company. The Davos group also launched the 3D Printing COVID-19 Rapid Response Initiative, which more or less collates the ongoing projects from its partners, ranging from America Makes and Carbon to Roboze and Royal DSM.

Caracol-AM’s automated 3D printing system featuring KUKA robots. Image courtesy of Caracol-AM.

Caracol-AM, a 3D printing provider in Italy, is manufacturing face shields and masks using both its proprietary extrusion system mounted on a KUKA industrial robotic arm and more traditional fused deposition modeling printers. According to KUKA, the company is producing 1,000 parts daily for use by local healthcare workers.

The “Moldable Mask” from Carnegie Mellon University. Image courtesy of Carnegie Mellon University.

America Makes has announced the winners of its Fit to Face – Mask Design Challenge, hosted with the U.S. Department of Veterans Affairs. The designs had to meet the requirements of five head form datasets shared by the National Institute for Occupational Safety and Health (NIOSH), before being judged on manufacturability, assembly and instruction. The top designs were the “Vader Small Mask” from Alliance PCB Solutions and “Moldable Mask Small and Moldable Mask Large” from Carnegie Mellon University, which will be hosted on the NIH 3D Print Exchange and America Makes websites. Honorable mentions for the challenge were the “Every Mask” from the National Institute of Standards and Technology and the “Flex Fit Small and Flex Fit Large” from Re:3D.

The “Vader Small Mask” from Alliance PCB Solutions. Image courtesy of Alliance PCB Solutions.

Seattle Children’s has 3D printed clips for its supply of Controlled Air Purifying Respirator helmets. The hospital’s Chief Procurement Officer, Greg Beach, along with its Clinical Engineering team feared a shortage of clips necessary to secure face shields to their CAPR helmets. The Radiology department relied on a CT machine to scan existing clips, before Friedman used Materialise’s Mimics Medical & 3-matic Medical software to reverse engineer them. Using an in-house 3D printer, the hospital was able to fabricate the parts and determine that they fit. Stratasys then offered to print batches of the tools using its V650 Flex stereolithography 3D printer.

A medical worker wearing a CAPR helmet, featuring 3D-printed clips to mount a face shield. Image courtesy of Materialise.

After producing protective glasses using its Allrounder injection molding machines, Arburg is making face masks, injection molded from liquid silicone rubber (LSR) and polypropylene (PP). With a goal of making about 3,500 masks daily, the company will begin by distributing them to its own employees and then providing them to hospitals and care facilities in the district of Freudenstadt in Germany. The mask is made up of a soft mouth cover, moulded from a food-safe LSR material, with PP eyelets for attaching elastic bands. FFP2 or FFP3 filters can then be connected to provide filtration for healthcare workers.

Masks made with injection molding from Arburg. Image courtesy of Arburg.

At full capacity, Arburg believes it could make 15,000 masks weekly. If production were kicked up to a 24-hour schedule, this number could feasibly be doubled. The LSR masks are being made using a larger injection moulding machine at the Arburg Training Center while a smaller system creates the PP shields at its Customer Center. Working in tandem with the larger machine, a six-axis Kuka robotic arm removes the masks from the mold and places them onto a conveyor belt. Meanwhile, a linear Multilift Select robotic system handles the PP shields. The PP shields are then manually attached to the LSR masks, connected to elastic bands, and packed.

Four LSR masks are produced per cycle and then removed by a six-axis robot. About 3,500 multifunctional high-tech masks can be produced per day. Image courtesy of Arburg.

As the pandemic continues to grip the world, we will continue to provide regular updates about what the 3D printing community is doing in response. As always, it is important to keep safety in mindremain critical about the potential marketing and financial interests behind seemingly good humanitarian efforts from businesses, and to do no harm.

The post 3D Printing and COVID-19, May 14, 2020 Update: Arburg, America Makes, Caracol-AM appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

AMS 2020: Panels on 3D Printing in Implants and Orthopedics, Regulation in Additive Medical Devices

There was much to enjoy and learn at the recent Additive Manufacturing Strategies event, held in Boston and co-hosted by 3DPrint.com and SmarTech Analysis, especially with the addition of a new metals track. There was the ever popular Startup Competition, time to network with colleagues, interesting keynotes, an exhibition hall, industry forecasts by SmarTech, and many different panels and presentations.

On the first day, I sat in on a panel on the event’s medical track about the use of 3D printing in implants and orthopedics. Martin Neff, the Head of Plastic Freeforming for German machine manufacturing company Arburg, spoke first, and provided attendees with a detailed explanation of its patented ARBURG Plastic Freeforming (APF), the process principle behind it, and what the Freeformer can offer.

“Our process can use standard resin, is already on the market and cleared by the FDA for medical devices, and it’s similar to injection molding,” he explained.

Moving on, Neff said the biggest thing to keep in mind for this application of 3D printed implants and orthopedics is how to achieve repeatability, traceability, and position. Additionally, he mentioned that the selection and freedom of materials in this sector is also a “very important area.”

Carissa Kennison, the Director of Marketing for New Jersey-based Additive Orthopaedics, explained that the company, which was founded in 2016, designs, markets, and manufactures medical implants.

“We’re inspired by the outcomes these 3D printed implants are having in our patients’ lives,” she said. “The patient testimonials are truly inspiring – often, patients go to multiple surgeons and are told to get a fusion, which limits joint motion, or an amputation. So we’re giving them an alternative solution, and challenging the solutions of standard of care. It’s pretty exciting to be a part of that.”

Jean-Jacques Fouchet on Skype

While he was unable to be at AMS 2020 in person, Jean-Jacques Fouchet, the VP Business Development and co-founder of 3D printing company Z3DLAB – Parc Technologique, was able to join the panel via Skype, and explained to attendees that “Z3DLAB is an expert in materials science,” and that it has developed a 3D printed implant for the dental field. The company’s mission is to deliver a new generation of advanced, titanium-based material for the AM market.

“We do two titanium materials, one based on Ti-64 that’s enhanced and one based in Ti-CP,” he explained. “Our 3D printed implant has an interior porous structure.”

Fouchet went on to say that Z3DLAB had completed a study with EnvA, LNE, and BAM, and that after just two months of implementation, “we got high-resolution scanner results that showed 84% bone inside the implant. Not bone tissue, but bone.”

The last panelist was Andrus Maandi, Sr. Product Development Engineer for Oxford Performance Materials (OPM). He explained that OPM was originally founded as a materials science company, working exclusively with PEKK (polyetherketoneketone), and began adopting 3D printing all the way back in 2008.

Discussing some of the company’s orthopedic applications, Maandi brought up OPM’s OsteoFab 3D printing process, which involves laser sintering with its high-performance OXPEKK material.

“We’ll get a CT scan, and in-house can deliver implants within 24-48 hours to healthcare facilities,” he stated.

OPM started with CMF and spinal implants, and its latest 3D printed device is a suture anchor, which will have its first case performed this month.

“One of the main benefits is the impact we can have on patient care and improving their lives,” Maandi explained. “We see the additive manufacturing industry moving, at least in the orthopedic market, and slowly going down the body…moving down to long bone defects and ankle reconstruction.”

The floor was then opened for questions, and someone asked if OPM had a roundabout price for its 3D printed implants; as we all know, custom medical devices can be pricey. But Maandi responded that it is “overall cheaper than something you could machine.”

John Hornick, the Chairman for the Medical and Dental track at AMS 2020, asked a question next, telling the panelists that two of his friends had recently received knee replacements. One friend had a 3D printed implant, while the other had a conventionally manufactured one, “because his doctor didn’t know anything” about AM technology. Hornick wanted to know how the panelists got the word out about what their companies could offer.

Kennison said that it really depends on the application – surgeons are more likely to engage in word of mouth, and do their own marketing and PR, for some of the more complex cases that use 3D printing.

“It can be challenging to market some of these cases,” she said. “You can’t promote custom devices, so there are some restrictions here.”

Maandi acknowledged that it can be tough, because many of the people they deal with in the healthcare field just aren’t aware of all of the available 3D printed options.

Later that same day, I sat in on a panel called “Regulation of Additive Manufacturing of Medical Devices and Its Impact on Products Liability,’” which I had not originally planned on attending; however, after sitting at the same lunch table as panelist Sean Burke, a partner with the Duane Morris law firm in Washington D.C., I was intrigued.

Panelist Bob Zollo, the President of Avante Technology, was unable to make it, so Burke had the floor all to himself. Acknowledging with good humor that he was the only thing standing in the way of happy hour, he moved through his topic efficiently.

According to his bio, “Mr. Burke’s practice focuses on representation of manufacturers of medical devices in products liability cases across the country, including in consolidated multi-plaintiff matters in both federal court and state courts in California, Illinois, and Tennessee.” In terms of defense experience, he has worked with many things, including surgical instruments and fusion plates, and recently became interested in the use of AM, advising and consulting his clients on best practices in the early product development stages in order to help them lower their risk of liability exposure.

But, as Burke told the room, “Basically, at the end of the day, there are always risks.”

He explained that while many people look at it as more of a barrier, FDA regulation and compliance is “really the best shield that medical device companies have.”

“You’re on a bit of an island if you don’t have the same regulations.”

Burke explained that the FDA is trying to “play catch-up” in determining how exactly to regulate this kind of technology. The agency has issued guidance on design, testing, and manufacturing controls for AM, but this doesn’t mean that it’s offering a solution.

From a products liability standpoint, if a company has standards to fall back on when telling a jury about the testing that’s been completed on a 3D printed medical device, the chances are more likely that the jury will be able to understand.

“But when there aren’t standards or testing, but the FDA wants to look at it, that’s a recipe for exposure,” Burke said.

As an example, Stryker’s 3D printed tritanium spinal cage was recalled last year for updates; after conducting a Google search, Burke found four different attorneys who were looking to take these cases to court…bad news for the AM industry.

Burke moved on to current trends about litigation involving 3D printed medical devices. While there haven’t been too many class action suits because the cause for each patient’s failure is usually different, the number of cases is rising.

He listed some of the factors that drive litigation, including the media, company field actions, FDA safety communications and labeling changes, pending litigation, and scientific and medical literature. Burke also provided an explanation on the different types of product liability claims – strict liability, negligence, and fraud/misrepresentation.

In terms of manufacturing defect claims, evidence must be presented that shows there has been a “deviation from the original design.” This can be difficult to validate, but there are many variables involved with AM, such as powder use. To protect against Failure to Warn claims, medical device companies that use 3D printing need to broadcast if there are any developments, and provide up to date information as well.

Burke gave attendees some pretty solid advice at the end:

“I know you all consider this, but think about why you’re 3D printing, and make a concise statement about why you’re doing it, and not just because you’re trying to “keep up with the Joneses” in terms of cool new technology.”

Then it was time for some questions. One attendee said that patient-specific products are not always treated as customized, and wanted to know why this makes a difference in terms of regulation. Burke explained that if a 3D printed patient-specific device is deemed a custom product, then it does not have to go through the same regulatory channels.

Joris Peels, 3DPrint.com’s Editor-in-Chief, was chairing this panel, and asked about the use of 3D printing in courtroom settings, and if regulatory bodies consider it. Burke said that his firm’s experts are definitely on board with this, especially in terms of patient anatomy models. He mentioned a big case centered around hip dysplasia, and how a 3D printed exhibit – I’m guessing it was an acetabular cup – was used to show how things were not fitting correctly in the patient’s body.

Another attendee asked Burke for best practices that startups not yet looking to liabilities could use.

“I think it depends on what they want to do,” he answered. “I work with startups and large companies, but there are some things to do up front to advise them.”

He suggested setting up a meeting with the FDA to hear their thoughts and concerns, and document the meeting.

“It’s an exhibit – the FDA knew we were doing this and that test, and still cleared it,” Burke explained.

Stay tuned to 3DPrint.com as we continue to bring you the news from our third annual AMS Summit.

Discuss this and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

[Photos: Sarah Saunders]

The post AMS 2020: Panels on 3D Printing in Implants and Orthopedics, Regulation in Additive Medical Devices appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: February 6, 2018

We’re talking about business, training, and events on today’s 3D Printing News Briefs. The first European 3D printing incubator will soon be inaugurated in Barcelona, and 3devo is launching training workshops about desktop filament extrusion. nScrypt’s Director of 3D Printing and a surgeon from Belfast will be presenting at upcoming events, and Arburg will display a complete turnkey system at an Italian trade fair. Finally, because we celebrate all accomplishments in our industry, we’re sharing some good news about a Xometry employee.

3D Factory Incubator Inauguration

This coming Monday, February 11th, the inauguration of the first European incubator of 3D printing – 3D Factory Incubator – will take place in Barcelona. The Minister of Science, Innovation and Universities, Pedro Duque, will chair the inauguration’s opening act. This High-Tech Business Incubator, a project led by Fundación LEITAT and El Consorci de Zona Franca de Barcelona (CZFB), is working to promote the adoption of 3D printing by creating a space to incubate related SMEs and micro-SMEs.

The 600 sqm incubator space is located at CZFB’s headquarters, and will include training areas, offices, meeting rooms, laboratories, and co-working zones, in addition to a variety of services. The inauguration will begin promptly at 11 am.

3devo Launching Training Workshops

Dutch technology company 3devo, which creates desktop-based material development and recycling solutions such as SHR3D IT, is launching a series of hands-on training workshops all about desktop filament extrusion for professionals, which will be branded as DevoTraining. The workshops will be held at 3devo’s Utrecht headquarters, and participants can choose one of three programs: a basic, 4-hour module for €499, a 1-day intermediate workshop for €899, and a 2-day advanced level course for €1549.

“The demand for unique 3d printing materials is ever-growing, which requires new knowledge on how to process it,” said Tim Wesselink, the CEO of 3devo. “With DevoTraining, we offer the answers to those innovators who seek to take matters into their own hands. Giving them complete guidance to create and customize their own filament – on demand.”

DevoTraining will be officially released next Tuesday, February 12th.

nScrypt Discussing 3D Printed Munitions and Other DoD Applications

Orlando, Florida-based nScrypt, which manufactures micro-dispensing and 3D printing systems, announced the release of its hybrid Factory in a Tool (FiT) integrated system for Direct Digital Manufacturing in October. nScrypt’s Director of 3D Printing, Larry (LJ) R. Holmes, Jr., is in charge of directing the company’s market participation for industrial-level 3D printing hardware, including its work with the US Department of Defense (DoD). This week, Holmes will speak about nScrypt’s 3D printed munitions, as well as its other DoD applications, on the “AM Innovation Panel: Developing the Next Generation of 3D Printing and Processes in Support of the Warfighter” in Tampa at the Military Additive Manufacturing Summit & Technology Showcase.

“Our FiT platform is ideal for DoD’s 3D printing applications because it does next generation Direct Digital Manufacturing, which means no retooling to build a product or to change from printing one product to another. Just change the CAD file. Our FiT’s pick and place tool head adds actives to the prints, making them electrically functional if needed. We just delivered a Factory in a Tool to the Army’s Redstone Arsenal. It has one full meter of travel in the XY plane,” Holmes said.

“nScrypt’s goal is to disrupt how manufacturing happens. Munitions printed on-demand, where and when they are needed; a ruggedized 3D printer for use in forward deployed locations; and printed electronics, like conformal Active Phased Array Antennas for improved performance at lower cost, are a few of the examples of capabilities currently being transitioned from nScrypt to the DoD and the global manufacturing industrial base.”

SXSW 3D Printing Presentation About 3D Printed Kidney Model

SXSW 2019 begins next month in Texas, and in addition to the many other innovations on display at the event, Dr. Tim Brown, Consultant Transplant Surgeon at Belfast City Hospital, will share his experience of using 3D printing to successfully perform a first of its kind, life-saving operation during a presentation titled “Tumours, Transplants and Technology: AI for Life.” His patient needed a life-saving kidney donation, and while her father was willing to donate, his kidney had a tumor on it. Together with UK medical 3D printing company axial3D and Digital Catapult, Dr. Brown used a 3D printed kidney model to safely complete the transplant surgery and save his patient’s life.

“As the cyst was buried deep within the renal cortex and therefore invisible on the back bench, a replica 3D model was used for preoperative planning and intra-operative localization of the lesion,” explained Dr. Brown. “It’s difficult to underestimate how valuable this strategy was in terms of preoperative planning and achieving successful clearance of the lesion.”

axial3D won the Healthcare Application Award at the 2018 TCT Awards for creating the 3D printed model, and the company’s CEO Daniel Crawford and Operations Manager Cathy Coomber will join Dr. Brown for a panel discussion at SXSW, along with Nigel McAlpine, Immersive Technology Lead at Digital Catapult. The session will take place at SXSW on March 12th, at the JW Marriott Salon FG.

Arburg Exhibiting at MECSPE 2019

Arburg Allrounder Freeformer

At next month’s MECSPE 2019 trade fair in Italy, German machine construction company Arburg will be focusing on 3D printing, automation, and digitalization. The company will be displaying a complex turnkey system, built around a Freeformer 200-3X industrial AM system and a hydraulic Allrounder 370 S; both the Freeformer and Allrounder are networked live with the company’s ALS host computer system. In addition to displaying the system at the trade fair, Arburg will also have experts presenting their outlook on the digital future of plastics processing at Stand F49 in Hall 6.

“MECSPE 2019 is the most important trade fair for the manufacturing industry in Italy and, with its focus on Industry 4.0 and automation, it is an ideal match for Arburg. We are not only a machine manufacturer and expert in injection moulding, but we also have our own MES, our own controllers, automation technology and the Freeformer for industrial additive manufacturing as part of our product portfolio,” said Raffaele Abbruzzetti, the new Managing Director of Arburg Srl. “With more than 30 years of experience in networked and flexibly automated production, we offer our customers everything they need in the era of digitalisation to increase their added value, production efficiency and process reliability – from the smart machine to the smart factory and smart services. We will present examples of all of this at MECSPE.”

Xometry Employee Wins Game Show

This last News Brief has nothing to do with 3D printing itself, but rather an unrelated, but still incredible, accomplishment from one of the industry’s own. On Thursday, January 24th, employees from on-demand manufacturing and 3D printing service provider Xometry gathered to watch one of their colleagues – marketer Aaron Lichtig – compete, and eventually win big, on the popular Jeopardy! game show that night.

Lichtig started off at a steady pace, competing against returning champion and astrophysicist Rachel Paterno-Mahler and sales manager Nancy Rohlen, and was leading the pack with a final score of $12,400 by the end of the Double Jeopardy round. He squared off against Rohlen during Final Jeopardy with the clue, “He was the first U.K. prime minister born after Elizabeth II became queen.” While both correctly guessed the answer as Tony Blair, Lichtig’s steep lead made him the winner that night. Congratulations from your friends at 3DPrint.com!

Discuss this news and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

3D Printing News Sliced Lancashire3D, Arburg, LUNOVU, ExOne

This edition of Sliced, our 3D printing news digest, features new 3D printers, innovative 3D printed edibles, ergonomic designs, and more. Full metal jacket A Shenzhen-based 3D printer manufacturer, Panda3D, has built a full metal body SLA 3D printer called Paladin. The printer has 50μm XY resolution and a printing area of 15x13x73 cm. In […]

ARBURG premieres freeformer 300-3X multi-material 3D printer

ARBURG, a German 3D printer and injection molding systems manufacturer, has debuted the freeformer 300-3X, a multi-material and multi-color 3D printer. Lukas Pawelczyk, Head of Sales freeformer, said, “As a revolutionary next step, we’re celebrating the world premiere of the freeformer 300-3X at the Formnext 2018, which will expand the ARBURG product range and open […]

Formnext 2018 3D printing premieres to see in Frankfurt next month

Formnext has rapidly established itself as a must-attend event in the crowded calendar of 3D printing shows. Taking place from 3 to 16 November 2018, 550 exhibitors from across the additive manufacturing ecosystem will present the latest technology at the Frankfurt exhibition grounds. In 2017, more than 21,000 visitors attended the third edition of the […]