3D Printing News Briefs, July 18, 2020: DOMO & RPD, AMPM2021, Alloyed

In today’s 3D Printing News Briefs, DOMO Chemicals and RPD have announced a partnership related to a Sinterline initiative. The 2021 AMPM event is calling for technical papers related to metal additive manufacturing. Finally, Alloyed has won a prestigious award.

DOMO Chemicals and RPD Partnering

DOMO’s Sinterline PA6 powders combined with RPD’s SLS printer, modified and upgraded by LSS, enable OEMs to step up their 3D printed parts performance. (Photo courtesy of RPD)

Polyamide solutions provider DOMO Chemicals and Rapid Product Development GmbH (RPD), a specialist in prototyping and serial production of complex parts and assemblies, have formed a strategic partnership for the purposes of speeding up the growth of plastic materials for selective laser sintering (SLS) 3D printing. The collaboration will merge the continuing development of DOMO’s Sinterline Technyl PA6 SLS powder materials with a package of support services for SLS technology, benefiting from RPD’s expertise in application development and the SLS process. Sinterline PA6 powders are an oft-used nylon in the industry, especially by demanding markets like automotive.

“Sinterline® has pioneered the use of high-performance PA6 in 3D printing, and allows us to leverage the same polymer base that has proven so successful in many existing injection molding applications. Backed by the joint application development services of our companies, even highly stressed automotive components can now be successfully 3D printed in PA6 to near-series and fully functional quality standards,” stated Wolfgang Kraschitzer, General Manager and Plastics Processing Leader at RPD.

AMPM Conference Seeking Papers and Posters

The Additive Manufacturing with Powder Metallurgy Conference (AMPM2021) will be held in Orlando, Florida from June 20-23, 2021. While this may seem far in the future, the event’s program committee is looking ahead, and has issued a call for technical papers and posters that are focused on new developments in the metal additive manufacturing market. Stuart Jackson, Renishaw, Inc., and Sunder Atre, University of Louisville, the technical program co-chairman, are asking for abstracts that cover any aspect of metal AM, such as sintering, materials, applications, particulate production, post-build operations, and more.

“As the only annual additive manufacturing/3D printing conference focused on metal, the AMPM conferences provide the latest R&D in this thriving technology. The continued growth of the metal AM industry relies on technology transfer of the latest research and development, a pivotal function of AMPM2021,” said James P. Adams, Executive Director and CEO of the Metal Powder Industries Federation.

The submission deadline for abstracts is November 13, 2020, and must be submitted to the co-located PowderMet2021: International Conference on Powder Metallurgy & Particulate Materials.

Alloyed Wins IOP Business Award

Alloys By Design (ABD)

UK company Alloyed, formerly OxMet Technologies, has won a prestigious award from the Institute of Physics (IOP), the learned society and professional body for physics. The IOP is committed to working with business based in physics, and its Business Awards recognize the contributions made by physicists in industry. Alloyed has won the IOP Business Start-up Award, which OxMet submitted for consideration before merging with Betatype to form Alloyed, and recognizes the team’s hard work in developing its digital platform Alloys By Design (ABD). This platform is helping to set new metal material development standards, including the commercialization of Alloyed’s ABD-850AM and ABD-900AM alloys for additive manufacturing.

“Everything we do in every bit of our business rests on the foundations provided by physics, and we’re delighted that the judges believe we have made a contribution to the field,” Alloyed CEO Michael Holmes said about winning the IOP Business award.

The post 3D Printing News Briefs, July 18, 2020: DOMO & RPD, AMPM2021, Alloyed appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs, June 28, 2020: Autodesk, Sinterit, BCN3D Technologies

In today’s 3D Printing News Briefs, we’re talking about software and hardware. First, Autodesk has added a new generative design extension. Sinterit has made some changes so its printers are ready for Industry 4.0. Finally, a BCN3D Technologies 3D printer has been recognized as one of Spain’s best industrial designs.

Autodesk Generative Design Extension

MJK Performance used generative design technology to create a set of lighter and stronger triple clamps for a drag bike

This week, Autodesk announced that it is allowing Fusion 360 users to take advantage of generative design capabilities more easily with the release of its new subscription offering – a generative design extension. This will give users complete access to Fusion 360 generative design for a separate subscription fee of $1,000 per month or $8,000 a year. Autodesk is now offering a special introductory price for a limited time only, so annual subscriptions to Fusion 360 and the new extension are available for 50% off the regular price through July 17th.

“We hear loud and clear that customers, especially these days, crave flexibility, and we’re more than happy to provide a solution at a price point that addresses their needs, especially for budget managers who require predictability. Most of all, we’re excited to see the momentum and incredible outcomes from casual users all the way up to major industry innovators or major brand innovators who are using generative design in the field,” said Stephen Hooper, vice president and general manager, Fusion 360.

Users can also access the generative design extension with their Autodesk Cloud Credits.

Sinterit 3D Printers Ready for Industry 4.0

SLS 3D printer manufacturer Sinterit released a new software update that makes its Lisa and Lisa Pro 3D printers compliant with the Industry 4.0 standard, which works to automate integration with factory logistics. The update provides a new function that allows the printers to generate communication output regarding print status, in addition to a more intuitive user interface and a better tool for object collision detection.

“We received questions from our clients about Industry 4.0 standards compatibility. For some of them, it was a must – a 3D printer without such compliance couldn’t be used,” explained Grzegorz Głowa, head of R&D department in Sinterit.

BCN3D Technologies Recognized for Epsilon 3D Printer

Barcelona company BCN3D Technologies announced that its advanced BCN3D Epsilon 3D printer has been recognized by the FAD Association of Industrial Design as one of the best-designed products of 2019 in Spain. The printer has been shortlisted for the 2020 Delta Awards, and an independent jury of industry experts will announce the winner during Barcelona Design Week this November.

“At BCN3D, we are design: we are meticulous, and our professional 3D printers are crafted after a long process of design and investigation to ensure that the end result is optimal. For us, this recognition is a reflection of the tremendous care we put in each product’s design and reflects on the work of every single member of the BCN3D team,” the company wrote in a blog post.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

The post 3D Printing News Briefs, June 28, 2020: Autodesk, Sinterit, BCN3D Technologies appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Solvay Announces Winners of 2019 Solvay AM Cup, First Place Winners Take $10K Home

It’s that time of year again, as Italy’s Solvay announces winners for what seems to have become a yearly tradition with their AM Cup. For 2019, students were at the ready, and given an industrial task as they were challenged to use Radel® PPSU AM-ready filament for creating an ASTM D638 Type V size tensile bar in the z-axis, along with a wavy-shaped pressure pipe.

While it may seem like an easy challenge to be given an assignment to print out a couple of parts, there was much more to it than that; in fact, students from three continents participated in this contest, with 35 student teams from 32 universities. Solvay’s ultimate goal in initiating the 2019 Solvay AM Cup was to highlight the impact 3D printing materials can have on different applications today due to the high performance of parts—and the availability of different materials and methods. Solvay’s focus was for the students to explore the disruptive technology and learn more about ‘the art of the possible.’

The teams were judged on their collective enterprise in making the parts, judged on:

  • Creativity in 3D printing
  • Maximum dimensional accuracy
  • Mechanical properties
  • Performance in burst pressure tests and translucency

Each team was provided with a spool of Radel® polyphenylsulfone (PPSU) AM filament and sent on their way to make plans for winning the competition. Those who were successful in their mission have just been announced:

“The team secured the first prize due to its ability to achieve 100 percent z-axis strength in the Type V size tensile bar and its wavy pipe showed overall dimensional accuracy, surface uniformity, and a remarkable mechanical performance by enduring a burst pressure test of 1,400 psi (96.5 bar) for two hours,” states Solvay in their press release, also commenting that there was very little separating the teams who won second and third place regarding performance in strength and ductility of their parts.

The winners won $10,000, $5,000, and $3,000, respectively, with the idea that these funds would be well-invested in activities related to higher learning, or ‘societal or entrepreneurial’ endeavors. The 3D printed parts they submitted for the challenge will be on display at the Rapid + TCT show in Detroit, MI (Booth #747) from May 21-23.

“It was inspiring to see the various approaches to solving the challenges of fused filament fabrication (FFF) such as bed adhesion and chamber temperature management. The winning team demonstrated once more that 3D printed parts can virtually match the performance and quality of conventional injection molded parts, provided material, hardware, and process are optimized together,” said Ryan Hammonds, R&D platform manager for Solvay’s Specialty Polymers global business unit and president of the AM Cup Jury.

“We look forward to sharing with our customers the benefits gained from this edition of the Solvay AM Cup for 3D printing the best possible PPSU parts for applications in various industries such as aerospace, healthcare and industrial.”

Along with inspiring students to explore the infinite opportunities available with 3D design and printing, Solvay has continued their momentum, offering strong opinions on the future of 3D printing, expanding materials within their manufacturing processes, and entering into dynamic partnerships. What do you think of this news? Let us know your thoughts! Join the discussion of this and other 3D printing topics at 3DPrintBoard.com.

[Source / Images: Solvay]

3D Printing News Briefs: April 28, 2019

We’re getting the business out of the way first, then moving on to awards and rewards in this edition of 3D Printing News Briefs. CECIMO has expressed its approval of a new 3D printing nomenclature standard, and there’s a new design competition in town. Weerg announced the winner of its 3D Printing Project Award, and Formlabs is rewarding its loyal customers with a discount. Finally, a 3D printed Harry Potter statue flies high at a store in India.

CECIMO Welcomes New Classification Provision for 3D Printers

CECIMO, the European Association of the Machine Tool Industries, is glad to hear about the approval and introduction of a new product nomenclature standard, used by over 200 countries, for additive manufacturing systems. The nomenclature, known as Harmonized System and used by authorities to classify goods in international trade, is maintained by the World Customs Organisations (WCO). The classification code was first proposed by the EU on the basis of input from CECIMO, and will improve statistics collection on the international trade of AM machines by material used, in addition to promoting the inclusion of these systems in bilateral or multilateral trade deal talks around the world. The new code will go into use starting January 1, 2022.

“Standardization is of vital importance in the industrialization of AM. Work is progressing on standards on materials, processes and applications,” said Filip Geerts, Director General at CECIMO. “In addition to standardization, we are glad to have contributed to the inclusion of AM machines in the systematic list of commodities applied by most trading nations in the world. This action will fill another vacuum in the standards’ landscape, leading to greater official intelligence on AM machine market dynamics and, therefore, helping to draft more accurate strategies for the AM sector.”

Conserv Opened New Design Competition

Alabama tech startup Conserv, which builds sensor solutions to help places like museums, archives, and libraries preserve cultural heritage, is a big fan of 3D printing and rapid prototyping. Conserv has heard from its customers that they want to “minimize the visual disruption caused by things other than the art in a space,” which is why it’s decided to hold its own 3D design competition to find the next design iteration for its sensor platform. The prize for the winning design, which will be chosen by the startup’s own customers, is $5,000 cash.

“While sensors are necessary to ensure the integrity of a collection, they often look out of place, not in harmony with the carefully curated objects that people come to see,” the competition description states.

“How can we change that?  How can we push the art of sensor design further so it looks more like, well, art!  What does great look like in this space? How can we design a device that doesn’t look out of place in a gallery curated by the most discerning professionals while still retaining all of the features that fulfill demanding technical requirements?  Can we create an object that is unassuming and functional, designed to blend in, but at the same time elicits joy when it is noticed?”

Requirements include that the solution must be designed for wall mounting, with vents for air flow, to blend into a museum environment, and for a high volume manufacturing process, like injection molding. Entrants need to provide a design sketch or rendering and a description of how the design meets the requirements, and a 3D model file for a 3D printed prototype of the device, by May 17th. For other questions and details, email nmcminn@conserv.io.

Winner Announces for Weerg 3D Printing Project Award

Earlier this month, Italian 3D printing and CNC machining platform Weerg opened the second edition of its 3D Printing Project Award contest, which promotes creativity, experimentation culture, and innovation in design manufacturing. This week, Weerg announced that Benjamin Nenert, a designer and specialized technician for Porsche, is the winner of its 2019 3D Printing Project Award: a €500 Weerg voucher. Nenert, who lives in France, also manages his own vintage Porsche repair and refurbishment business, Ben Auto Design on top of his day job. His award-winning project is a component for a 1983 Porsche engine that he’s currently restoring.

“It is a very important component because it will allow you to extract more power from the engine by converting it to a more modern electronic management system. I could also have tried to modify the original part, but it would have taken a long time, with a very bad result for the performance I was aiming for,” Nenert explained. “The 3D-printed part has all the requirements I was looking for: perfect design, heat resistance up to 100 °C and sturdiness.”

Formlabs Offering Loyalty Discount to Customers

In a very smart move, Formlabs is wisely rewarding its loyal customers with a great discount if they’re interested in upgrading their Form 2 3D printer to the new Form 3 or Form 3L. The company explained that customers simply need to confirm the ownership of their own Form 2 by May 31st, 2019 in order to receive a €500 discount on the purchase of a Form 3 or Form 3L. Then they can add to their fleet of Formlabs systems; again, this is a good choice by Formlabs in order to keep its customers coming back for more.

To confirm your Form 2 and receive your loyalty discount, share an image of the serial name on the printer’s back panel in the format “AdjectiveAnimal.” You can either get in touch with a member of the company’s sales team, or submit the information online. You’ll either get your unique loyalty discount through an email within one business day, or the sales team will apply it to your purchase. Redeem the discount in the Formlabs online store, or contact the sales team, to buy your discounted Form 3 or Form 3L 3D printer.

STPL 3D Makes 3D Printed Harry Potter Statue

India-based rapid prototyping services company STPL 3D Printing (STPL3D) is continuing with its 3D printed statues of fictional characters. Not long after we heard about the 3D printed Spiderman statue the company made for a customer, another one of its clients requested a 5-foot 3D printed sculpture of Harry Potter for their store. STPL3D had just five days to transform the 2D images it was given into a detailed sculpture, and they got right to work. The company’s in-house designer divided the job into 25 smaller parts that would be easy to print, and once these were completed and post-processed, the team assembled the statue and delivered it to the client’s merchandise store. Using STPL3D’s technology and service, the client had a 40% reduced cost, 70% weight reduction, and saved nearly a month of time on the project.

“3D printing helps artists transform ideas into tangible works of art. Artists from creative and entertainment domains can truly unleash their imagination to create new and exciting objects. 3D printed art models aims to expand the horizons of design and foster a culture of aesthetic innovation,” said STPL3D’s CEO Rahul Gaywala.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the comments below.

UC Berkeley Researcher Receives Award from Johnson & Johnson for Smart 3D Printer

In 2015, Johnson & Johnson launched the WiSTEM2D (Women in Science, Technology, Math, Manufacturing and Design) program in order to increase the representation of women in the scientific and technical fields, along with the development of female leaders. The unique, multifaceted program is meant to engage women at three important development phases of their lives: youth (ages 5-18), the university graduate level, and in their professional careers.

J&J began offering its WiSTEM2D Scholars Award in 2017, which is meant to fuel development of female leaders in STEM2D, as well as add to the talent pipeline. The award supports the winners’ research, while also inspiring other women to go down similar career paths in their own STEM2D fields. Now in its third year, nominations for the Scholars Award were accepted from female scholars in each of the STEM2D disciplines: Science, Technology, Engineering, Math, Manufacturing and Design. An independent Advisory Board was set up to choose the winners from over 400 international applicants, and the six winners were recently announced.

“Through this Award and other programs, Johnson & Johnson is working to increase the participation of women in STEM2D fields worldwide. We want to nourish the development of women leaders building a larger pool of highly-trained, female researchers so that they can lead STEM2D breakthroughs in the future,” said Cat Oyler, Vice President, Global Public Health, Tuberculosis, Johnson & Johnson and WiSTEM2D University Sponsor.

In addition to being recognized at an awards ceremony tonight at Johnson & Johnson’s worldwide headquarters in New Jersey, the winners – all assistant or associate academic professors, or the global equivalent of such – will each receive $150,000 in research funding, as well as three years of mentorship from Johnson & Johnson.

Just like Johnson & Johnson, we here at 3DPrint.com have also worked hard to highlight the 3D printing-related accomplishments of young girls and women in STEM and tech fields. That’s why I was thrilled to learn that one of this year’s winners is focused on manufacturing and 3D printing.

Each Scholars Award winner represents one of the STEM2D disciplines:

  •  Katia Vega, PhD, Assistant Professor of Design, UC Davis: while she’s already using the human body as a source of wearable technology, she’ll move on to experimenting with interactive skin and biosensors.
  • Ronke Olabisi, PhD, Assistant Professor of Biomedical Engineering at Rutgers University: developing a new hydrogel that can be placed over an injury and constantly deliver insulin and stem cell growth factors for faster skin and tissue growth.
  • Grace X. Gu, PhD, Assistant Professor of Mechanical Engineering at University of California, Berkeley: developing a smarter, more efficient 3D printer that can self-correct during a print job.
  • Rebecca Morrison, PhD, Assistant Professor of Computer Science at University of Colorado, Boulder: identifying flexible algorithms that can run calculations on shifting variables more quickly and accurately.
  • Naama Geva-Zatorsky, PhD, Assistant Professor of Medicine, Technion-Israel Institure of Technology: studying the interactions between the immune system and gut microbes.
  • Shengxi Huang, PhD, Assistant Professor of Electrical Engineering, The Penn State University: developing one device to measure potential disease-causing biomolecules, like cancer cells.

Grace Gu, PhD

Gu, who joined the UC Berkeley faculty in 2018, is looking to address the limitations in manufacturing and materials design with her smart, self-correcting 3D printer.

“I am really excited to build my research group at Berkeley, meet and mentor undergraduate and graduate students, teach foundational mechanical engineering classes, collaborate with exceptional faculty members within and outside the university, and work on 3D-printing projects with students to create a better tomorrow,” Gu said when she began her job at the university.

Gu received her BS in Mechanical Engineering from the University of Michigan in 2012, picking up an MS from MIT two years later and remaining at MIT to earn her PhD in Mechanical Engineering in 2018. According to UC Berkeley, her research interests include harnessing the power of “tools such as advanced computational analysis, machine learning and topology optimization to revolutionize the field of smart additive manufacturing.”

In her research group at the university, the work is focused on bio-inspired materials.

“The big goal is to develop materials that are inspired by nature, like seashells and bones, and discover new material combinations never before manufactured. These biomaterials possess remarkable mechanical properties that are yet to be replicated by man-made counterparts,” Gu said. “This way we can make implants, for instance, tailored to each individual with the properties necessary for structural integrity of the part—and push the frontiers of additive manufacturing.”

[Image: UC Berkeley]

The work for which she received her WiSTEM2D Scholars Award is centered around building a smarter 3D printer. As Berkeley Engineering put it, she trained “a model for a smart 3D printer that can perform predictive diagnostics to ensure optimal printing quality.”

Gu is taking computer science concepts and applying them to manufacturing in order to create her smart 3D printer. The ultimate goal of this particular research is develop a 3D printer that’s able to correct mistakes by itself while working, while also using a wider range of materials in order to more quickly and reliably produce objects like tougher bike helmets and stronger prosthetics.

Discuss this story and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

[Images: Johnson & Johnson unless otherwise noted]

3D Printing News Briefs: April 12, 2019

We’ve got news about a contest to start off today’s 3D Printing News Briefs, followed by some business news and 3D printed jewelry. Weerg has announced the second edition of its “3D Printing Project Award” contest. Moving on, Bastian Solutions worked with Fast Radius to create a robotic materials handler using HP 3D printing, while Fast Radius announced that it has closed a round of Series B funding. Finally, an SLM 3D printer is being used by a person you might recognize to fabricate unique metal rings.

2nd Edition of Weerg’s 3D Printing Project Award Contest

3D printing and CNC machining platform Weerg, based in Gardigiano, Italy, just announced the second edition of its “3D Printing Project Award” contest, which promotes creativity, experimentation culture, and innovation in design manufacturing. The company, which offers the largest Italian installation of HP’s MJF 4210 3D printers, invites designers and developers to create “an iconic object completely printed in 3D” for the chance to win a €500 Weerg coupon, and an interesting social media opportunity – star as the protagonist in a professional video that will highlight his/her designer skills, which Weerg will promote.

“After the success we obtained last edition, we decided to put to test once more our recently doubled and enhanced production department, and to give visibility to the most creative talent in 3D Printing. The Weerg Award was created to stimulate the potential and the desire to innovate of tomorrow’s designers who are starting to come face to face with the opportunities offered by additive manufacturing,” said Weerg’s founder Matteo Rigamonti. “In addition, it will allow us to maximize the performance of HP printers by creating very original and sophisticated items.”

You have until this Sunday, April 14th to submit your entry by posting it directly to Weerg’s Facebook and Instagram pages. The winner will be announced on Monday.

New Robot Warehouse Picker Features 3D Printed Parts

Indianapolis-based Bastian Solutions, a Toyota Advanced Logistics company, has launched its Shuttle System: an efficient, flexible robotic materials handler with dexterity to spare. 45% of the final build-of-material (BOM) on the system’s robotic arm were 3D printed with HP and Carbon 3D printers. The durable polymer joints of the robotic picker were made with HP’s Multi Jet Fusion (MJF) technology, while its fingers and gripper were 3D printed out of unique materials, like EPU 40, using Carbon’s Digital Light Synthesis (DLS) technology. The company displayed its new Shuttle System this week at ProMat 2019 in Chicago.

“We envisioned that additively manufacturing specific parts would make the Bastian Solutions Shuttle System the most efficient and agile robotic picker available on the market. The additive manufacturing process will enable us to customize each robot picker to fit a customer’s particular warehouse environment,” said Ron Daggett, the Vice President of Technology and R&D, Bastian Solutions.

These parts were 3D printed at the Chicago headquarters of industrial-grade additive manufacturing facility Fast Radius.

Fast Radius Raised $48 Million in Series B Funding

Speaking of Fast Radius, the company recently announced that it had raised $48 million in a Series B funding round, which it will use to continue expanding its production-grade AM platform through application engineering, sales teams, and software development. Its software platform, the Fast Radius Operating System (FROS), supports customers across the entire lifecycle of a product, helping them conduct engineering and economic evaluations, find potential applications, and 3D print industrial-grade parts at scale. The funding round was led by the company’s previous collaborator UPS, and Drive Capital was also a strong participant; other participants include previous investors Jump Capital, Skydeck, and Hyde Park Venture Partners.

Pat McCusker, the COO at Fast Radius, said, “This additional funding will allow us to further expand our partnerships with leading global companies across aerospace, consumer, industrial, medical, and automotive verticals.”

Bam Margera 3D Printing Jewelry with SLM Technology

And now for something totally different…Bam Margera, a professional skateboarder, stunt performer, filmmaker, musician, and TV personality who rose to fame as one of the main members of MTV’s reality show Jackass from the early aughts, is now designing jewelry, which he 3D prints on an SLM Solutions 125 system that he purchased. He is selling the unique metal rings and pendants on his official BamMerch website.

According to the website, “BamMerch is Bam Margera´s new lifestyle brand offering various jewelry and apparel, our store launched in December 2016.

“All items are crafted in Estonia, using combination of high-tech metal 3D printing and hand crafting to create extremely unique and detailed jewelry.”

All of the jewelry is 3D printed in-house out of sterling silver, and then carefully polished in ten stages. Some of the pieces, like the pretty Margeras Pendant with three intertwined hearts, are available for as little as $17, with prices ranging all the way up to $149 for the Skull Ring v2. Margera also offers a range of bundles. Check out the video below to see the 3D printing process for some of Margera’s rings, but be warned – if you go searching for more information about his 3D printed jewelry on Twitter or Instagram, there’s a lot of profanity and other NSFW content.

Discuss these stories, and other 3D printing topics, at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

3D Printing News Briefs: December 19, 2018

In today’s 3D Printing News Briefs, a maker has published a free 3D print management app in the Play Store, while Formlabs works to continue accelerating its growth in the Asia Pacific region. America Makes has announced the winners of two Directed Project Opportunities, and a chemist employed by Sinterit has won a prestigious award. Finally, an engineer with a thirst for vengeance used 3D printing and a lot of glitter to get back at the people who steal packages from his porch.

Free 3D Printing App for Filament Management

A new app, simply called 3D Print, is now available to download for free on the Google Play Store. The app was published by a maker who goes by paratiDev on Google Play, and was developed to help other makers better manage their filament.

“It has happened to all of us, you want to print a piece and not to know for sure if you have enough filament in the coil to print it. If you have only one coil of that filament, you have only two options; you can use another filament that has more quantity or risk and print it,” paratiDev writes.

“In the first case it forces you to use another filament different from the one you wanted while in the second case you run the risk that there is not enough filament and the piece remains halfway, assuming a loss of money, filament and time.”

The app allows users to visualize how much filament they have left, view the history of 3D printed pieces they’ve made, and can also generate invoices and quotations for 3D prints. The free 3D Print app also allows you to create projects that group together several pieces, and will visualize the wight and total cost of the project.

Formlabs Continues to Grow in APAC Region

Today, Formlabs announced that its growth in the APAC region is continuing to speed up. The company, which first entered the China market in 2015, is planning to open its new APAC headquarters in Singapore soon, and has also completed a new warehouse in Shenzhen, China for more efficient processing and shipping. While its physical presence in the region is growing, so too is its headcount: Formlabs also announced that David Tan, previously the APAC director of strategy and programs for Oracle Cloud Platform, Alliances & Channels, has been hired on as a new general manager for its own APAC team.

“Formlabs has long set its sights on making 3D printing processes more accessible. Part of this strategy has been completely rethinking 3D printing technologies from the ground up. The second is bringing the technology to market,” explained Max Lobovsky, Co-Founder and CEO of Formlabs. “There is an immense amount of opportunity in Asia Pacific, we’re looking forward to what David and these new locations can do to improve our growing success in the region.”

America Makes Announces Directed Project Opportunities Winners

America Makes has announced the award winners of two Directed Project Opportunities, both of which were funded by the Air Force Research Laboratory (AFRL), Materials and Manufacturing Directorate, Manufacturing and Industrial Base Technology Division. The first is the acceleration of large scale additive manufacturing (ALSAM) project, with the objective of getting past the shortcomings of SLM 3D printing, and America Makes awarded $2.1 million to GE Global Research, in conjunction with GE Additive and the Applied Research Laboratory (ARL) at Penn State. With at least $525,000 in matching funds from the team, the total funding for the ALSAM Directed Project to develop an open source, multi-laser manufacturing research platform will be about $2.6 million.

The second is the advancing AM post-processing techniques (AAPT) project, with a goal of improving process control and lowering costs for qualifying complex parts made with SLM technology. The first awardee is Arizona State University, in conjunction with Quintus Technologies, Phoenix Heat Treating, Inc., and Phoenix Analysis & Design Technologies, Inc., and the second is led by the ASTM International AM Center of Excellence collaborative, in conjunction with Quintus Technologies, Carpenter Technologies Corporation, Aerojet Rocketdyne, Rolls Royce Corporation, Honeywell Aerospace, GE Aviation, and Raytheon. America Makes awarded a total of $1.6 million to the two teams, which will also contribute at least $800,000 in matching funds. Both projects are expected to begin next month.

Sinterit Chemist Makes Forbes List of ’25 Under 25′ Poland

Desktop SLS 3D printer manufacturer Sinterit is proud to announce that its chemist, Paweł Piszko, has been selected by Forbes and the Warsaw office of McKinsey & Company as one of the prestigious “25 Under 25” in Poland. There are five categories in the awards, with five winners in each, and the jury appreciated Piszko’s work on increasing the efficiency of energy collection from renewable sources. When asked by his employers what his goal was, he answered that he wanted to have “an impact on the architecture of society.”

We are delighted that Paweł chose Sinterit as a place where he can develop his skills and check the results of his scientific activities in practice,” Sinterit wrote in a blog post. “As part of his work, he researches the chemical processes that occur during the sintering of polymers, which allows us to improve the materials that Lisa and Lisa Pro, our flagship SLS 3D printers, print from.”

3DPrint.com congratulates Paweł on this exciting achievement!

Engineer Uses 3D Printed Component to Make Glitter Bomb

Revenge is a dish best served with glitter and fart spray…at least according to a mechanical engineer and evil genius Mark Rober. He spent nine years working at NASA’s JPL – mostly on the Curiosity Rover – and later founded a company called Digital Dudz. He was upset when someone stole a delivered package right off of his porch, and decided to employ all kinds of technology to take revenge.

“I just felt like something needs to be done to take a stand against dishonest punks like this,” Rober said in his YouTube video.

“I spent nine years designing hardware that’s currently roving around on another freaking planet. If anyone was going to make a revenge bait package and over-engineer the crap out of it, it was going to be me.”

Over the course of several months, Rober sketched his idea out, then finished it in CAD before getting to work on the physical prototypes. The package contains a 3D printed component that’s contoured in such a way that four hidden phones inside can capture package thieves opening the box and getting hit with a giant cloud of colorful glitter and continuous blasts of fart spray. Check out his video below to see how things turned out, though be warned that there is some bleeped out profanity. To learn more about the details of his build, check out his friend Sean’s video as well.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.

3D Printing News Briefs: November 28, 2018

We’re starting with some business news in today’s 3D Printing News Briefs, and then moving on to an award. A British company is the first automotive consumer retail brand built entirely around 3D printing, which is a pretty big deal. Oerlikon has a new online instant quoting and tracking tool, while MakePrintable has released some new updates and Additive Industries is launching a new center in Singapore. Finally, the SMS Group has won a prestigious award.

First Automotive Consumer Retail Brand Built Around 3D Printing

Leeds-based digital manufacturing company Carbon Performance uses 3D printing, artificial intelligence, and blockchain to design and fabricate lightweight, next-generation automotive components that are environmentally sustainable. Recently, the company designed an suspension upright for a Lotus Elise sports car that was 3D printed in aluminum. The part, with an organic design, ended up being 25% more lightweight and was consolidated from a total of nine parts into just one.

But what really sets Carbon Performance apart is that it packages up its 3D printed automotive components and retails them to end customers, which technically makes the company the first automotive consumer retail brand in the world that’s built entirely around 3D printing. Take a look at its short promo video below:

Oerlikon Offering New Online Tool

Swiss technology and engineering group Oerlikon is now offering a new online tool to help its customers save time with their on-demand manufacturing and rapid prototyping needs. The company is offering an online instant quoting and tracking tool that’s capable of handling a large variety of metal and polymer part needs.

The tool is easy to use – just upload your CAD file and prepare your part for 3D printing by choosing from available options. Then, Oerlikon will 3D print your part, and you can track the order until it’s sent quickly right to your door. The company is even offering a discount for the first order you place in its new service through December 31st, 2018. Simply enter the promo code AMFIRST in the Oerlikon AM online quoting tool to take advantage of the deal.

MakePrintable Releases New Updates

Speaking of tools, the MakePrintable service launched by San Francisco startup Mixed Dimensions back in 2014 has just released a few major updates. It already offers such services as easy, automated 3D file fixing and better user efficiency in 3D printing, and is now rolling out its latest – a pay per download service and a full color 3D printing service. The first lets customers repair files, then pay if they’re pleased with the quality, without having to purchase a subscription, while the latter service is able to produce “unmatched quality prints at competitive pricing compared to others in the industry.”

“When we designed our printing service we focused heavily on all pillars (quality, speed and cost) as we know how much expensive and problematic it is to get quality prints and even to get past most 3D printing services checkout process,” Baha Abunojaim, Co-Founder and CTO of Mixed Dimensions, told 3DPrint.com. “At MakePrintable we guarantee our users a smooth and fast experience with a competitive pricing point while also leveling up the quality thanks to our years of research and robust file preparation technology.”

Additive Industries Announces New Center in Singapore

After an official State Visit from Mdm Halimah Yacob, the President of the Republic of Singapore, to its Eindhoven headquarters, Additive Industries announced that it would be building a Process & Application Development (PAD) Center in Singapore. The company plans to build its newly launched PAD Center up into a regional Asia Pacific hub for customer support and local development. The PAD Center will also serve as a competence center for the industrialization of metal 3D printing within the company itself, with special market focus on important regional verticals like semiconductor equipment and aerospace applications.

“Singapore is an ideal stepping stone for Additive Industries’ growth ambitions in the Asia-Pacific region,” said Daan Kersten, the CEO of Additive Industries. “It is a natural hub with great infrastructure, it’s an excellent fit with our target markets and the governmental support accelerates our execution.”

3D Printed Spray Header by SMS Group Wins Award

A group of companies that’s internationally active in plant construction and mechanical engineering for the steel and nonferrous metals industry known as the SMS Group just announced that it won the German Design Award 2019, in the Industry category, for its 3D printed spray head for forging plants. This is likely the first time a small machine component like the spray head, which is used to cool dies in forging presses, has won one of these awards, so it’s a pretty big deal. The 3D printed spray head is the result of a joint effort between the group’s Forging Plants Department, Additive Manufacturing Project Team, and simulation technology experts. While it is a small component, it’s certainly mighty – it was designed to fulfill its function in the most efficient way possible. 3D printing helped to make the spray head smaller, less expensive, easily customizable, and made it possible to add flow optimized channels for cooling die heads.

“Winning the Design Award makes us extremely proud. It is recognition of many teams within SMS group whose work is characterized by a highly interdisciplinary approach,” said Axel Roßbach, Research and Development Extrusion and Forging Presses with the SMS group GmbH. “The spray head is a milestone innovation marking a new era in the design of plant and machine components, enabled by the game-changing potential of 3D printing and function-optimized design. The design of a machine part is today no longer limited by the constraints imposed by conventional – process-optimized – forming and machining techniques. Supported by latest software and computer technology, we can now give a component exactly the design that fulfils its designated function in the best possible way. Another important aspect is that we have used new materials. Therefore the Award honors not only a new design, but above all the new way of thinking lived within SMS group, which has materialized in a global approach to Additive Manufacturing.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

3D Printing News Briefs: November 23, 2018

We’re starting with a little business news in today’s 3D Printing News Briefs – Intech confirmed its first order for Additive Industries’ MetalFAB1 3D printer, and Roboze CEO Alessio Lorusso has won a prestigious Ernst & Young award. Moving on, researchers are working on 3D printable thermoelectric materials that can convert heat from the surrounding environment and convert it into electricity, while an architecture studio has developed a unique concept for a 3D printed, transportable toilet that converts something very different into electricity. Finally, if you’re looking for a unique gift this holiday season, check out Bloomingdale’s, which is working with Twindom and KODAK to offer 3D printed holiday portraits.

Intech Confirms MetalFAB1 Order with Additive Industries

On the last day of formnext 2018, Bangalore-based Intech, a leader in metal 3D printing in India, confirmed its first order of the MetalFAB1 system from Dutch 3D printer manufacturer Additive Industries. This order marks Additive Industries’ expansion into Asia, and will also help Intech accelerate its business. Application and process development and customer support will be handled from the new regional Additive Industries center in Singapore.

Accelerating adoption of additive manufacturing is the primary objective at Intech. Moving from prototyping to series production with focus on cost per part with repeatable quality is the way forward. This is a stepping stone for Intech in achieving its goal to meet the demands of customer requirements of printing large parts with excellent quality,” explained Sridhar Balaram, the CEO of Intech. “Intech has been working with various customers in different industry verticals by identifying parts for mass production as a proof of concept. With Additive Industries’ MetalFAB1 we can now scale for volume. The system is unique in the industry and we are excited to add this to our fleet of equipment.”

Roboze CEO Alessio Lorusso Wins Award from Ernst & Young

Alessio Lorusso

Alessio Lorusso, the CEO and founder of Italian 3D printing company Roboze, was recently awarded the prestigious 2018 Startup Award by Ernst & Young (EY) at its Entrepreneur Of the Year 2018 awards. Established for the first time during the 2015 awards, the Startup Award is awarded for contributing to a major growth of the Italian, and worldwide, economy, and is dedicated to an individual’s ability to create value with a spirit of innovation and a strategic vision. The award aims to make young, bright minds, who create a company from an innovative idea, more visible.

“In 2015, when we presented our first solution to the global market, I could not even imagine to achieve our goals in such a short time. We faced the logics of the machines design for additive manufacturing with clear, real and innovative competitive advantages. The market chooses us because our technology is definitely the best one, as specifically designed and produced to meet the real needs of the manufacturing companies,” said Lorusso. “This award is the result of the entire Roboze team’s hard work and constant commitment; so I want to dedicate this to each member of it. It was hard but we always believed it and this award does confirm that we are following the right way to conquer and revolutionize the whole global market.”

Thermoelectric Materials Converting Heat into Electricity

Flexible thermoelectric device embedded in a glove for generating electricity by body heat. [mage: Dr. Song Yun Cho, Korea Research Institute of Chemical Technology]

According to a review of new research in the Science and Technology of Advanced Materials journal, a team of scientists are working to design thermoelectric materials that can harvest heat from the environment, then convert it into electricity in order to power appliances and devices. Products made with these materials, such as wearable devices, could be more cost-effective, as they won’t need to recharge, change, or dispose of batteries. The team, which published a paper called “Thermoelectric materials and applications for energy harvesting power generation,” is investigating three different types of conducting materials, including inorganic and organic.

The abstract reads, “Thermoelectrics, in particular solid-state conversion of heat to electricity, is expected to be a key energy harvesting technology to power ubiquitous sensors and wearable devices in the future. A comprehensive review is given on the principles and advances in the development of thermoelectric materials suitable for energy harvesting power generation, ranging from organic and hybrid organic–inorganic to inorganic materials. Examples of design and applications are also presented.”

Most organic thermoelectric devices involve polymers, and semiconducting ones are more lightweight and inexpensive, can hold heat better than conventional inorganic semiconductors, and are flexible enough to be 3D printed. Inorganic thermoelectric devices can convert heat into electricity, but aren’t that flexible. The researchers say that while thermoelectric devices could actually replace traditional batteries in many applications someday, a lot more work is required first. Time will only tell with this one.

Spark’s 3D Printed Toilet 

Speaking of electricity, architecture studio Spark has developed an innovative concept for a transportable toilet, made with 3D printed elements, that can actually convert human waste into electricity. Fittingly, the studio launched its Big Arse Toilet on Monday to coincide with World Toilet Day. The module was designed for use in remote villages in India, where the UN is working hard to tackle the sanitation and hygiene issues stemming from open defecation. The toilet elements would be 3D printed from bamboo fibers mixed with biopolymer resin, and the completed module would be anchored to a 3D printed reinterpretation of a traditional biogas dome buried underground, which uses waste to generate and store gas.

Spark told Dezeen, “The Big Arse toilet reinterprets the use and organisation of traditional bio-gas domes to create electricity and gas for those communities that have no access to power networks and utility infrastructure that we take for granted.

“Bio-gas is a product of the breakdown of organic matter, in the case of the Big Arse Toilet the biogas is a product of human waste, food waste and agricultural waste. The biogas can be used directly for activities such as cooking or can be used to drive a micro CHP turbine that converts the gas into electricity.”

Bloomingdale’s Offering Personalized Holiday 3D Printed Portraits

3D body scanning leader Twindom, a brand licensee of Kodak, is offering a unique gift promotion this holiday season to shoppers at the Bloomingdale’s stores in San Francisco and New York City: personalized, 3D printed holiday portraits, made with the KODAK Full Body 3D Scanner until the end of December, just in time for Christmas. Shoppers who want to have a 3D printed portrait made can either make an appointment or just walk in to the store.

Once there, simply enter your information, walk into the KODAK Full Body 3D Scanner, and pose for the scan, which only takes 1⁄4 of a second to complete. Then, review the 3D capture, choose your size – 3 to 14 inches – and place your order, which will be 3D printed in full color and ship in about 1-2 weeks. Pricing starts at around $69 for the 3D printed portraits, and local support at each store location is provided by Twindom’s local partners: PocketMe, PeoplePrints 3D, and Memories in 3D.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below. 

3D Printing News Briefs: August 24, 2018

We’re sharing some business news in today’s 3D Printing News Briefs, followed by some interesting research and a cool 3D printed statue. Meld was listed as a finalist in the R&D 100 Awards, and Renishaw has introduced 3D printed versions to its styli range, while there’s an ongoing Digital Construction Grant competition happening in the UK. A researcher from Seoul Tech published a paper about in situ hydrogel in the field of click chemistry, while researchers in Canada focused on the Al10SiMg alloy for their study. Finally, an Arcam technician tested the Q20plus EBM 3D printer by making a unique titanium statue of Thomas Edison.

Meld is R&D 100 Awards Finalist

The global R&D 100 Awards have gone on for 56 years, highlighting the top 100 innovations each year in categories including Process/Prototyping, IT/Electrical, Mechanical Devices/Materials, Analytical/Test, and Software/Services, in addition to Special Recognition Awards for things like Green Tech and Market Disruptor Products. This year, over 50 judges from various industries selected finalists for the awards, one of which is MELD Manufacturing, an already award-winning company with a unique, patented no-melt process for altering, coating, joining, repairing, and 3D printing metal.

“Our mission with MELD is to revolutionize manufacturing and enable the design and manufacture of products not previously possible. MELD is a whole new category of additive manufacturing,” said MELD Manufacturing Corporation CEO Nanci Hardwick. “For example, we’re able to work with unweldable materials, operate our equipment in open-atmosphere, produce much larger parts that other additive processes, and avoid the many issues associated with melt-based technologies.”

The winners will be announced during a ceremony at the Waldorf Astoria in Orlando on November 16th.

Renishaw Introduces 3D Printed Styli

This month, Renishaw introduced a 3D printed stylus version to its already wide range of available styli. The company uses its metal powder bed fusion technology to provide customers with complex, turnkey styli solutions in-house, with the ability to access part features that other styli can’t reach. 3D printing helps to decrease the lead time for custom styli, and can manufacture strong but lightweight titanium styli with complex structures and shapes. Female titanium threads (M2/M3/M4/M5) can be added to fit any additional stylus from Renishaw’s range, and adding a curved 3D printed stylus to its REVO 5-axis inspection system provides flexibility when accessing a component’s critical features. Components with larger features need a larger stylus tip, which Renishaw can now provide in a 3D printed version.

“For precision metrology, there is no substitute for touching the critical features of a component to gather precise surface data,” Renishaw wrote. “Complex parts often demand custom styli to inspect difficult-to-access features. AM styli can access features of parts that other styli cannot reach, providing a flexible, high-performance solution to complex inspection challenges.”

Digital Construction Grant Competition

Recently, a competition opened up in the UK for organizations in need of funding to help increase productivity, performance, and quality in the construction sector. As part of UK Research and Innovation, the organization Innovate UK – a fan of 3D printing – will invest up to £12.5 million on innovative projects meant to help improve and transform construction in the UK. Projects must be led by a for-profit business in the UK, begin this December and end up December of 2020, and address the objectives of the Industrial Strategy Challenge Fund on Transforming Construction. The competition is looking specifically for projects that can improve the construction lifecycle’s three main stages:

  • Designing and managing buildings through digitally-enabled performance management
  • Constructing quality buildings using a manufacturing approach
  • Powering buildings with active energy components and improving build quality

Projects that demonstrate scalable solutions and cross-sector collaboration will be prioritized, and results should lead to a more streamlined process that decreases delays, saves on costs, and improves outputs, productivity, and collaborations. The competition closes at noon on Wednesday, September 19. You can find more information here.

Click Bioprinting Research

Researcher Janarthanan Gopinathan with the Seoul University of Science Technology (Seoul Tech) published a study about click chemistry, which can be used to create multifunctional hydrogel biomaterials for bioprinting ink and tissue engineering applications. These materials can form 3D printable hydrogels that are able to retain live cells, even under a swollen state, without losing their mechanical integrity. In the paper, titled “Click Chemistry-Based Injectable Hydrogels and Bioprinting Inks for Tissue Engineering Applications,” Gopinathan says that regenerative medicine and tissue engineering applications need biomaterials that can be quickly and easily reproduced, are able to generate complex 3D structures that mimic native tissue, and be biodegradable and biocompatible.

“In this review, we present the recent developments of in situ hydrogel in the field of click chemistry reported for the tissue engineering and 3D bioinks applications, by mainly covering the diverse types of click chemistry methods such as Diels–Alder reaction, strain-promoted azide-alkyne cycloaddition reactions, thiol-ene reactions, oxime reactions and other interrelated reactions, excluding enzyme-based reactions,” the paper states.

“Interestingly, the emergence of click chemistry reactions in bioink synthesis for 3D bioprinting have shown the massive potential of these reaction methods in creating 3D tissue constructs. However, the limitations and challenges involved in the click chemistry reactions should be analyzed and bettered to be applied to tissue engineering and 3D bioinks. The future scope of these materials is promising, including their applications in in situ 3D bioprinting for tissue or organ regeneration.”

Analysis of Solidification Patterns and Microstructural Developments for Al10SiMg Alloy

a) Secondary SEM surface shot of Al10SiMg powder starting stock, (b) optical micrograph and (c) high-magnification secondary SEM image of the cross-sectional view of the internal microstructure with the corresponding inset shown in (ci); (d) the printed sample and schematic representation of scanning strategy; The bi-directional scan vectors in Layer n+1 are rotated by 67° counter clockwise with respect to those at Layer n.

A group of researchers from Queen’s University and McGill University, both in Canada, explain the complex solidification pattern that occurs during laser powder bed fusion 3D printing of the Al10SiMg alloy in a new paper, titled “Solidification pattern, microstructure and texture development in Laser Powder Bed Fusion (LPBF) of Al10SiMg alloy.”

The paper also characterizes the evolution of the α-Al cellular network, grain structure and texture development, and brought to light many interesting facts, including that the grains’ orientation will align with that of the α-Al cells.

The abstract reads, “A comprehensive analysis of solidification patterns and microstructural development is presented for an Al10SiMg sample produced by Laser Powder Bed Fusion (LPBF). Utilizing a novel scanning strategy that involves counter-clockwise rotation of the scan vector by 67° upon completion of each layer, a relatively randomized cusp-like pattern of protruding/overlapping scan tracks has been produced along the build direction. We show that such a distribution of scan tracks, as well as enhancing densification during LPBF, reduces the overall crystallographic texture in the sample, as opposed to those normally achieved by commonly-used bidirectional or island-based scanning regimes with 90° rotation. It is shown that, under directional solidification conditions present in LPBF, the grain structure is strictly columnar throughout the sample and that the grains’ orientation aligns well with that of the α-Al cells. The size evolution of cells and grains within the melt pools, however, is shown to follow opposite patterns. The cells’/grains’ size distribution and texture in the sample are explained via use of analytical models of cellular solidification as well as the overall heat flow direction and local solidification conditions in relation to the LPBF processing conditions. Such a knowledge of the mechanisms upon which microstructural features evolve throughout a complex solidification process is critical for process optimization and control of mechanical properties in LPBF.”

Co-authors include Hong Qin, Vahid Fallah, Qingshan Dong, Mathieu Brochu, Mark R. Daymond, and Mark Gallerneault.

3D Printed Titanium Thomas Edison Statue

Thomas Edison statue, stacked and time lapse build

Oskar Zielinski, a research and development technician at Arcam EBM, a GE Additive company, is responsible for maintaining, repairing, and modifying the company’s electron beam melting (EBM) 3D printers. Zielinski decided that he wanted to test out the Arcam EBM Q20plus 3D printer, but not with just any old benchmark test. Instead, he decided to create and 3D print a titanium (Ti64) statue of Thomas Edison, the founder of GE. He created 25 pieces and different free-floating net structures inside each of the layers, in order to test out the 3D printer’s capabilities. All 4,300 of the statue’s 90-micron layers were 3D printed in one build over a total of 90 hours, with just minimal support between the slices’ outer skins.

The statue stands 387 mm tall, and its interior net structures show off the kind of complicated filigree work that EBM 3D printing is capable of producing. In addition, Zielinski also captured a time lapse, using an Arcam LayerQam, from inside the 3D printer of the statue being printed.

“I am really happy with the result; this final piece is huge,” Zielinski said. “I keep wondering though what Thomas Edison would have thought if someone would have told him during the 19th century about the technology that exists today.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.