Safety Suggestions for 3D-Printing COVID-19 Medical Parts at Home

In this post, we’re going to delve deeper into the procedures that you could use for making face shields, spare parts and medical parts for COVID-19. Please note that this article is well-meaning advice given to aid you in a time of need and in no means medical advice. We are not implying that the materials or processes or suggestions listed or linked to are fit for purpose or indeed that they should be used to make a medical device or ancillary product; only that of all of the printable materials and methods these at least could be used more effectively than other materials. GMP still is the only way to do this properly, but for the home, we’re going to give you these tips. Please check the relevant certifications and approvals for your material. Use the information in this article at your own risk but please do not risk someone else’s life through optimism or overconfidence.

There is this palpable feeling in the maker community and in 3D Printing companies that to do nothing at all would be the greatest sin. On the whole, that may be the case, but specifically, when making a product used in medicine, failure to observe safety requirements, standards, and best practices could mean that people who otherwise would live long lives could die because of your 3D printed product. It may seem that “a mask is better than none at all” but if that mask infects seven more people because it can’t be cleaned properly it could, in fact, be a far worse outcome than no mask at all. Ethically for me, this advice is like telling a friend who will drive drunk to wear a seatbelt. But, I admire all of the hard work that makers and 3D printing companies worldwide are putting in, I admire your gumption and I am proud of all of the people wanting to use 3D printing to make a better world.

Desktop FDM Recommendations

Repeatability Issues Related to file handling 

With desktop FDM printers we have some specific software-related concerns that need to be addressed. Opening a file in a CAD system could change a file. A different slicer or a different version of the same slicing software will get you a different part. Typically values for filament temperatures and speeds have huge effects on part quality and things such as layer adhesion. There is a huge range of different temperatures and print speeds used for the same materials but different vendors. Different colors of filament from the same vendor have a different optimal temperature. Differences in settings between machines will mean that you or I will get a different part. Those random settings you inputted in Cura the first time you booted it up and that one time you played with retraction and left it at some value will have a huge influence on the part outcome. Check to make sure that your slicer values and machine settings are all normal before beginning. Check to make sure that you are printing the right version of the right file. This may seem silly, but we’ve already seen dozens of different versions of files proliferate and one would be NIH checked but the others would not be.

Issues related to material handling 

Humidity, airflow, and ambient temperatures really have an effect on your parts. Do not use rolls of filament opened weeks ago for critical parts. Use only new rolls of filament. As you know has significant effects on PLA and wreaks havoc in hours on PA. For best results pre-dry problematic filaments to make sure that they are low on moisture. Moisture and dust on filament have effects on the parts also. We want to altogether avoid having any dust or particles enter and lodge in between layers. If your printer is not yet enclosed then this would be the perfect time to Lack yourself an enclosure of some kind. This will be safer and give you better print results. 3D printers work best on the floor where they are most stable and vibration-free. You should promptly discard cardboard, outside packaging and plastic bags. You should disinfect rolls, filament, and relevant printer surfaces.

Surfaces 

Soap and other disinfectants can be used to kill COVID-19. Please be aware that COVID-19 may “live” months, weeks, days or hours on surfaces depending on those surfaces. The two most relevant papers here are a New England Journal of Medicine and a Lancet paper. COVID’s surface stability means that it lasts on polymers and steel for a week and on glass for three days. COVID-19 can persist for a week on surgical masks as well so be sure to use a new one, washed one (if possible with your type of mask) or a shield.

Our primary concern is that your well-meaning effort would disseminate one infection in your home to the face shields of 100 medical workers or all of your colleagues. Maybe you’ve played the “floor is lava” game growing up? With COVID the safe bet is, everything is lava. Also just for safety’s sake assume that you have the virus and act as paranoid as this would make you. Wash hands a minimum four times a day. Wash your hands any time you enter the print room. Here is a video showing you how to properly remove surgical gloves. This CDC guide on glove removal is handy. Here is a video on how to properly remove your mask. Here is a simple video on how to store your mask. This protocol explains how you could, with much care, use vaporized hydrogen peroxide to clean masks.  Here is a video on how to properly wash your hands. Washing your hands is the thing do, hand sanitizer is a stopgap measure for when a tap and soap are not available. This purple paint demonstration is very helpful. Put your PPE on in the correct way and right order.

Always wear gloves for your COVID project but only in the print room and only for the task at hand. Do not leave the room with those gloves, don’t go to the toilet with them. Do not pick up your phone with them or open the front door or grab a Coke. Use a completely new pair of gloves when taking out finished parts from the printer and packing them. Wear a face shield.

Do not eat in the room which you’re printing in and do not let others or pets in if possible. Wear a set of clothes and shoes that are clean and have just been washed. Wear your “I’m printing now shoes” only in the print room. Have bins for gloves and discarded materials next to the door. They also should act as physical reminders to remove gloves, discard cardboard etc. Attach some kind of door opening device to the door, this could be as simple as taping a pen to it so you can open it without using your hands or you can print the Materialise door opener or similar. Vacuum the entire room extensively, twice at least. Dust the entire room. Ventilate well after, opening windows after you do this. Check the ventilation in the room after.

Any and all surfaces in, on and around the printer should be disinfected. Disinfected is not a synonym for cleaned or touched briefly by a rag. First you clean something then you disinfect it. With key things you can then after also sterilize them.  This Australian guide can be used to clean the room and direct surroundings of your printer. A very good EU guideline for cleaning spaces can be found here. A good CDC guideline for the same can be found here and a more detailed document can be found here. These are the NYC business disinfectant guidelines. Not everything that you may think is a disinfectant actually is. This is an NYC list of EPA listed disinfectants. When at all possible adhere to healthcare setting guidelines. Please read these documents before beginning this project. You should plan ahead where finished parts will be put and clean those surfaces. If you are not going to read these documents, please don’t make medical stuff at home. When not in use, filament rolls should be enclosed in airtight containers. Tools used to remove prints or cut filament should be sterilized and disinfected. Not a typo.

Printer itself

You should use completely new nozzles for your COVID-19 project. Depending on your printer a new head could be preferable. Nanofilled materials, carbon black, metal-filled materials, glass fiber and carbon fiber will all leave behind traces that you do not want present in your parts, inside print heads and nozzles. Many additives in low cost and quality materials lack approvals. Even premium materials often have undisclosed additives. All previous materials will to some extent leave traces inside nozzles. Clean your feeder wheels specifically and remove any loose metal shavings and polymer parts there. Vacuum and clean out the inside of your printer including materials below the build platform and materials such as hairspray residue that will have built up across the side walls of your printer and on top of the surfaces of steppers and motion stages. Calibrate your printer and try to do any and all operations after disinfecting and cleaning notable surfaces without touching the printer. Make sure that the printer is level and minimize any airflows in or across it. Do long term maintenance operations such as straightening rods, lubricating axels and other surfaces, replacing common consumables before you get started.

Update software and make sure any connector cables SD cards etc. are also clean and ready. Imagine yourself doing the entire workflow from setting up a print to packing a part. Can you reduce the number of operations or number of times that you touch something? Update all software as well and do not forget to extensively clean printer control surfaces, knobs and, buttons. Extensively disinfect and clean your laptop. Use one device to control the printer. Try avoid using your cell phone in the print room or better yet, don’t bring it inside. Disinfect your cell phone regularly. Make sure that loose residues of materials such as WD-40, lubricants and bed adhesives are not about where they should be. Try print direct on glass or other surfaces without Pritt or try BuildTak or equivalent. Clean your sink, taps and things such as a rack to store build plates, the side table to store filament, any tools you may have forgotten. Leave the room, enter again and try to set up a print, be completely mindful of every surface you need to touch. Were and are they clean? Survey the room once again. Clean and disinfect relevant surfaces including all light fixtures. Good luck out there.

This is a living document and will be updated. Do you have tips, suggestions and best practices? Email joris (at) 3dprint.com.

The post Safety Suggestions for 3D-Printing COVID-19 Medical Parts at Home appeared first on 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing.

3D Printing News Briefs: February 22, 2019

We’ve got some exciting dental news to share first in today’s 3D Printing News Briefs – Stratasys just announced its new full-color dental 3D printer at LMT Lab Day. Moving on, Farsoon has been busy developing an advanced pure copper laser sintering process, and Aether is working with Procter & Gamble on a joint development project. DyeMansion has announced a new UK distributor for its products, and three researchers address the challenges of adopting additive manufacturing in a new book about best practices in the AM industry.

Stratasys Introduces Full-Color Dental 3D Printer

This week at LMT Lab Day Chicago, the largest dental laboratory event in the US, Stratasys has introduced its new full-color, multi-material J720 Dental 3D printer which lets you have 500,000 color combinations for making very high resolution, patient-specific models. Its large build tray can print six materials at the same time, and it’s backed by GrabCAD Print software.

“Labs today operate in a very competitive space where differentiation counts on mastering the digital workflow and expanding into new products and services. The J720 Dental 3D Printer is designed to change the game – allowing levels of speed, productivity and realism the market has never seen,” said Barry Diener, Dental Segment Sales Leader for Stratasys. “This powers laboratories to meet the demands of a competitive market and push the boundaries of digital dentistry.”

See the new J720 Dental 3D printer at LMT Lab Day Chicago today and tomorrow at Stratasys Booth A9. It’s expected to be available for purchase this May.

Farsoon 3D Printing Pure Copper

Pure copper heat exchanger

Two years ago, after Farsoon Technologies had introduced its metal laser sintering system, the company’s application team began working with industrial partners to develop an advanced 3D printing process that could additively produce components made of pure copper. Copper is a soft, ductile metal with both high electrical and thermal conductivity, and it’s often used in industries like shipbuilding, electronics, automotive, and aerospace. But most additive copper is based on alloys, and not the pure metal itself, which is hard for lasers to regularly and continuously melt and can cause problems like thermal cracking and interface failure.

That’s why Farsoon’s work is important – all of its metal laser sintering systems can successfully create cost-effective, high-quality pure copper parts. The company’s process and unique parametric design is able to meet custom needs of customers, and to date, it’s launched 13 process parameters for metal powder sintering, including pure copper. Some of the parts that have come out of Farsoon’s recent collaborations include a pure copper heat exchanger, which featured a 0.5 mm wall thickness, complex spiral geometry and was printed in a single piece. Farsoon is open for additional partners seeking to further develop the 3D printing of pure copper and other specialized materials.

Aether and Procter & Gamble Begin Joint Development Project

Aether CEO Ryan Franks and Director of Engineering Marissa Buell with an Aether 1

San Francisco 3D bioprinting startup Aether has entered into a two-year joint development agreement with Procter & Gamble (P&G) in order to develop 3D printing and artificial intelligence technologies. The two will use the multi-material, multi-tool Aether 1 3D printer as a technology creation platform, and will create several hardware and software capabilities that hope to automate and improve P&G’s product research applications and develop a next-generation Aether 3D printer. An interconnected network of computer vision and AI algorithms aims to increase automation for multi-tool and multi-material 3D printing, while high-performance cameras will enable new robotics capabilities. Aether is also working on additional software that will help P&G automate and speed up image processing.

“Aether is working with P&G to completely redefine 3D printing.  It’s no longer going to be just about depositing a material or two in a specific pattern. We’re building something more like an intelligent robotic craftsman, able to perform highly complex tasks with many different tools, visually evaluate and correct its work throughout the fabrication process, and constantly learn how to improve,” said Aether CEO and Founder Ryan Franks.

DyeMansion Names New UK Distributor

3D print finishing systems distributor DyeMansion, headquartered in Munich, announced that Cheshire-based 3D printing services supplier Europac3D will be the UK distributor for its range of machines. Per the agreement, Europac3D will now offer all of the AM finishing systems in DyeMansion’s Print-to-Product workflow, which includes its Powershot C powder blasting system, DM60 industrial coloring system, and the PowerShot S, which delivers homogeneous surface quality to 3D printed, powder-based plastics. Because of this, Europac3D is one step closer to achieving its mission of being a one-stop shop for 3D printing, scanning, and post-processing services.

“DyeMansion’s post-production systems are worldclass and add the all important finish to additive manufacturing,” said John Beckett, the Managing Director of Europac3D. “Their systems are perfect for companies or 3D print bureaus that have multiple SLS or HP 3D printers and allow us to extend our offer by providing market leading additive manufacturing finishing systems for 3D-printed polymer parts.”

New 3D Printing ‘Best Practices’ Book

We could go on and on about the many benefits offered by 3D printing (and we do), but there are still industry executives who remain unconvinced when it comes to adopting the technology. But a new book, titled “Additive Manufacturing Change Management: Best Practices” and released today, is here to provide some guidance for those still holding back. The book, which addresses some of the challenges of adopting 3D printing, was published by CRC Press as part of its Continuous Improvement Series and written by Dr. Elizabeth A. Cudney, an associate professor of engineering management and systems engineering at the Missouri University of Science and Technology, along with Divergent 3D’s VP of Additive Manufacturing Michael Kenworthy and Dr. David M. Dietrich, who is an Additive Manufacturing Engineering Design Fellow for Honeywell Aerospace and Dr. Cudney’s former doctoral student.

Dr. Cudney said, “If company leaders are interested in bringing additive manufacturing online, this book can help them decide if it makes sense for their industry.

“There’s often a lack of planning, a lack of understanding, a resistance to change and sometimes fear of the unknown. Our hope is that this book will provide a good road map for managers to advance additive manufacturing at a faster pace.

“We wanted to take a look at how companies can roll out a new technology, new processes and equipment and integrate that in such a way that you have a good product in the end.”

In the 17-chapter book, the authors present what Dr. Cudney refers to as a ‘road map’ for business leaders looking to adopt 3D printing. The eBook format costs $52.16, but if you want that shiny new hardcover version, it will set you back $191.25.

Discuss these stories and other 3D printing topics at 3DPrintBoard.com or share your thoughts in the Facebook comments below.