MT Aerospace to 3D Print Large Metal Structures with BeAM Tech DED

Directed energy deposition (DED) technology is increasingly demonstrating the potential for use in 3D printing large-scale metal parts, particularly for the aerospace sector. Now, Germany’s MT Aerospace wants to further standardize DED 3D printing through the establishment of a European competence center for 3D printing large structures. To accomplish this goal, the company has acquired a system from BeAM.

The first system in its arsenal is the BeAM Modulo 400, which features blown-powder deposition using a 5-axis architecture relying on Siemens’ Sinumerik for control. To test the possibilities of reactive materials, such as titanium alloys, the system includes a sealed internal enclosure with antechamber. Beginning with medium-sized parts, the company will qualify the technology using a variety of materials and across the entire process chain, from preparing print data to finishing the printed part to certifying parts for aerospace applications.

The BeAM Modulo 400 3D printer.

MT Aerospace has already exhibited confidence in the technology for its ability to 3D print thin-walled geometries without support structures. Other benefits of its DED, according to BeAM, include the ability to print multiple materials, sandwiching a soft metal within a hard, wear-resistant metal. Building off of this latter capability, BeAM believes that it will be possible to eventually 3D print graded materials, as opposed to the currently discrete sandwiching technique.

Spacecraft propellant tanks made by MT Aerospace undergoing drying procedures. Image courtesy of MT Aerospace.

Through its competence center, MT Aerospace will apply DED printing to its own products, as well as those associated with its parent company, the OHB Group. Whereas MT Aerospace is focused on the construction of lightweight metal and composite parts for space and aerospace applications, OHB’s dedication goes beyond metal to encompass on all things related to space travel, satellites, rocket travel and associated technologies. In addition to manufacturing parts for OHB Group, MT Aerospace will ultimately become a service provider for 3D printing DED parts.

Though this may be a first major step in becoming a service provider for DED 3D printing, this is not MT Aerospace’s first entry into AM more generally. The company has worked with several European partners—including Deutsche Bahn AG, MT Aerospace AG, Siemens Mobility GmbH and TÜV SÜD—to develop the DIN SPEC 17071 standard as a precursor for an ISO/ASTM standard for AM quality assurance. The company then partnered with Oerlikon, which offers metal AM powders and services, to accelerate the adoption of AM in aerospace and military applications.

Outside of MT Aerospace itself, OHB Group has been involved in developing 3D printing technology for use in space. At the core of this effort was a European Space Agency project to send a 3D printer to the International Space Station (ISS). As a part of a consortium that included Sonaca Space, Active Space Technologies SA and BEEVERYCREATIVE, OHB was tasked with selecting and testing parts to be printed on the ISS and making changes to the printer so that it would meet the safety requirements of a manned space environment. This came after an OHB-led project to determine the feasibility of 3D printing a moon base and a project dedicated to 3D printing stem cells in space.

BeAM, a subsidiary of AddUp, has already established itself in the aerospace sector, alongside other industrial verticals. The purchase from MT Solutions will not only further expand its customer base there, but also introduce it to the space applications of the larger OHB Group.

The post MT Aerospace to 3D Print Large Metal Structures with BeAM Tech DED appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

Formnext 2019: The 3D Printing Industry first look

Formnext 2019 is now open. Spanning 4 floors of 2 halls at the Frankfurt Messe, more than 800 exhibitors are at the largest additive manufacturing show ever.  The 3D Printing Industry team is in Frankfurt for the week to ensure you don’t miss the latest news, and what better way to begin day one than […]

Third Munich Technology Conference: A reality check on additive manufacturing industrialization

The Third Munich Technology Conference (MTC3) returned to the Technical University of Munich (TUM) yesterday with a quest to evaluate the status of additive manufacturing industrialization.  Despite the gloomy weather, over 1500 attendees are present, including 3D Printing Industry, for the three-day event which seeks to give a “Reality Check” to those adopting additive manufacturing […]

Siemens and BeAM to integrate Sinumerik One digital twin for entire DED 3D printer fleet

Siemens, Europe’s largest industrial manufacturing company, and Strasbourg-based 3D printer manufacturer BeAM have announced plans to extend their partnership. Having already installed Siemens’ digital native CNC controller Sinumerik One on BeAM’s Modulo 250 Directed Energy Deposition (DED) system, the two firms are now looking to equip the entire BeAM machine fleet with the software. The […]

Interview: Siemens’ launches Sinumerik ONE digital twin for CNC & additive manufacturing

Europe’s largest industrial manufacturing company Siemens has introduced Sinumerik ONE, a software designed to produce a digital twin of CNC manufacturing processes. 3D Printing Industry spoke with Dr. Karsten Heuser, VP of Additive Manufacturing at Siemens Digital Factory to learn more. Though not initially designed for additive manufacturing, Siemens is currently working to develop a Sinumerik ONE […]

3D Printing News Briefs: March 23, 2019

We’ve got plenty of business news to share in this week’s 3D Printing News Briefs, but first we’ll start off with something fun – the winners have been announced for this year’s Additive World DfAM Challenge. Moving right along, BeAM is now a Tier 2 member of the ARTC, and PostProcess Technologies has announced improved processing times for SLA resin removal. Protolabs is offering new anodizing services, in addition to teaming up with Wohlers Associates, and Arkema will soon open a new PEKK plant in the US. Continuing with new things, a new AM digital career growth platform just launched, and there’s a new open project call for the European AMable project. Finally, GoPrint3D is the new UK distributor for Mayku and its desktop vacuum casting unit.

Winners Announces for Additive World DfAM Challenge 2019

This week during an awards dinner at the Additive World Conference in Eindhoven, Ultimaker’s Steven van de Staak, Chairman of the 5-member jury for this year’s Additive Industries’ Design for Additive Manufacturing Challenge, announced the two winners and their “inspiring use cases of industrial 3D metal printing.”

Obasogie Okpamen from The Landmark University in Nigeria won first place, and an Ultimaker 2+ 3D printer, in the student category for his Twin Spark Engine Connection Rod. While the connection rod that he redesigned for an Alfa Romeo 75 Twin Spark Turbo engine has not yet been fully tested, he won “because of the example it sets” for distributed localized manufacturing of spare parts with 3D printing. Dutch company K3D took home first place, and an Ultimaker 3, in the professional category for the Dough Cutting Knife it developed for Kaak Group, a leader in the bakery equipment world. The team integrated mechanical parts into the design, which can be 3D printed without any support structures and has improved functionality. The knife sits in a dough extrusion line and due to its light weight less knives and robot arms can do the same amount of cutting. This means that the extrusion line itself is cheaper. Furthermore the knife has been optimized for a cleaner cut with less knife sticking to the dough.

BeAM Joins Advanced Remanufacturing and Technology Centre

Membership agreement signing ceremony held in ARTC

France-based BeAM, which has subsidiaries in the US and Singapore and was acquired by AddUp this summer, is now partnering with the Advanced Remanufacturing and Technology Centre (ARTC) as a Tier 2 member in an effort to expand its research activities in southeast Asia. The center provides a collaborative platform, which will help BeAM as it continues developing its Directed Energy Deposition (DED) technology with companies from the aerospace, consumer goods, marine, and oil & goods sectors.

This summer, BeAM, which also became a member of the Aachen Centre for Additive Manufacturing earlier this month, will install its Modulo 400, featuring a controlled atmosphere system, at ARTC, so other members can safely develop non-reactive and reactive materials. The two will also work to develop process monitoring systems that can expand DED’s range of applications.

PostProcess Technologies Announces New Solution for SLA Resin Removal

A new and improved solution for SLA resin removal by PostProcess Technologies vastly improves process times by 5-10 minutes – quite possibly the fastest on the market. The system can clean up to five times as many parts before detergent saturation when compared to solvent resin removal, and is part of the company’s automated AM post-print offering. The patent-pending solution, which also reduces environmental hazards and preserves fine feature details, was validated with eight different resin materials in several production environments, and uses the company’s proprietary AUTOMAT3D software and SVC (Submersed Vortex Cavitation) technology in the DEMI and CENTI machines.

“PostProcess’ latest innovation of the most advanced SLA resin removal solution in the world reinforces our commitment to providing the AM industry with transformative post- printing solutions enabling the market to scale. SLA is one of the most popular 3D printing technologies in the world. No matter what volume of printing, any SLA user can benefit from the remarkable efficiencies of our solution’s decreased processing time, increased throughput, increased detergent longevity, and improved safety,” said PostProcess Technologies CEO Jeff Mize. “PostProcess has designed the world’s first complete SLA resin removal system, available only from the pioneers in forward-thinking 3D post-printing.”

The new SLA Resin Removal technology will be on display at PostProcess booth P21 at the upcoming AMUG Conference in Chicago. You can also read about it in the company’s new whitepaper.

Protolabs Offering Aluminum Anodizing; Partners with Wohlers Associates

As part of its on-demand production service, digital manufacturer Protolabs is now offering aluminium anodizing in response to demand from customers in need of a single-source solution. Anodizing forms a protective oxide layer by applying a thin, protective coat to the part, which increases abrasion resistance and creates a barrier against corrosion. The company will be offering two levels of this service for Aluminum 6082 and 7075: hard anodizing to ISI 10074 for parts requiring protection from harsh environments, and decorative anodizing to ISO 7599 for parts that need an aesthetic finish. All parts will be sealed, unless they need to be painted post-anodizing.

“Talking to our clients, we realised that if they needed to anodise an aluminium part it was often difficult for them to source and then manage a supplier. They not only have to do all the research and then raise a separate purchase order, but often find that the supplier only accepts large quantities of parts in an order, which isn’t great for low volume runs,” explained Stephen Dyson, Special Operations Manager at Protolabs.

“Keeping the entire production process with a single supplier makes perfect sense for manufacturers. It means they can get their finished parts shipped in a matter of days and our technical team can advise them through the entire process, right from the initial design of the part to the best approach for the final anodising finish.”

In other Protolabs news, the company is partnering up with AM consultants Wohlers Associates to jointly hold an immersive course on DfAM. The class, which is invitation-only, will take place over the course of three days near Raleigh, North Carolina, and will end at Protolabs’ 77,000 sq. ft. 3D printing facility. Olaf Diefel, Associate Consultant at Wohlers Associates, and Principle Consultant and President Terry Wohlers will lead the discussion, in addition to being joined by several Protolabs engineers who are skilled in polymer and metal 3D printing.

“Designing for AM offers unique challenges and opportunities not found in traditional design methods. Protolabs brings tremendous depth of expertise and leadership in 3D printing. We’re thrilled to work together to equip attendees with technical skills and manufacturing knowledge needed to unlock the full potential of additive manufacturing,” said Wohlers.

Arkema Opening New PEKK Plant

Arkema, one of the largest specialty chemical and advanced materials developers, has been busily producing polyetherketoneketone, or PEKK, in France. But this coming Monday, March 24th, it is celebrating its new Kepstan PEKK plant near Mobile, Alabama with a ribbon-cutting ceremony.

The durability and customizable abilities of PEKK make it a good material for a variety of 3D printing purposes. Monday’s event will take place from 10:30 am to 1:30, and will also include VIP comments and lunch. The increased volume of this PEAK material will shake up the high-performance polymer market making PEKK a viable alternative to PEEK and PEI.

New AM Digital Career Growth Platform Launched

A free interactive platform to help AM professionals enhance their skills and fulfill career opportunities is now launching. i-AMdigital, which counts HP as one of its backing partners, is a joint venture between AM industry recruiter Alexander Daniels Global, digital venture company TES Network, and web and UX design company De Wortel van Drie. The platform was created to develop a growing AM talent pool, and uses smart matching and AI to offer customized career advice, courses, training, and job opportunities.

“There just isn’t enough talent out there. At the same time the learning and development landscape for additive manufacturing is very fragmented. This makes it difficult for individuals and organisations alike to access courses that can help them upskill. i-AMdigital solves both problems through our digital career growth platform,” said CEO and Co-Founder Nick Pearce of Alexander Daniels Global.

“It is an essential tool for the AM industry that will allow talent to grow their career and make an impact in additive manufacturing. It will provide organisations access to a growing and educated talent force to address their hiring needs and a marketplace for learning and development that can help them upskill their existing workforce in the latest technologies.”

AMable Launches Second Open Project Call

The AMable project, which receives funding from the European Union Horizon 2020 research and innovation program, has just launched its second project call for proposals and ideas that can be applied to AM. The project is continuing to look for new ways to innovate on services for mid-caps and SMEs in the EU, and chosen teams will receive support from the AMable unit.

AMable is a Factories of the Future (FoF) project participating in I4MS (ICT for Manufacturing SMEs), and is working to increase adoption of AM technologies through the EU. The project will build a digital model that will provide unbiased access to the best AM knowledge in Europe in an effort to support this adoption. For more details on the call, visit the AMable site.

Express Group Appointed New UK Distributor for Mayku

GoPrint3D, a division of Express Group Ltd, has just been named the new UK distributor for London startup Mayku. The startup created a desktop vacuum casting unit called the FormBox, which is a handy partner for your 3D printer. Once you create a 3D printed mold, you can put it inside the compact FormBox, which is powered by any vacuum cleaner and works with many materials like wax and concrete, to cast a series from it – putting the power of making in your own hands.

An architect forming a dome template on the FormBox.

 

“We are thrilled to have partnered with Express Group on our UK and Ireland distribution, building on our existing servicing and repair relationship,” said Alex Smilansky, Mayku Co-Founder and CEO. “When we founded Mayku, our goal was to bring the power of making to as wide an audience as possible. The partnership with Express Group will allow us to deliver a first-class making experience to more people than ever before.”

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.

Top 10 3D Printing Aerospace Stories from 2018

3D printing has played an important role in many industries over the past year, such as medical, education, and aerospace. It would take a very long time to list all of the amazing news in aerospace 3D printing in 2018, which is why we’ve chosen our top 10 stories for you about 3D printing in the aerospace industry and put them all in a single article.

Sintavia Received Approval to 3D Print Production Parts for Honeywell Aerospace

Tier One metal 3D printer manufacturer Sintavia LLC, headquartered in Florida, announced in January that it is the first company to receive internal approval to 3D print flightworthy production parts, using a powder bed fusion process, for OEM Honeywell Aerospace. Sintavia’s exciting approval covers all of Honeywell’s programs.

Boeing and Oerlikon Developing Standard Processes

Boeing, the world’s largest aerospace company, signed a five-year collaboration agreement with Swiss technology and engineering group Oerlikon to develop standard processes and materials for metal 3D printing. Together, the two companies will use the data resulting from their agreement to support the creation of standard titanium 3D printing processes, in addition to the qualification of AM suppliers that will produce metallic components through a variety of different materials and machines. Their research will focus first on industrializing titanium powder bed fusion, as well as making sure that any parts made with the process will meet the necessary flight requirements of both the FAA and the Department of Defense.

FITNIK Launched Operations in Russia

In 2017, FIT AG, a German provider of rapid prototyping and additive design and manufacturing (ADM) services, began working with Russian research and engineering company NIK Ltd. to open up the country’s market for aerospace additive manufacturing. FIT and NIK started a new joint venture company, dubbed FITNIK, which combines the best of what both companies offer. In the winter of 2018, FITNIK finally launched its operations in the strategic location of Zhukovsky, which is an important aircraft R&D center.

New Polymer 3D Printing Standards for Aerospace Industry

The National Institute for Aviation Research (NIAR) at Wichita State University (WSU), which is the country’s largest university aviation R&D institution, announced that it would be helping to create new technical standard documents for polymer 3D printing in the aerospace industry, together with the Polymer Additive Manufacturing (AMS AM-P) Subcommittee of global engineering organization SAE International. These new technical standard documents are supporting the industry’s interest in qualifying 3D printed polymer parts, as well as providing quality assurance provisions and technical requirements for the material feedstock characterization and FDM process that will be used to 3D print high-quality aerospace parts with Stratasys ULTEM 9085 and ULTEM 1010.

Premium AEROTEC Acquired APWORKS

Metal 3D printing expert and Airbus subsidiary APWORKS announced in April that it had been acquired as a subsidiary by aerostructures supplier Premium AEROTEC. Premium AEROTEC will be the sole shareholder, with APWORKS maintaining its own market presence as an independent company. Combining the two companies gave clients access to 11 production units and a wide variety of materials.

Gefertec’s Wire-Feed 3D Printing Developed for Aerospace

Gefertec, which uses wire as the feedstock for its patented 3DMP technology, worked with the Bremer Institut für Angewandte Strahltechnik GmbH (BIAS) to qualify its wire-feed 3D printing method to produce large structural aerospace components. The research took place as part of collaborative project REGIS, which includes several different partners from the aerospace industry, other research institutions, and machine manufacturers. Germany’s Federal Ministry for Economic Affairs and Energy funded the project, which investigated the influence of shielding gas content and heat input on the mechanical properties of titanium and aluminium components.

Research Into Embedded QR Codes for Aerospace 3D Printing

It’s been predicted that by 2021, 75% of new commercial and military aircraft will contain 3D printed parts, so it’s vitally important to find a way to ensure that 3D printed components are genuine, and not counterfeit. A group of researchers from the NYU Tandon School of Engineering came up with a way to protect part integrity by converting QR codes, bar codes, and other passive tags into 3D features that are hidden inside 3D printed objects. The researchers explained in a paper how they were able to embed the codes in a way that they would neither compromise the integrity of the 3D printed object or be obvious to any counterfeiters attempting to reverse engineer the part.

Lockheed Martin Received Contract for Developing Aerospace 3D Printing

Aerospace company Lockheed Martin, the world’s largest defense contractor, was granted a $5.8 million contract with the Office of Naval Research to help further develop 3D printing for the aerospace industry. Together, the two will investigate the use of artificial intelligence in training robots to independently oversee the 3D printing of complex aerospace components.

BeAM And PFW Aerospace Qualified 3D Printed Aerospace Component

BeAM, well-known for its Directed Energy Deposition (DED) technology, announced a new partnership with German company PFW Aerospace, which supplies systems and components for all civilian Airbus models and the Boeing 737 Dreamliner. Together, the two worked to qualify a 3D printed aerospace component, made out of the Ti6Al4V alloy, for a large civil passenger aircraft, in addition to industrializing BeAM’s DED process to manufacture series components and testing the applicability of the method to machined titanium components and complex welding designs.

Researchers Qualified 3D Printed Aerospace Brackets

Speaking of parts qualification, a team of researchers completed a feasibility study of the Thermoelastic Stress Analysis (TSA) on a titanium alloy space bracket made with Electron Beam Melting (EBM) 3D printing, in order to ensure that its mechanical behavior and other qualities were acceptable. The researchers developed a methodology, which was implemented on a titanium based-alloy satellite bracket.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below. 

PFW and BeAM partner to industrialize Directed Energy Deposition in the aerospace industry

PFW Aerospace, a German airplane components manufacturer, has partnered with BeAM, a Strasbourg-based 3D printer manufacturer, to industrialize aerospace parts additively manufactured using Directed Energy Deposition (DED) technology.  Furthermore, the collaboration also seeks to qualify a titanium aerospace component made with DED. A 3D printed aircraft flange PFW supplies steel and titanium pipe systems, structural […]

3D Printing News Sliced: SHINING 3D, BeAM, Lulzbot, Stratasys, Koffin

The last Sliced 3D printing news digest of the week, today we feature, a story that brings new meaning for 3D printing a cradle to grave file; new business partnerships from Nano Dimension, EOS, and Authentise; a $9 million research fund; and other additive manufacturing applications, research and hardware releases. Latest business partnerships Process automation […]

3D Printing News Briefs: October 13, 2018

We’ve got business and education news galore in today’s 3D Printing News Briefs. First, Voodoo Manufacturing has launched its new Shopify app, and BeAM Machines is partnering with Empa, while Sculpteo is working with a property developer to provide 3D printed apartment models. VSHAPER has signed an agreement with educational publisher Grupa MAC, and the United Arab Emirates is introducing 3D printing into over 200 of its primary schools. The US Navy will be testing the first 3D printed ship component, and Lufthansa Technik has established a new Additive Manufacturing Center. Finally, maker Thomas Sanladerer shared on YouTube about his recent visit to the Prusa headquarters.

Voodoo Manufacturing Launches Shopify App

This spring, high-volume 3D printing factory Voodoo Manufacturing began its full-stack manufacturing and fulfillment service for 3D printing entrepreneurs, which allows users to outsource work like quality control and assembly for their products through its easy shopfront integrations with online marketplaces like Shopify. Now, the company has launched its own Shopify app, which will allow online sellers to create and customize 3D printed products and sell them on their own Shopify stores. Once the app is installed, users can make their first product in less than 5 minutes, which is then automatically added to their store, ready for purchase.

“We wanted to make it ridiculously easy for ecommerce stores to diversify their product offering with 3D printed products. By applying 3D printing to the print-on-demand business model, we are opening up an infinite range of product categories for Shopify merchants,” said Max Friefeld, the Founder and CEO of Voodoo Manufacturing. “The Voodoo app provides a new source of high quality, customizable, on-demand products, that don’t require any 3D design experience.”

Before the official launch this week, Voodoo piloted the service with a group of beta users, including It’s The Island Life by graphic designer and Guam native Lucy Hutcheson. She is already successfully selling six different products made with the help of the new Voodoo app.

BeAM Machines Partnering with Empa

BeAM, recently acquired by AddUp, has signed a research and development agreement with Empa, the Swiss Federal Laboratories for Materials Science and Technology. Together, the two will develop novel applications for BeAM’s powder-based Directed Energy Deposition (DED) technology, which uses focused thermal energy to fuse materials by melting them while they’re deposited. This makes parts manufacturing much faster. The partnership has come on the heels of Empa’s acquisition of a BeAM DED 3D printer, which is located at its Laboratory for Advanced Materials Processing in Thun and is used to integrate and test out innovative components.

Patrik Hoffmann, who leads the laboratory, said, “We are very excited to collaborate with BeAM’s engineers to push the boundaries of this innovative additive manufacturing technology and to develop a whole new range of applications for Swiss industries and beyond.”

Sculpteo 3D Printing Apartment Models

Together with Sculpteo, French property developer Valoptim is working to improve customer experience by providing clients with miniaturized 3D printed models of their future apartments when they sign their contracts, so they can better visualize and prepare for moving into their new home. These small, exact replicas give new owners an immersive experience, which is a definite value add. In addition, production of the 3D printed models is local, and can be done fast.

“Sculpteo uses the best machines and 3D printing processes on the market today. At first, we had the ambition to test the feasibility of 3D printing in the real estate sector. This innovative process has proven to be extremely interesting: the realistic rendering, with high-end finishes, allowed our clients to discover a miniaturized version of their future apartment enabling them to realistically imagine themselves living in it,” said Edouard Pellerin, CEO of Valoptim. “This innovation contributes to our business dynamic: constantly improving the customer experience.”

VSHAPER and Grupa Mac Sign Agreement

Polish 3D printer manufacturer Verashape has signed an agreement with Grupa MAC, the country’s top educational publisher, in front of Poland’s education curators at the recent Future of Education Congress. Per the agreement, Grupa MAC will use a network of educational consultants to distribute the VSHAPER GO 3D printers to kindergartens and other schools in the country. Grupa MAC recognizes that 3D printers are a good way to quickly present the effects of students’ learning, and the VSHAPER GO is the perfect choice, as it is easy to use and comes with an intuitive interface of SOFTSHAPER software.

“Classes with students are a perfect environment for the use of 3D Printing. Creating a pyramid model for history lessons, the structure of a flower or a human body for biology lessons are just a few examples, and their list is limited only by the imagination of students and teachers,” said Patryk Tomczyk, a member of the Grupa MAC Management Board. “We are happy that thanks to our cooperation with VERASHAPE, 3D Printers have a chance to reach schools through our network of educational consultants.”

3D Printing to be Introduced in UAE Primary Schools

Speaking of 3D printing in education, the Ministry of Education (MoE) for the UAE has announced that in early 2019, a country-wide introduction of 3D printing into over 200 primary schools will commence. As part of this new technology roll out, Dubai education consultancy company Ibtikar is partnering with Makers Empire, an Australian education technology company, to deliver a program that implements 3D printing and design. Makers Empire will supply 3D software, curriculum, teacher resources, training, and support to Ibtikar, which will in turn train MoE teachers to deliver the program.

“Through this rollout of 3D technology, our students will learn to reframe needs as actionable statements and to create solutions to real-world problems,” said HE Eng. Abdul Rahman of the United Arab Emirates Ministry of Education. “In doing so, our students will develop an important growth mindset, the skills they need to make their world better and the essential ability to persist when encountering setbacks.”

US Navy Approves Test of First 3D Printed Shipboard Part

USS Harry S. Truman

The US military has long explored the use of 3D printing to lower costs and increase the availability of spare parts. Huntington Ingalls Industries, the largest military shipbuilder in the US, has also been piloting new technologies, like 3D printing, as part of its digital transformation. In collaboration with the US Navy, the company’s Newport News Shipbuilding division has worked to speed the adoption of 3D printed metal components for nuclear-powered warships. This has led to an exciting announcement by the Naval Sea Systems Command (NAVSEA): a metal drain strainer orifice (DSO) prototype has officially been approved as the first 3D printed metal part to be installed on a US Navy ship. The assembly is a component for the steam system, which allows for drainage and removal of water from a steam line while in use. The 3D printed DSO prototype will be installed on the USS Harry S. Truman in 2019 for evaluation and tests. After one year, the assembly will be removed for inspection and analysis.

“This install marks a significant advancement in the Navy’s ability to make parts on demand and combine NAVSEA’s strategic goal of on-time delivery of ships and submarines while maintaining a culture of affordability. By targeting CVN 75 [USS Harry S. Truman], this allows us to get test results faster, so-if successful-we can identify additional uses of additive manufacturing for the fleet,” said Rear Adm. Lorin Selby, NAVSEA Chief Engineer and Deputy Commander for Ship Design, Integration, and Naval Engineering.

Lufthansa Technik Opens New Additive Manufacturing Center

Lufthansa Technik, a leading provider of maintenance, repair and overhaul (MRO) for civil aircraft, has established a new Additive Manufacturing Center. The goal of the new AM Center is to bundle and expand the company’s experience and competence with the technology, which can be used to make individual parts more quickly and with more design freedom. As the world of aircraft is always aware of weight, making more lightweight parts is an excellent benefit of 3D printing.

“The new AM Center will serve as a collaborative hub where the experience and skills that Lufthansa Technik has gained in additive manufacturing can be bundled and further expanded,” said Dr. Aenne Koester, the head of the new AM Center. “The aim is to increase the degree of maturity of the technologies and to develop products that are suitable for production.”

Tom’s 3D Visits Prusa Headquarters 

Maker Thomas Sanladerer, who runs his own YouTube channel, recently had the chance to tour the Prusa Research headquarters in Prague. Not only did he get the opportunity to see how the company makes its popular MK3 and and MK2.5, but Sanladerer was also able to see early models of the company’s recently announced SL1 resin 3D printer, as well as the Prusament filament production line.

“I always find factory tours like this super interesting because it’s the only chance you really get of seeing behind the scenes of what might really just be a website, or you know, a marketing video or whatever,” Sanladerer said in his video.

Sanladerer took the tour of the Prusa factory right after Maker Faire Prague, which the company itself organized and sponsored. To see behind the scenes of Prusa for yourself, check out the rest of the video below:

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts below.